Search results for: digital transformation artificial intelligence
4390 Modeling and Optimal Control of Acetylene Catalytic Hydrogenation Reactor in Olefin Plant by Artificial Neural Network
Authors: Faezeh Aghazadeh, Mohammad Javad Sharifi
Abstract:
The application of neural networks to model a full-scale industrial acetylene hydrogenation in olefin plant has been studied. The operating variables studied are the, input-temperature of the reactor, output-temperature of the reactor, hydrogen ratio of the reactor, [C₂H₂]input, and [C₂H₆]input. The studied operating variables were used as the input to the constructed neural network to predict the [C₂H₆]output at any time as the output or the target. The constructed neural network was found to be highly precise in predicting the quantity of [C₂H₆]output for the new input data, which are kept unaware of the trained neural network showing its applicability to determine the [C₂H₆]output for any operating conditions. The enhancement of [C₂H₆]output as compared with [C₂H₆]input was a consequence of low selective acetylene hydrogenation to ethylene.Keywords: acetylene hydrogenation, Pd-Ag/Al₂O₃, artificial neural network, modeling, optimal design
Procedia PDF Downloads 2804389 Landscape Management in the Emergency Hazard Planning Zone of the Nuclear Power Plant Temelin: Preventive Improvement of Landscape Functions
Authors: Ivana Kašparová, Emilie Pecharová
Abstract:
The experience of radiological contamination of land, especially after the Chernobyl and Fukushima disasters have shown the need to explore possibilities to the capture of radionuclides in the area affected and to adapt the landscape management to this purpose ex –ante the considered accident in terms of prevention. The project‚ Minimizing the impact of radiation contamination on land in the emergency zone of Temelin NPP‘ (2012-2015), dealt with the possibility of utilization of wetlands as retention sites for water carrying radionuclides in the case of a radiation accident. A model artificial wetland was designed and adopted as a utility model by the Ministry of Industry and Trade of the Czech Republic. The article shows the conditions of construction of designed wetlands in the landscape with regard to minimizing the negative effect on agricultural production and enhancing the hydrological functionality of the landscape.Keywords: artificial wetland, land use/ land cover, old maps, surface-to-water transport of radionuclides
Procedia PDF Downloads 3624388 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework
Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin
Abstract:
During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.Keywords: artificial intelligence, COVID-19, depression detection, psychiatric disorder
Procedia PDF Downloads 1334387 Human Intelligence: A Corollary of Genotype and Habitat
Authors: Tripureshwari Paul
Abstract:
We are born with nature molded by nurture. Studies have confirmed the productive role of genes and environment on an individual. This study examines the relationship of parental genotype values on the intellectual ability of their children. Keeping in mind that academic achievement-learning capacity of student through normative education, a function of exposure to family environment and pathology with intellectual quotient of the individual. Purposive sampling was used and children between ages 11 and 12 years and their respective parents were involved. Raven’s Standard Progressive Matrices (RSPM), Family Pathology Scale (FPS) and Family Environment Scale (FES) were administered. The results found significant relationship of Offspring IQ to Parental IQ, maternal IQ demonstrating higher values of correlation. Female IQ was significant to maternal IQ and male IQ was significant to paternal IQ. With Academic Achievement not significantly correlated to IQ, it was determined that Competitive framework, freedom to expression and Recreational Orientation in family affect a child’s intellectual performance.Keywords: academic achievement, environment, family environment, family pathology, genotype, intelligence quotient, maternal IQ, paternal IQ
Procedia PDF Downloads 1344386 Investigation of Interlayer Shear Effects in Asphalt Overlay on Existing Rigid Airfield Pavement Using Digital Image Correlation
Authors: Yuechao Lei, Lei Zhang
Abstract:
The interface shear between asphalt overlay and existing rigid airport pavements occurs due to differences in the mechanical properties of materials subjected to aircraft loading. Interlayer contact influences the mechanical characteristics of the asphalt overlay directly. However, the effective interlayer relative displacement obtained accurately using existing displacement sensors of the loading apparatus remains challenging. This study aims to utilize digital image correlation technology to enhance the accuracy of interfacial contact parameters by obtaining effective interlayer relative displacements. Composite structure specimens were prepared, and fixtures for interlayer shear tests were designed and fabricated. Subsequently, a digital image recognition scheme for required markers was designed and optimized. Effective interlayer relative displacement values were obtained through image recognition and calculation of surface markers on specimens. Finite element simulations validated the mechanical response of composite specimens with interlayer shearing. Results indicated that an optimized marking approach using the wall mending agent for surface application and color coding enhanced the image recognition quality of marking points on the specimen surface. Further image extraction provided effective interlayer relative displacement values during interlayer shear, thereby improving the accuracy of interface contact parameters. For composite structure specimens utilizing Styrene-Butadiene-Styrene (SBS) modified asphalt as the tack coat, the corresponding maximum interlayer shear stress strength was 0.6 MPa, and fracture energy was 2917 J/m2. This research provides valuable insights for investigating the impact of interlayer contact in composite pavement structures on the mechanical characteristics of asphalt overlay.Keywords: interlayer contact, effective relative displacement, digital image correlation technology, composite pavement structure, asphalt overlay
Procedia PDF Downloads 514385 Study of Mixing Conditions for Different Endothelial Dysfunction in Arteriosclerosis
Authors: Sara Segura, Diego Nuñez, Miryam Villamil
Abstract:
In this work, we studied the microscale interaction of foreign substances with blood inside an artificial transparent artery system that represents medium and small muscular arteries. This artery system had channels ranging from 75 μm to 930 μm and was fabricated using glass and transparent polymer blends like Phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide, Poly(ethylene glycol) and PDMS in order to be monitored in real time. The setup was performed using a computer controlled precision micropump and a high resolution optical microscope capable of tracking fluids at fast capture. Observation and analysis were performed using a real time software that reconstructs the fluid dynamics determining the flux velocity, injection dependency, turbulence and rheology. All experiments were carried out with fully computer controlled equipment. Interactions between substances like water, serum (0.9% sodium chloride and electrolyte with a ratio of 4 ppm) and blood cells were studied at microscale as high as 400nm of resolution and the analysis was performed using a frame-by-frame observation and HD-video capture. These observations lead us to understand the fluid and mixing behavior of the interest substance in the blood stream and to shed a light on the use of implantable devices for drug delivery at arteries with different Endothelial dysfunction. Several substances were tested using the artificial artery system. Initially, Milli-Q water was used as a control substance for the study of the basic fluid dynamics of the artificial artery system. However, serum and other low viscous substances were pumped into the system with the presence of other liquids to study the mixing profiles and behaviors. Finally, mammal blood was used for the final test while serum was injected. Different flow conditions, pumping rates, and time rates were evaluated for the determination of the optimal mixing conditions. Our results suggested the use of a very fine controlled microinjection for better mixing profiles with and approximately rate of 135.000 μm3/s for the administration of drugs inside arteries.Keywords: artificial artery, drug delivery, microfluidics dynamics, arteriosclerosis
Procedia PDF Downloads 3014384 A Computationally Intelligent Framework to Support Youth Mental Health in Australia
Authors: Nathaniel Carpenter
Abstract:
Web-enabled systems for supporting youth mental health management in Australia are pioneering in their field; however, with their success, these systems are experiencing exponential growth in demand which is straining an already stretched service. Supporting youth mental is critical as the lack of support is associated with significant and lasting negative consequences. To meet this growing demand, and provide critical support, investigations are needed on evaluating and improving existing online support services. Improvements should focus on developing frameworks capable of augmenting and scaling service provisions. There are few investigations informing best-practice frameworks when implementing e-mental health support systems for youth mental health; there are fewer which implement machine learning or artificially intelligent systems to facilitate the delivering of services. This investigation will use a case study methodology to highlight the design features which are important for systems to enable young people to self-manage their mental health. The investigation will also highlight the current information system challenges, to include challenges associated with service quality, provisioning, and scaling. This work will propose methods of meeting these challenges through improved design, service augmentation and automation, service quality, and through artificially intelligent inspired solutions. The results of this study will inform a framework for supporting youth mental health with intelligent and scalable web-enabled technologies to support an ever-growing user base.Keywords: artificial intelligence, information systems, machine learning, youth mental health
Procedia PDF Downloads 1194383 Intellectual Property Law as a Tool to Enhance and Sustain Museums in Digital Era
Authors: Nayira Ahmed Galal Elden Hassan, Amr Mostafa Awad Kassem
Abstract:
The management of Intellectual Property (IP) in museums presents a multifaceted challenge, requiring a balance between granting access to cultural assets and maintaining control over them. In the digital age, IP has emerged as a critical aspect of museum operations, encompassing valuable assets within collections and museum-generated content. Effective IP management enables museums to generate revenue, protect rights, and promote cultural heritage while leveraging digital technologies. Opportunities such as e-commerce and licensing can drive economic growth, but they also introduce complexities related to IP protection and regulation. This study explores the dual nature of IP assets—collection-based and museum-generated—highlighting their implications for sustainability and cultural preservation. The analysis includes examples such as the German State Museum’s management of replicas from the Nefertiti bust, showcasing the challenges museums face when navigating IP frameworks. The research underscores the importance of a comprehensive understanding of IP laws to prevent legal disputes, reputational risks, and revenue loss. By adopting an analytical and comparative methodology, this paper examines museums that have effectively implemented IP rules to enhance their operations and sustain their resources. It investigates how IP management can help museums fulfill their mission of community engagement, education, and outreach while ensuring long-term sustainability. The findings demonstrate that balanced IP strategies are essential for securing financial stability, safeguarding cultural heritage, and adapting to the demands of the digital era. This research seeks to explore how museums can effectively fulfill their mission of community engagement, education, and outreach while ensuring long-term sustainability. It examines the extent to which intellectual property (IP) management can contribute to achieving these objectives, focusing on the benefits and challenges associated with adopting IP management strategies. Additionally, the study addresses the question of ownership by investigating who holds the rights to cultural assets and how these rights can be managed effectively to align with both institutional goals and the preservation of cultural heritage.The findings underscore the pivotal role of effective IP management in empowering museums to navigate the digital landscape, maximize revenue streams, and safeguard cultural heritage. The study emphasizes the necessity of adopting a balanced approach to IP management, which aligns institutional goals with the ethical and legal considerations of cultural heritage preservation.Keywords: intellectual property, museums, IP management, digital technologies, sustainability, cultural heritage
Procedia PDF Downloads 144382 Patterns of Positive Feedback Formation in the System of Online Action
Authors: D. Gvozdikov
Abstract:
The purpose of this study is an attempt to describe an online action as a system that combines disjointed events and behavioral chains into a whole. The research focuses on patterns of naturally-formed chains of actions united by an orientation towards the online environment. A key characteristic of the system of online action is that it acts as an attractor for separate actions and chains of behavioral repertoire accumulating time and efforts made by users. The article demonstrates how the chains of online-offline actions are combined into a single pattern due to a simple identifiable mechanism, a positive feedback system. Using methods of digital ethnography and analyzing the content of the Instagram application and media blogs, the research reveals how through the positive feedback mechanism the entire system of online action acquires stability and can expand involving new spheres of human activity.Keywords: digital anthropology, internet studies, systems theory, social media
Procedia PDF Downloads 1364381 Outbound Tourism in Developed Countries: Analysis of the Trends, Behavior and the Transformation of the Moroccan Demand for International Travels
Authors: M. Boukhrouk, R. Ed-Dali
Abstract:
Outbound tourism in Morocco, as in the majority of developing countries, reveals some of the aspects of inequality between the north and the south. Considered by some researchers as one of the facets of the development crisis, access to tourism and especially international tourism is a chance for a small minority with financial means, while the vast portions of the population dream rather of immigrating to a developed country for the sake of improving their standard of living. The right to travel is also limited by visa requirements, procedures in host countries, security and technical measures and creates discrimination in the practice of tourism. These conditions do not seem to be favorable to the democratization of the practice of international tourism for the populations of the southern countries. This paper is a contribution to the reading of the trends of outbound tourism in developing countries through the example of Morocco. It highlights the different aspects of Moroccan outbound tourism, destinations and the behavior of tourists through an analysis of the offer of a sample of 50 travel agencies. In the same vein, it offers a reading grid of the possibilities offered for the development of outbound tourism and the various existing obstacles to the democratization of international outbound tourism in the southern countries. This reading reveals the transformation in the behavior of Moroccan international tourists as well as the profound changes in Moroccan society, through a model of statistical analysis.Keywords: demand, Hajj, Morocco, outbound tourism, tendency, Umrah
Procedia PDF Downloads 1794380 IoT-Based Early Identification of Guava (Psidium guajava) Leaves and Fruits Diseases
Authors: Daudi S. Simbeye, Mbazingwa E. Mkiramweni
Abstract:
Plant diseases have the potential to drastically diminish the quantity and quality of agricultural products. Guava (Psidium guajava), sometimes known as the apple of the tropics, is one of the most widely cultivated fruits in tropical regions. Monitoring plant health and diagnosing illnesses is an essential matter for sustainable agriculture, requiring the inspection of visually evident patterns on plant leaves and fruits. Due to minor variations in the symptoms of various guava illnesses, a professional opinion is required for disease diagnosis. Due to improper pesticide application by farmers, erroneous diagnoses may result in economic losses. This study proposes a method that uses artificial intelligence (AI) to detect and classify the most widespread guava plant by comparing images of its leaves and fruits to datasets. ESP32 CAM is responsible for data collection, which includes images of guava leaves and fruits. By comparing the datasets, these image formats are used as datasets to help in the diagnosis of plant diseases through the leaves and fruits, which is vital for the development of an effective automated agricultural system. The system test yielded the most accurate identification findings (99 percent accuracy in differentiating four guava fruit diseases (Canker, Mummification, Dot, and Rust) from healthy fruit). The proposed model has been interfaced with a mobile application to be used by smartphones to make a quick and responsible judgment, which can help the farmers instantly detect and prevent future production losses by enabling them to take precautions beforehand.Keywords: early identification, guava plants, fruit diseases, deep learning
Procedia PDF Downloads 794379 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine
Authors: Adriana Haulica
Abstract:
Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics
Procedia PDF Downloads 754378 Reliving Historical Events Using Augmented Reality Techniques
Authors: Josep Domenech Mingot, Francisco Javier Esclapes Jover
Abstract:
The arrival of the age of information and new technologies allowed humanity to see what the future has in store, but occasionally it also brings the opportunity to look through a window to the past, an opportunity to relive history. This paper introduces a prototype of a digital system that lets us peek into our past making use of augmented reality technologies. A 3D scene will be modeled and animated based on an old image, depicting an event of historical significance. From this scene, a video will be rendered, recreating the events that were taking place at the time. Also, a smartphone app will be created. This app will detect the original image with the smartphone’s camera, overlay the rendered video so that it fully covers it and track the detected image, so that the overlaying video can keep covering the image. The recreation of Alicante’s Central Market bombing during the Spanish Civil War is presented as a case study.Keywords: augmented reality, digital heritage, history, multimedia, smartphone
Procedia PDF Downloads 2254377 Automated Weight Painting: Using Deep Neural Networks to Adjust 3D Mesh Skeletal Weights
Authors: John Gibbs, Benjamin Flanders, Dylan Pozorski, Weixuan Liu
Abstract:
Weight Painting–adjusting the influence a skeletal joint has on a given vertex in a character mesh–is an arduous and time con- suming part of the 3D animation pipeline. This process generally requires a trained technical animator and many hours of work to complete. Our skiNNer plug-in, which works within Autodesk’s Maya 3D animation software, uses Machine Learning and data pro- cessing techniques to create a deep neural network model that can accomplish the weight painting task in seconds rather than hours for bipedal quasi-humanoid character meshes. In order to create a properly trained network, a number of challenges were overcome, including curating an appropriately large data library, managing an arbitrary 3D mesh size, handling arbitrary skeletal architectures, accounting for extreme numeric values (most data points are near 0 or 1 for weight maps), and constructing an appropriate neural network model that can properly capture the high frequency alter- ation between high weight values (near 1.0) and low weight values (near 0.0). The arrived at neural network model is a cross between a traditional CNN, deep residual network, and fully dense network. The resultant network captures the unusually hard-edged features of a weight map matrix, and produces excellent results on many bipedal models.Keywords: 3d animation, animation, character, rigging, skinning, weight painting, machine learning, artificial intelligence, neural network, deep neural network
Procedia PDF Downloads 2774376 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels
Authors: Mohamed Mokhtar, Mostafa F. Shaaban
Abstract:
Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.Keywords: machine learning, dust, PV panels, renewable energy
Procedia PDF Downloads 1484375 Non-Fungible Token (NFT) - Used in the Music Industry for Independent Artists without a Music Recording Label
Authors: Bartholomew Badar
Abstract:
An NFT is a digital certificate with rights to own an asset, including various valuable digital goods such as art pieces, music items, collectibles, etc. The market for NFTs started developing in 2017 and has lately seen increased growth as crypto-currencies and the blockchain market continue to gain popularity. This study aims to understand potential uses for NFTs concerning the music industry and record labels. Independent artists struggle to distribute and sell their music without the help of a record label. The NFT marketplace could be a great tool to eliminate this problem. The research objective is to identify possibilities for independent artists to own their music rights and share value with an audience. We see a trend of new-school music artists trying to enter the music NFT market by creating visualizers, beats, cover art, etc. To analyze various existing music NFT assets and determine whether or not independent artists could monetize their music without a record label is the main focus of this scholarly paper.Keywords: blockchain, crypto-currency, music, artist, NFT
Procedia PDF Downloads 1824374 Alternator Fault Detection Using Wigner-Ville Distribution
Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi
Abstract:
This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution
Procedia PDF Downloads 3774373 HIS Integration Systems Using Modality Worklist and DICOM
Authors: Kulvinder Singh Mann
Abstract:
The usability and simulation of information systems, known as Hospital Information System (HIS), Radiology Information System (RIS), and Picture Archiving, Communication System, for electronic medical records has shown a good impact for actors in the hospital. The objective is to help and make their work easier; such as for a nurse or administration staff to record the medical records of the patient, and for a patient to check their bill transparently. However, several limitations still exists on such area regarding the type of data being stored in the system, ability for data transfer, storage and protocols to support communication between medical devices and digital images. This paper reports the simulation result of integrating several systems to cope with those limitations by using the Modality Worklist and DICOM standard. It succeeds in documenting the reason of that failure so future research will gain better understanding and be able to integrate those systems.Keywords: HIS, RIS, PACS, modality worklist, DICOM, digital images
Procedia PDF Downloads 3194372 A Village Transformed as Census Town a Case Study of Village Nilpur, Tehsil Rajpura, District Patiala (Punjab, India)
Authors: Preetinder Kaur Randhawa
Abstract:
The rural areas can be differentiated from urban areas in terms of their economic activities as rural areas are primarily involved in agricultural sector and provide natural resources whereas, urban areas are primarily involved in infrastructure sector and provide manufacturing services. Census of India defines a Census Town as an area which satisfies the following three criteria i.e. population exceeds 5000, at least 75 percent of male population engaged in non-agricultural sector and minimum population density of 400 persons per square kilometers. Urban areas can be attributed to the improvement of transport facilities, the massive decline in agricultural, especially male workers and workers shift to non-agricultural activities. This study examines the pattern, process of rural areas transformed into urban areas/ census town. The study has analyzed the various factors which are responsible for land transformation as well as the socio-economic transformation of the village population. Nilpur (CT) which belongs to Rajpura Tehsil in Patiala district, Punjab has been selected for the present study. The methodology adopted includes qualitative and quantitative research design, methods based on secondary data. Secondary data has been collected from unpublished revenue record office of Rajpura Tehsil and Primary Census Abstract of Patiala district, Census of India 2011. The results have showed that rate of transformation of a village to census town in Rajpura Tehsil has been one of highest among other villages. The census town has evolved through the evolutionary process of human settlement which grows in size, population and physical development. There must be a complete economic transformation and attainment of high level of technological development. Urban design and construction of buildings and infrastructure can be carried out better and faster and can be used to aid human habitation with the enhancement of quality of life. The study has concluded that in the selected area i.e Nilpur (CT) literacy rate has increased to 72.1 percent in year 2011 from 67.6 percent in year 2001. Similarly non-agricultural work force has increased to 95.2 percent in year 2011 from 81.1 percent in year 2001. It is very much clear that the increased literacy rate has put a positive impact on the involvement of non-agricultural workers have enhanced. The study has concluded that rural-urban linkages are important tools for understanding complexities of people livelihood and their strategies which involve mobility migration and the diversification of income sources and occupations.Keywords: Census Town, India, Nilpur, Punjab
Procedia PDF Downloads 2534371 Logical-Probabilistic Modeling of the Reliability of Complex Systems
Authors: Sergo Tsiramua, Sulkhan Sulkhanishvili, Elisabed Asabashvili, Lazare Kvirtia
Abstract:
The paper presents logical-probabilistic methods, models and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of weights of elements. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research and designing of optimal structure systems are carried out.Keywords: Complex systems, logical-probabilistic methods, orthogonalization algorithm, reliability, weight of element
Procedia PDF Downloads 774370 Control Technique for Single Phase Bipolar H-Bridge Inverter Connected to the Grid
Authors: L. Hassaine, A. Mraoui, M. R. Bengourina
Abstract:
In photovoltaic system, connected to the grid, the main goal is to control the power that the inverter injects into the grid from the energy provided by the photovoltaic generator. This paper proposes a control technique for a photovoltaic system connected to the grid based on the digital pulse-width modulation (DSPWM) which can synchronise a sinusoidal current output with a grid voltage and generate power at unity power factor. This control is based on H-Bridge inverter controlled by bipolar PWM Switching. The electrical scheme of the system is presented. Simulations results of output voltage and current validate the impact of this method to determinate the appropriate control of the system. A digital design of a generator PWM using VHDL is proposed and implemented on a Xilinx FPGA.Keywords: grid connected photovoltaic system, H-Bridge inverter, control, bipolar PWM
Procedia PDF Downloads 3204369 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space
Authors: Chao He, Shunhua Zhou, Peijun Guo
Abstract:
The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.Keywords: underground railway, twin tunnels, wave translation and transformation, transfer matrix method
Procedia PDF Downloads 1224368 Digital Geography and Geographic Information System in Schools: Towards a Hierarchical Geospatial Approach
Authors: Mary Fargher
Abstract:
This paper examines the opportunities of using a more hierarchical approach to geospatial enquiry in using GIS in school geography. A case is made that it is not just the lack of teacher technological knowledge that is stopping some teachers from using GIS in the classroom but that there is a gap in their understanding of how to link GIS use more specifically to the pedagogy of teaching geography with GIS. Using a hierarchical approach to geospatial enquiry as a theoretical framework, the analysis shows clearly how concepts of spatial distribution, interaction, relation, comparison, and temporal relationships can be used by teachers more explicitly to capitalise on the analytical power of GIS and to construct what can be interpreted as powerful geographical knowledge. An exemplar illustrating this approach on the topic of geo-hazards is then presented for critical analysis and discussion. Recommendations are then made for a model of progression for geography teacher education with GIS through hierarchical geospatial enquiry that takes into account beginner, intermediate, and more advanced users.Keywords: digital geography, GIS, education, hierarchical geospatial enquiry, powerful geographical knowledge
Procedia PDF Downloads 1574367 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 1164366 Introduction of Digital Radiology to Improve the Timeliness in Availability of Radiological Diagnostic Images for Trauma Care
Authors: Anuruddha Jagoda, Samiddhi Samarakoon, Anil Jasinghe
Abstract:
In an emergency department ‘where every second count for patient’s management’ timely availability of X- rays play a vital role in early diagnosis and management of patients. Trauma care centers rely heavily on timely radiologic imaging for patient care and radiology plays a crucial role in the emergency department (ED) operations. A research study was carried out to assess timeliness of availability of X-rays and total turnaround time at the Accident Service of National Hospital of Sri Lanka which is the premier trauma center in the country. Digital Radiology system was implemented as an intervention to improve the timeliness of availability of X-rays. Post-implementation assessment was carried out to assess the effectiveness of the intervention. Reduction in all three aspects of waiting times namely waiting for initial examination by doctors, waiting until X –ray is performed and waiting for image availability was observed after implementation of the intervention. However, the most significant improvement was seen in waiting time for image availability and reduction in time for image availability had indirect impact on reducing waiting time for initial examination by doctors and waiting until X –ray is performed. The most significant reduction in time for image availability was observed when performing 4-5 X rays with DR system. The least improvement in timeliness was seen in patients who are categorized as critical.Keywords: emergency department, digital radilogy, timeliness, trauma care
Procedia PDF Downloads 2684365 Paradox of Growing Adaptive Capacities for Sustainability Transformation in Urban Water Management in Bangladesh
Authors: T. Yasmin, M. A. Farrelly, B. C. Rogers
Abstract:
Urban water governance in developing countries faces numerous challenges arising from uncontrolled urban population expansion, water pollution, greater economic push and more recently, climate change impact while undergoing transitioning towards a sustainable system. Sustainability transition requires developing adaptive capacities of the socio-ecological and socio-technical system to be able to deal with complexity. Adaptive capacities deliver strategies to connect individuals, organizations, agencies and institutions at multiple levels for dealing with such complexity. Understanding the level of adaptive capacities for sustainability transformation thus has gained significant research attention within developed countries, much less so in developing countries. Filling this gap, this article develops a conceptual framework for analysing the level of adaptive capacities (if any) within a developing context. This framework then applied to the chronological development of urban water governance strategies in Bangladesh for almost two centuries. The chronological analysis of governance interventions has revealed that crisis (public health, food and natural hazards) became the opportunities and thus opened the windows for experimentation and learning to occur as a deviation from traditional practices. Self-organization and networks thus created the platform for development or disruptions to occur for creating change. Leadership (internal or external) is important for nurturing and upscaling theses development or disruptions towards guiding policy vision and targets as well as championing ground implementation. In the case of Bangladesh, the leadership from the international and national aid organizations and targets have always lead the development whereas more often social capital tools (trust, power relations, cultural norms) act as disruptions. Historically, this has been evident in the development pathways of urban water governance in Bangladesh. Overall this research has shown some level of adaptive capacities is growing for sustainable urban growth in big cities, nevertheless unclear regarding the growth in medium and small cities context.Keywords: adaptive capacity, Bangladesh, sustainability transformation, water governance
Procedia PDF Downloads 3964364 Numerical Solution of Magneto-Hydrodynamic Flow of a Viscous Fluid in the Presence of Nanoparticles with Fractional Derivatives through a Cylindrical Tube
Authors: Muhammad Abdullah, Asma Rashid Butt, Nauman Raza
Abstract:
Biomagnetic fluids like blood play key role in different applications of medical science and bioengineering. In this paper, the magnetohydrodynamic flow of a viscous fluid with magnetic particles through a cylindrical tube is investigated. The fluid is electrically charged in the presence of a uniform external magnetic field. The movement in the fluid is produced due to the cylindrical tube. Initially, the fluid and tube are at rest and at time t=0⁺, the tube starts to move along its axis. To obtain the mathematical model of flow with fractional derivatives fractional calculus approach is used. The solution of the flow model is obtained by using Laplace transformation. The Simon's numerical algorithm is employed to obtain inverse Laplace transform. The hybrid technique, we are employing has less computational effort as compared to other methods. The numerical calculations have been performed with Mathcad software. As the special cases of our problem, the solution of flow model with ordinary derivatives and flow without magnetic particles has been procured. Finally, the impact of non-integer fractional parameter alpha, Hartmann number Ha, and Reynolds number Re on flow and magnetic particles velocity is analyzed and depicted by graphs.Keywords: viscous fluid, magnetic particles, fractional calculus, laplace transformation
Procedia PDF Downloads 2104363 Dynamic Response around Inclusions in Infinitely Inhomogeneous Media
Authors: Jinlai Bian, Zailin Yang, Guanxixi Jiang, Xinzhu Li
Abstract:
The problem of elastic wave propagation in inhomogeneous medium has always been a classic problem. Due to the frequent occurrence of earthquakes, many economic losses and casualties have been caused, therefore, to prevent earthquake damage to people and reduce damage, this paper studies the dynamic response around the circular inclusion in the whole space with inhomogeneous modulus, the inhomogeneity of the medium is reflected in the shear modulus of the medium with the spatial position, and the density is constant, this method can be used to solve the problem of the underground buried pipeline. Stress concentration phenomena are common in aerospace and earthquake engineering, and the dynamic stress concentration factor (DSCF) is one of the main factors leading to material damage, one of the important applications of the theory of elastic dynamics is to determine the stress concentration in the body with discontinuities such as cracks, holes, and inclusions. At present, the methods include wave function expansion method, integral transformation method, integral equation method and so on. Based on the complex function method, the Helmholtz equation with variable coefficients is standardized by using conformal transformation method and wave function expansion method, the displacement and stress fields in the whole space with circular inclusions are solved in the complex coordinate system, the unknown coefficients are solved by using boundary conditions, by comparing with the existing results, the correctness of this method is verified, based on the superiority of the complex variable function theory to the conformal transformation, this method can be extended to study the inclusion problem of arbitrary shapes. By solving the dynamic stress concentration factor around the inclusions, the influence of the inhomogeneous parameters of the medium and the wavenumber ratio of the inclusions to the matrix on the dynamic stress concentration factor is analyzed. The research results can provide some reference value for the evaluation of nondestructive testing (NDT), oil exploration, seismic monitoring, and soil-structure interaction.Keywords: circular inclusions, complex variable function, dynamic stress concentration factor (DSCF), inhomogeneous medium
Procedia PDF Downloads 1394362 Using the SMT Solver to Minimize the Latency and to Optimize the Number of Cores in an NoC-DSP Architectures
Authors: Imen Amari, Kaouther Gasmi, Asma Rebaya, Salem Hasnaoui
Abstract:
The problem of scheduling and mapping data flow applications on multi-core architectures is notoriously difficult. This difficulty is related to the rapid evaluation of Telecommunication and multimedia systems accompanied by a rapid increase of user requirements in terms of latency, execution time, consumption, energy, etc. Having an optimal scheduling on multi-cores DSP (Digital signal Processors) platforms is a challenging task. In this context, we present a novel technic and algorithm in order to find a valid schedule that optimizes the key performance metrics particularly the Latency. Our contribution is based on Satisfiability Modulo Theories (SMT) solving technologies which is strongly driven by the industrial applications and needs. This paper, describe a scheduling module integrated in our proposed Workflow which is advised to be a successful approach for programming the applications based on NoC-DSP platforms. This workflow transform automatically a Simulink model to a synchronous dataflow (SDF) model. The automatic transformation followed by SMT solver scheduling aim to minimize the final latency and other software/hardware metrics in terms of an optimal schedule. Also, finding the optimal numbers of cores to be used. In fact, our proposed workflow taking as entry point a Simulink file (.mdl or .slx) derived from embedded Matlab functions. We use an approach which is based on the synchronous and hierarchical behavior of both Simulink and SDF. Whence, results of running the scheduler which exist in the Workflow mentioned above using our proposed SMT solver algorithm refinements produce the best possible scheduling in terms of latency and numbers of cores.Keywords: multi-cores DSP, scheduling, SMT solver, workflow
Procedia PDF Downloads 2904361 Developing Primal Teachers beyond the Classroom: The Quadrant Intelligence (Q-I) Model
Authors: Alexander K. Edwards
Abstract:
Introduction: The moral dimension of teacher education globally has assumed a new paradigm of thinking based on the public gain (return-on-investments), value-creation (quality), professionalism (practice), and business strategies (innovations). Abundant literature reveals an interesting revolutionary trend in complimenting the raising of teachers and academic performances. Because of the global competition in the knowledge-creation and service areas, the C21st teacher at all levels is expected to be resourceful, strategic thinker, socially intelligent, relationship aptitude, and entrepreneur astute. This study is a significant contribution to practice and innovations to raise exemplary or primal teachers. In this study, the qualities needed were considered as ‘Quadrant Intelligence (Q-i)’ model for a primal teacher leadership beyond the classroom. The researcher started by examining the issue of the majority of teachers in Ghana Education Services (GES) in need of this Q-i to be effective and efficient. The conceptual framing became determinants of such Q-i. This is significant for global employability and versatility in teacher education to create premium and primal teacher leadership, which are again gaining high attention in scholarship due to failing schools. The moral aspect of teachers failing learners is a highly important discussion. In GES, some schools score zero percent at the basic education certificate examination (BECE). The question is what will make any professional teacher highly productive, marketable, and an entrepreneur? What will give teachers the moral consciousness of doing the best to succeed? Method: This study set out to develop a model for primal teachers in GES as an innovative way to highlight a premium development for the C21st business-education acumen through desk reviews. The study is conceptually framed by examining certain skill sets such as strategic thinking, social intelligence, relational and emotional intelligence and entrepreneurship to answer three main burning questions and other hypotheses. Then the study applied the causal comparative methodology with a purposive sampling technique (N=500) from CoE, GES, NTVI, and other teachers associations. Participants responded to a 30-items, researcher-developed questionnaire. Data is analyzed on the quadrant constructs and reported as ex post facto analyses of multi-variances and regressions. Multiple associations were established for statistical significance (p=0.05). Causes and effects are postulated for scientific discussions. Findings: It was found out that these quadrants are very significant in teacher development. There were significant variations in the demographic groups. However, most teachers lack considerable skills in entrepreneurship, leadership in teaching and learning, and business thinking strategies. These have significant effect on practices and outcomes. Conclusion and Recommendations: It is quite conclusive therefore that in GES teachers may need further instructions in innovations and creativity to transform knowledge-creation into business venture. In service training (INSET) has to be comprehensive. Teacher education curricula at Colleges may have to be re-visited. Teachers have the potential to raise their social capital, to be entrepreneur, and to exhibit professionalism beyond their community services. Their primal leadership focus will benefit many clienteles including students and social circles. Recommendations examined the policy implications for curriculum design, practice, innovations and educational leadership.Keywords: emotional intelligence, entrepreneurship, leadership, quadrant intelligence (q-i), primal teacher leadership, strategic thinking, social intelligence
Procedia PDF Downloads 315