Search results for: ultrasound assisted acid hydrolysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4562

Search results for: ultrasound assisted acid hydrolysis

2282 Characterization of Surface Microstructures on Bio-Based PLA Fabricated with Nano-Imprint Lithography

Authors: D. Bikiaris, M. Nerantzaki, I. Koliakou, A. Francone, N. Kehagias

Abstract:

In the present study, the formation of structures in poly(lactic acid) (PLA) has been investigated with respect to producing areas of regular, superficial features with dimensions comparable to those of cells or biological macromolecules. Nanoimprint lithography, a method of pattern replication in polymers, has been used for the production of features ranging from tens of micrometers, covering areas up to 1 cm², down to hundreds of nanometers. Both micro- and nano-structures were faithfully replicated. Potentially, PLA has wide uses within biomedical fields, from implantable medical devices, including screws and pins, to membrane applications, such as wound covers, and even as an injectable polymer for, for example, lipoatrophy. The possibility of fabricating structured PLA surfaces, with structures of the dimensions associated with cells or biological macro- molecules, is of interest in fields such as cellular engineering. Imprint-based technologies have demonstrated the ability to selectively imprint polymer films over large areas resulting in 3D imprints over flat, curved or pre-patterned surfaces. Here, we compare nano-patterned with nano-patterned by nanoimprint lithography (NIL) PLA film. A silicon nanostructured stamp (provided by Nanotypos company) having positive and negative protrusions was used to pattern PLA films by means of thermal NIL. The polymer film was heated from 40°C to 60°C above its Tg and embossed with a pressure of 60 bars for 3 min. The stamp and substrate were demolded at room temperature. Scanning electron microscope (SEM) images showed good replication fidelity of the replicated Si stamp. Contact-angle measurements suggested that positive microstructuring of the polymer (where features protrude from the polymer surface) produced a more hydrophilic surface than negative micro-structuring. The ability to structure the surface of the poly(lactic acid), allied to the polymer’s post-processing transparency and proven biocompatibility. Films produced in this were also shown to enhance the aligned attachment behavior and proliferation of Wharton’s Jelly Mesenchymal Stem cells, leading to the observed growth contact guidance. The bacterial attachment patterns of some bacteria, highlighted that the nano-patterned PLA structure can reduce the propensity for the bacteria to attach to the surface, with a greater bactericidal being demonstrated activity against the Staphylococcus aureus cells. These biocompatible, micro- and nanopatterned PLA surfaces could be useful for polymer– cell interaction experiments at dimensions at, or below, that of individual cells. Indeed, post-fabrication modification of the microstructured PLA surface, with materials such as collagen (which can further reduce the hydrophobicity of the surface), will extend the range of applications, possibly through the use of PLA’s inherent biodegradability. Further study is being undertaken to examine whether these structures promote cell growth on the polymer surface.

Keywords: poly(lactic acid), nano-imprint lithography, anti-bacterial properties, PLA

Procedia PDF Downloads 314
2281 Phenolic Composition and Antioxidant Activity of Sorbus L. Fruits and Leaves

Authors: Raudone Lina, Raudonis Raimondas, Gaivelyte Kristina, Pukalskas Audrius, Janulis Valdimaras, Viskelis Pranas

Abstract:

Sorbus L. species are widely distributed in the Northern hemisphere and have been used for medicinal purposes in various traditional medicine systems and as food ingredients. Various Sorbus L. raw materials, fruits, leaves, inflorescences, barks, possess diuretic, anti-inflammatory, hypoglycemic, anti-diarrheal and vasoprotective activities. Phenolics, to whom main pharmacological activities are attributed, are compounds of interest due to their notable antioxidant activity. The aim of this study was to determine the antioxidant profiles of fruits and leaves of selected Sorbus L. species (S. anglica, S. aria f. latifolia, S. arranensis, S. aucuparia, S. austriaca, S. caucasica, S. commixta, S. discolor, S. gracilis, S. hostii, S. semi-incisa, S. tianschanica) and to identify the phenolic compounds with potent contribution to antioxidant activity. Twenty two constituents were identified in Sorbus L. species using ultra high performance liquid chromatography coupled to quadruple and time-of-flight mass spectrometers (UPLC–QTOF–MS). Reducing activity of individual constituents was determined using high performance liquid chromatography (HPLC) coupled to post-column FRAP assay. Signicantly greatest trolox equivalent values corresponding up to 45% of contribution to antioxidant activity were assessed for neochlorogenic and chlorogenic acids, which were determined as markers of antioxidant activity in samples of leaves and fruits. Characteristic patterns of antioxidant profiles obtained using HPLC post-column FRAP assay significantly depend on specific Sorbus L. species and raw materials and are suitable for equivalency research of Sorbus L. fruits and leaves. Selecting species and target plant organs with richest phenolic composition and strongly expressed antioxidant power is the first step in further research of standardized extracts.

Keywords: FRAP, antioxidant, phenolic, Sorbus L., chlorogenic acid, neochlorogenic acid

Procedia PDF Downloads 430
2280 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects

Authors: Chandan Kundu, Sankar Bhattacharya

Abstract:

A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasification

Keywords: biomass, pretreatment, pyrolysis, levoglucosenone

Procedia PDF Downloads 111
2279 Increased Expression Levels of Soluble Epoxide Hydrolase in Obese and Its Modulation by Physical Exercise

Authors: Abdelkrim Khadir, Sina Kavalakatt, Preethi Cherian, Ali Tiss

Abstract:

Soluble epoxide hydrolase (sEH) is an emerging therapeutic target in several chronic states that have inflammation as a common underlying cause such as immunometabolic diseases. Indeed, sEH is known to play a pro-inflammatory role by metabolizing anti-inflammatory, epoxyeicosatrienoic acids (EETs) to pro-inflammatory diols. Recently, it was shown sEH to be linked to diet and microbiota interaction in rat models of obesity. Nevertheless, the functional contribution of sEH and its anti-inflammatory substrates EETs in obesity remain poorly understood. In the current study, we compared the expression pattern of sEH between lean and obese nondiabetic human subjects using subcutaneous adipose tissue (SAT) and peripheral blood mononuclear cells (PBMCs). Using RT-PCR, western blot and immunofluorescence confocal microscopy, we show here that the level of sEH mRNA and protein to be significantly increased in obese subjects with concomitant increase in endoplasmic reticulum (ER) stress components (GRP78 and ATF6α) and inflammatory markers (TNF-α, IL-6) when compared to lean controls. The observation that sEH was overexpressed in obese subjects’ prompt us to investigate whether physical exercise could reduce its expression. In this study, we report here 3-months supervised physical exercise significantly attenuated the expression of sEH in both the SAT and PBMCs, with a parallel decrease in the expression of ER stress markers along with attenuated inflammatory response. On the other hand, homocysteine, a sulfur containing amino acid deriving from the essential amino acid methionine was shown to be directly associated with insulin resistance. When 3T3-L1 preadipocytes cells were treated with homocysteine our results show increased sEH levels along with ER stress markers. Collectively, our data suggest that sEH upregulation is strongly linked to ER stress in adiposity and that physical exercise modulates its expression. This gives further evidence that exercise might be useful as a strategy for managing obesity and preventing its associated complications.

Keywords: obesity, adipose tissue, epoxide hydrolase, ER stress

Procedia PDF Downloads 122
2278 Nondestructive Evaluation of Hidden Delamination in Glass Fiber Composite Using Terahertz Spectroscopy

Authors: Chung-Hyeon Ryu, Do-Hyoung Kim, Hak-Sung Kim

Abstract:

As the use of the composites was increased, the detecting method of hidden damages which have an effect on performance of the composite was important. Terahertz (THz) spectroscopy was assessed as one of the new powerful nondestructive evaluation (NDE) techniques for fiber reinforced composite structures because it has many advantages which can overcome the limitations of conventional NDE techniques such as x-rays or ultrasound. The THz wave offers noninvasive, noncontact and nonionizing methods evaluating composite damages, also it gives a broad range of information about the material properties. In additions, it enables to detect the multiple-delaminations of various nonmetallic materials. In this study, the pulse type THz spectroscopy imaging system was devised and used for detecting and evaluating the hidden delamination in the glass fiber reinforced plastic (GFRP) composite laminates. The interaction between THz and the GFRP composite was analyzed respect to the type of delamination, including their thickness, size and numbers of overlaps among multiple-delaminations in through-thickness direction. Both of transmission and reflection configurations were used for evaluation of hidden delaminations and THz wave propagations through the delaminations were also discussed. From these results, various hidden delaminations inside of the GFRP composite were successfully detected using time-domain THz spectroscopy imaging system and also compared to the results of C-scan inspection. It is expected that THz NDE technique will be widely used to evaluate the reliability of composite structures.

Keywords: terahertz, delamination, glass fiber reinforced plastic composites, terahertz spectroscopy

Procedia PDF Downloads 573
2277 Effect of Polymer Molecular Structures on Properties of Dental Cement Restoratives

Authors: Dong Xie, Jun Zhao, Yiming Weng

Abstract:

One of the challenges in dental cement biomaterials is how to make a restorative with mechanical strengths and wear resistance that are comparable to contemporary dental resin composites. Currently none of the dental cement restoratives has been used in high stress-bearing sites due to their low mechanical strengths and poor wear-resistance. The objective of this study was to synthesize and characterize the poly(alkenoic acid)s with different molecular structures, use these polymers to formulate a dental cement restorative, and study the effect of molecular structures on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cement restoratives. In this study, poly(alkenoic acid)s with different molecular structures were synthesized. The purified polymers were formulated with commercial Fuji II LC glass fillers to form the experimental cement restoratives. The reaction kinetics was studied via 1HNMR spectroscopy. The formed restoratives were evaluated using compressive strength, diametral tensile strength, flexural strength, hardness and wear-resistance tests. Specimens were conditioned in distilled water at 37 oC for 24 h prior to testing. Fuji II LC restorative was used as control. The results show that the higher the arm number and initiator concentration, the faster the reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer in water and the lower the mechanical strengths of the formed restorative. The experimental restoratives were 31-53% in compressive strength, 37-55% in compressive modulus, 80-126% in diametral tensile strength, 76-94% in flexural strength, 4-21% in fracture toughness and 53-96% in hardness higher than Fuji II LC. For wear test, the experimental restoratives were only 5.4-13% of abrasive and 6.4-12% of attritional wear depths of Fuji II LC in each wear cycle. The aging study also showed that all the experimental restoratives increased their strength continuously during 30 days, unlike Fuji II LC. It is concluded that polymer molecular structures have significant and positive impact on mechanical properties of dental cement restoratives.

Keywords: dental materials, polymers, strength, biomaterials

Procedia PDF Downloads 418
2276 Exploring Emerging Viruses From a Protected Reserve

Authors: Nemat Sokhandan Bashir

Abstract:

Threats from viruses to agricultural crops could be even larger than the losses caused by the other pathogens because, in many cases, the viral infection is latent but crucial from an epidemic point of view. Wild vegetation can be a source of many viruses that eventually find their destiny in crop plants. Although often asymptomatic in wild plants due to adaptation, they can potentially cause serious losses in crops. Therefore, exploring viruses in wild vegetation is very important. Recently, omics have been quite useful for exploring plant viruses from various plant sources, especially wild vegetation. For instance, we have discovered viruses such as Ambrossia asymptomatic virus I (AAV-1) through the application of metagenomics from Oklahoma Prairie Reserve. Accordingly, extracts from randomly-sampled plants are subjected to high speed and ultracentrifugation to separated virus-like particles (VLP), then nucleic acids in the form of DNA or RNA are extracted from such VLPs by treatment with phenol—chloroform and subsequent precipitation by ethanol. The nucleic acid preparations are separately treated with RNAse or DNAse in order to determine the genome component of VLPs. In the case of RNAs, the complementary cDNAs are synthesized before submitting to DNA sequencing. However, for VLPs with DNA contents, the procedure would be relatively straightforward without making cDNA. Because the length of the nucleic acid content of VPLs can be different, various strategies are employed to achieve sequencing. Techniques similar to so-called "chromosome walking" may be used to achieve sequences of long segments. When the nucleotide sequence data were obtained, they were subjected to BLAST analysis to determine the most related previously reported virus sequences. In one case, we determined that the novel virus was AAV-l because the sequence comparison and analysis revealed that the reads were the closest to the Indian citrus ringspot virus (ICRSV). AAV—l had an RNA genome with 7408 nucleotides in length and contained six open reading frames (ORFs). Based on phylogenies inferred from the replicase and coat protein ORFs of the virus, it was placed in the genus Mandarivirus.

Keywords: wild, plant, novel, metagenomics

Procedia PDF Downloads 55
2275 Metal Extraction into Ionic Liquids and Hydrophobic Deep Eutectic Mixtures

Authors: E. E. Tereshatov, M. Yu. Boltoeva, V. Mazan, M. F. Volia, C. M. Folden III

Abstract:

Room temperature ionic liquids (RTILs) are a class of liquid organic salts with melting points below 20 °C that are considered to be environmentally friendly ‘designers’ solvents. Pure hydrophobic ILs are known to extract metallic species from aqueous solutions. The closest analogues of ionic liquids are deep eutectic solvents (DESs), which are a eutectic mixture of at least two compounds with a melting point lower than that of each individual component. DESs are acknowledged to be attractive for organic synthesis and metal processing. Thus, these non-volatile and less toxic compounds are of interest for critical metal extraction. The US Department of Energy and the European Commission consider indium as a key metal. Its chemical homologue, thallium, is also an important material for some applications and environmental safety. The aim of this work is to systematically investigate In and Tl extraction from aqueous solutions into pure fluorinated ILs and hydrophobic DESs. The dependence of the Tl extraction efficiency on the structure and composition of the ionic liquid ions, metal oxidation state, and initial metal and aqueous acid concentrations have been studied. The extraction efficiency of the TlXz3–z anionic species (where X = Cl– and/or Br–) is greater for ionic liquids with more hydrophobic cations. Unexpectedly high distribution ratios (> 103) of Tl(III) were determined even by applying a pure ionic liquid as receiving phase. An improved mathematical model based on ion exchange and ion pair formation mechanisms has been developed to describe the co-extraction of two different anionic species, and the relative contributions of each mechanism have been determined. The first evidence of indium extraction into new quaternary ammonium- and menthol-based hydrophobic DESs from hydrochloric and oxalic acid solutions with distribution ratios up to 103 will be provided. Data obtained allow us to interpret the mechanism of thallium and indium extraction into ILs and DESs media. The understanding of Tl and In chemical behavior in these new media is imperative for the further improvement of separation and purification of these elements.

Keywords: deep eutectic solvents, indium, ionic liquids, thallium

Procedia PDF Downloads 223
2274 The Effect of Body Positioning on Upper-Limb Arterial Occlusion Pressure and the Reliability of the Method during Blood Flow Restriction Training

Authors: Stefanos Karanasios, Charkleia Koutri, Maria Moutzouri, Sofia A. Xergia, Vasiliki Sakellari, George Gioftsos

Abstract:

The precise calculation of arterial occlusive pressure (AOP) is a critical step to accurately prescribe individualized pressures during blood flow restriction training (BFRT). AOP is usually measured in a supine position before training; however, previous reports suggested a significant influence in lower limb AOP across different body positions. The aim of the study was to investigate the effect of three different body positions on upper limb AOP and the reliability of the method for its standardization in clinical practice. Forty-two healthy participants (Mean age: 28.1, SD: ±7.7) underwent measurements of upper limb AOP in supine, seated, and standing positions by three blinded raters. A cuff with a manual pump and a pocket doppler ultrasound were used. A significantly higher upper limb AOP was found in seated compared with supine position (p < 0.031) and in supine compared with standing position (p < 0.031) by all raters. An excellent intraclass correlation coefficient (0.858- 0.984, p < 0.001) was found in all positions. Upper limb AOP is strongly dependent on body position changes. The appropriate measurement position should be selected to accurately calculate AOP before BFRT. The excellent inter-rater reliability and repeatability of the method suggest reliable and consistent results across repeated measurements.

Keywords: Kaatsu training, blood flow restriction training, arterial occlusion, reliability

Procedia PDF Downloads 187
2273 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming

Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe

Abstract:

Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.

Keywords: induction heating, single point incremental forming, FE modeling, advanced high strength steel

Procedia PDF Downloads 185
2272 Exploring the Role of Phosphorylation on the β-lactamase Activity of OXA24/40

Authors: Dharshika Rajalingam, Jeffery W. Peng

Abstract:

Acinetobacter baumannii is a challenging threat to global health, recognized as a multidrug-resistant pathogen. -lactamase is one of the principal resistant mechanisms developed by A. baumannii to survive against -lactam antibiotics. OXA24/40 is one of the types of -lactamases, a well-documented carbapenem hydrolyzing class D -lactamases (CHDL). It was revealed that OXA24/40 showed resistivity against doripenem, one of the carbapenems, by two different mechanisms as hydrolysis and -lactonization. Furthermore, it undergoes genetic mutations to broaden the -lactamase activity to survive against antibiotic environments. One of the crucial characterizations of prokaryotes to develop adaptation is post-translational modification (PTM), mainly phosphorylation. However, the PTM of OXA24/40 is an unknown feature, and the impact of PTM on antibiotic resistivity is yet to be explored. We approached these hypotheses using NMR and MS techniques and found that the OXA24/40 could be phosphorylated in vitro. The Ser81 at the active STFK motif of OXA24/40 of catalytic pocket was identified as the site of phosphorylation using 1D 31P NMR experiment, whereas S81 is required to form an acyl-enzyme complex between enzyme and -lactam antibiotics. The activity of completely phosphorylated OXA24/40 wild type against doripenem revealed that the phosphorylation of active Ser inactivates the -lactamases activity of OXA24/40. The 1D 1H CPMG NMR-based activity assay of phosphorylated OXA24/40 against doripenem confirmed that both deactivating mechanisms are inhibited by phosphorylation. Carbamylated Lysine at the active STFK motif is one of the critical features of CHDL required for the acylation and deacylation reactions of the enzyme. The 1D 13C NMR experiment confirmed that the K84 of phosphorylated OXA24/40 is de-carbamylated. Phosphorylation of OXA24/40 affects both active S81 and carbamylated K84 of OXA24 that are required for the resistivity of -lactamase. So, phosphorylation could be one of the reasons for the genetic mutation of OXA24/40 for the development of antibiotic resistivity. Further research can lead to an understanding of the effect of phosphorylation on the clinical mutants of the OXA24-like -lactamase family on the broadening of -lactamase activity.

Keywords: OXA24/40, phosphorylation, clinical mutants, resistivity

Procedia PDF Downloads 53
2271 Effects of Spirulina Platensis Powder on Nutrition Value, Sensory and Physical Properties of Four Different Food Products

Authors: Yazdan Moradi

Abstract:

Spirulina platensis is a blue-green microalga with unique nutrient content and has many nutritional and therapeutic effects that are used to enrich various foods. The purpose of this research was to investigate the effect of Spirulina platensis microalgae on the nutritional value and sensory and physical properties of four different cereal-based products. For this purpose, spirulina microalgae dry powder with amounts of 0.25, 0.5, 0.75, and 1 is added to the formula of pasta, bulk bread, layered sweets, and cupcakes. A sample without microalgae powder of each product is also considered as a control. The results showed that adding Spirulina powder to the formulation of selected foods significantly changed the nutrition value and sensory and physical characteristics. Comparison to control protein increased in the samples containing spirulina powder. The increase in protein was about 1, 0.6, 1.2 and 1.1 percent in bread, cake, layered sweets and Pasta, respectively. The iron content of samples, including Spirulina, also increased. The increase was 0.6, 2, 5 and 18 percent in bread, cake, layered sweets and Pasta respectively. Sensory evaluation analysis showed that all products had an acceptable acceptance score. The instrumental analysis of L*, a*, and b* color indices showed that the increase of spirulina caused green color in the treatments, and this color change is more significant in the bread and pasta samples. The results of texture analysis showed that adding spirulina to selected food products reduces the hardness of the samples. No significant differences were observed in fat content in samples, including spirulina samples and control. However, fatty acid content and a trace amount of EPA found in samples included 1% spirulina. Added spirulina powder to food ingredients also changed the amino acid profile, especially essential amino acids. An increase of histidine, isoleucine, leucine, tryptophan, and valine in samples, including Spirulina was observed.

Keywords: spirulina, nutrition, Alge, iron, food

Procedia PDF Downloads 7
2270 Ultradrawing and Ultimate Pensile Properties of Ultra-High Molecular Weight Polyethylene Nanocomposite Fibers Filled with Cellulose Nanofibers

Authors: Zhong-Dan Tu, Wang-Xi Fan, Yi-Chen Huang, Jen-Taut Yeh

Abstract:

Novel ultrahigh molecular weight polyethylene (UHMWPE)/cellulose nanofiber (CNF) (F100CNFy) and UHMWPE/modified cellulose nanofiber (MCNF) (F100MCNFxy) as-prepared nanocomposite fibers were prepared by spinning F100CNFy and F100MCNFxy gel solutions, respectively. Cellulose nanofibers were successfully prepared by proper acid treatment of cotton fibers using sulfuric acid solutions. The best prepared CNF is with specific surface areas around 120 m2/g and a nanofiber diameter of 20 nm. Modified cellulose nanofiber was prepared by grafting maleic anhydride grafted polyethylene (PE-g-MAH) onto cellulose nanofibers. The achievable draw ratio (Dra) values of each F100MCNFxy as-prepared fiber series specimens approached a maximal value as their MCNF contents reached the optimal value at 0.05 phr. In which, the maximum Dra value obtained for F100MCNFx0.05 as-prepared fiber specimen prepared at the optimal MCNF content reached another maximum value as the weight ratio of PE-g-MAH to CNF approach an optimal value at 6. Similar to those found for the achievable drawing properties of the as-prepared fibers, the orientation factor, tensile strength (σ f) and initial modulus (E) values of drawn F100MCNF6y fiber series specimens with a fixed draw ratio reach a maximal value as their MCNF contents approach the optimal value, wherein the σ f and E values of the drawn F100MCNFxy fiber specimens are significantly higher than those of the drawn F100 fiber specimens and corresponding drawn F100CNFy fiber specimens prepared at the same draw ratios and CNF contents but without modification. To understand the interesting ultradrawing, thermal, orientation and tensile properties of F100CNFy and F100MCNFxy fiber specimens, Fourier transform infra-red, specific surface areas, and transmission electron microcopic analyses of the original and modified CNF nanofillers were performed in this study.

Keywords: ultradrawing, cellulose nanofibers, ultrahigh molecular weight polyethylene, nanocomposite fibers

Procedia PDF Downloads 186
2269 Bacterial Cellulose/Silver-Doped Hydroxyapatite Composites for Tissue Engineering Application

Authors: Adrian Ionut Nicoara, Denisa Ionela Ene, Alina Maria Holban, Cristina Busuioc

Abstract:

At present, the development of materials with biomedical applications is a domain of interest that will produce a full series of benefits in engineering and medicine. In this sense, it is required to use a natural material, and this paper is focused on the development of a composite material based on bacterial cellulose – hydroxyapatite and silver nanoparticles with applications in hard tissue. Bacterial cellulose own features like biocompatibility, non-toxicity character and flexibility. Moreover, the bacterial cellulose can be conjugated with different forms of active silver to possess antimicrobial activity. Hydroxyapatite is well known that can mimic at a significant level the activity of the initial bone. The material was synthesized by using an ultrasound probe and finally characterized by several methods. Thereby, the morphological properties were analyzed by using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Because the synthesized material has medical application in restore the tissue and to fight against microbial invasion, the samples were tested from the biological point of view by evaluating the biodegradability in phosphate-buffered saline (PBS) and simulated body fluid (SBF) and moreover the antimicrobial effect was performed on Gram-positive bacterium Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and fungi Candida albicans. The results reveal that the obtained material has specific characteristics for bone regeneration.

Keywords: bacterial cellulose, biomaterials, hydroxyapatite, scaffolds materials

Procedia PDF Downloads 117
2268 Stomach Perforation, due to Chronic External Pressure

Authors: Angelis P. Barlampas

Abstract:

PURPOSE: The purpose of this paper is to demonstrate the important role of taking an appropriate and detailed history, in order to reach the best possible diagnostic conclusion. MATERIAL: A patient presented to the emergency department due to the sudden onset of continuous abdominal pain, during the last hour and with the clinical symptoms of an acute abdomen. During the clinical examination, signs of peritoneal irritation and diffuse abdominal tenderness were found. The rest of the clinical and laboratory tests did not reveal anything important. From the reported medical history, nothing of note was found, except for the report of a large liver cyst, for which he was advised not to take any further action, except from regular ultrasound examination . METHOD: A computed tomography examination was performed after per os administration of gastrografin, which revealed a hyperdense ascitic effusion, similar in density to that of gastrografin within the intestinal tract. The presence of a large cyst of the left hepatic lobe was confirmed, contacting and pushing against the stomach. In the area of the contact between the liver cyst and the pylorus, there were extraluminal air bubbles and local opacity of the peritoneal fat, with a small hyperdense effusion. Result : The above, as well as the absence of a history of stomach ulcer or recent trauma, or other pathology, argue in favor of acute pyloric perforation, due to mural necrosis, in response to chronic external pressure from the pre-existing large liver cyst.

Keywords: perforation, stomach, large liver cyst, CT abdomen, acute abdominal pain, intraperitoneal leakage, constrast leakage

Procedia PDF Downloads 74
2267 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations

Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang

Abstract:

The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.

Keywords: nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation

Procedia PDF Downloads 261
2266 The Effect of Parameters on Production of NİO/Al2O3/B2O3/SiO2 Composite Nanofibers by Using Sol-Gel Processing and Electrospinning Technique

Authors: F. Sevim, E. Sevimli, F. Demir, T. Çalban

Abstract:

For the first time, nanofibers of PVA /nickel nitrate/silica/alumina izopropoxide/boric acid composite were prepared by using sol-gel processing and electrospinning technique. By high temperature calcinations of the above precursor fibers, nanofibers of NiO/Al2O3/B2O3/SiO2 composite with diameters of 500 nm could be successfully obtained. The fibers were characterized by TG/DTA, FT-IR, XRD and SEM analyses.

Keywords: nano fibers, NiO/Al2O3/B2O3/SiO2 composite, sol-gel processing, electro spinning

Procedia PDF Downloads 318
2265 Effect of Organics on Radionuclide Partitioning in Nuclear Fuel Storage Ponds

Authors: Hollie Ashworth, Sarah Heath, Nick Bryan, Liam Abrahamsen, Simon Kellet

Abstract:

Sellafield has a number of fuel storage ponds, some of which have been open to the air for a number of decades. This has caused corrosion of the fuel resulting in a release of some activity into solution, reduced water clarity, and accumulation of sludge at the bottom of the pond consisting of brucite (Mg(OH)2) and other uranium corrosion products. Both of these phases are also present as colloidal material. 90Sr and 137Cs are known to constitute a small volume of the radionuclides present in the pond, but a large fraction of the activity, thus they are most at risk of challenging effluent discharge limits. Organic molecules are known to be present also, due to the ponds being open to the air, with occasional algal blooms restricting visibility further. The contents of the pond need to be retrieved and safely stored, but dealing with such a complex, undefined inventory poses a unique challenge. This work aims to determine and understand the sorption-desorption interactions of 90Sr and 137Cs to brucite and uranium phases, with and without the presence of organic molecules from chemical degradation and bio-organisms. The influence of organics on these interactions has not been widely studied. Partitioning of these radionuclides and organic molecules has been determined through LSC, ICP-AES/MS, and UV-vis spectrophotometry coupled with ultrafiltration in both binary and ternary systems. Further detailed analysis into the surface and bonding environment of these components is being investigated through XAS techniques and PHREEQC modelling. Experiments were conducted in CO2-free or N2 atmosphere across a high pH range in order to best simulate conditions in the pond. Humic acid used in brucite systems demonstrated strong competition against 90Sr for the brucite surface regardless of the order of addition of components. Variance of pH did have a small effect, however this range (10.5-11.5) is close to the pHpzc of brucite, causing the surface to buffer the solution pH towards that value over the course of the experiment. Sorption of 90Sr to UO2 obeyed Ho’s rate equation and demonstrated a slow second-order reaction with respect to the sharing of valence electrons from the strontium atom, with the initial rate clearly dependent on pH, with the equilibrium concentration calculated at close to 100% sorption. There was no influence of humic acid seen when introduced to these systems. Sorption of 137Cs to UO3 was significant, with more than 95% sorbed in just over 24 hours. Again, humic acid showed no influence when introduced into this system. Both brucite and uranium based systems will be studied with the incorporation of cyanobacterial cultures harvested at different stages of growth. Investigation of these systems provides insight into, and understanding of, the effect of organics on radionuclide partitioning to brucite and uranium phases at high pH. The majority of sorption-desorption work for radionuclides has been conducted at neutral to acidic pH values, and mostly without organics. These studies are particularly important for the characterisation of legacy wastes at Sellafield, with a view to their safe retrieval and storage.

Keywords: caesium, legacy wastes, organics, sorption-desorption, strontium, uranium

Procedia PDF Downloads 262
2264 Health, Social Integration and Social Justice: The Lived Experiences of Young Middle-Eastern Refugees in Australia

Authors: Pranee Liamputtong, Hala Kurban

Abstract:

Based on the therapeutic landscape theory, this paper examines how young Middle-Eastern refugee individuals perceive their health and well-being and address the barriers they face in their new homeland and the means that helped them to form social connections in their new social environment. Qualitative methods (in-depth interviews and mapping activities) were conducted with ten young people from refugee backgrounds. Thematic analysis method was used to analyse the data. Findings suggested that the young refugees face various structural and cultural inequalities that significantly influenced their health and well-being. Mental health well-being was their greatest health concern. All reported the significant influence the English language had on their ability to adapt and form connections with their social environment. The presence of positive social support in their new social environment had a great impact on the health and well-being of the participants. The findings of this study have implications for social justice among refugees. They also contributed to the role of therapeutic landscapes and social support in helping young refugees to feel that they belonged to the society, and hence assisted them to adapt to their new living situation.

Keywords: young refugees, Middle-Eastern, social support, social justice

Procedia PDF Downloads 338
2263 Experimental Analysis of Advanced Multi-Axial Preforms Conformability to Complex Contours

Authors: Andrew Hardman, Alistair T. McIlhagger, Edward Archer

Abstract:

A degree of research has been undertaken in the determination of 3D textile preforms behaviour to compression with direct comparison to 2D counterparts. Multiscale simulations have been developed to try and accurately analyse the behaviour of varying architectures post-consolidation. However, further understanding is required to experimentally identify the mechanisms and deformations that exist upon conforming to a complex contour. Due to the complexity of 3D textile preforms, determination of yarn behaviour to a complex contour is assessed through consolidation by means of vacuum assisted resin transfer moulding (VARTM), and the resulting mechanisms are investigated by micrograph analysis. Varying architectures; with known areal densities, pic density and thicknesses are assessed for a cohesive study. The resulting performance of each is assessed qualitatively as well as quantitatively from the perspective of material in terms of the change in representative unit cell (RVE) across the curved beam contour, in crimp percentage, tow angle, resin rich areas and binder distortion. A novel textile is developed from the resulting analysis to overcome the observed deformations.

Keywords: comformability, compression, binder architecture, 3D weaving, textile preform

Procedia PDF Downloads 146
2262 Vanadium (V) Complexes of a Tripodal Ligand, Their Characterization and Biological Implications

Authors: Mannar R. Maurya, Bhawna Uprety, Fernando Avecilla, Pedro Adão, J. Costa Pessoa

Abstract:

The reaction of the tripodal tetradentate dibasic ligand 6,6'–(2–(pyridin–2–yl)ethylazanediyl)bis(methylene)bis(2,4–di–tert–butylphenol), H2L1 I, with [VIVO(acac)2] in CH3CN gives the VVO–complex, [VVO(acac)(L1)] 1. Crystallization of 1 in CH3CN at ~0 ºC, gives dark blue crystals of 1, while at room temperature it affords dark green crystals of [{VVO(L1)}2µ–O] 3. Upon prolonged treatment of 1 in MeOH [VVO(OMe)(MeOH)(L1)] 2 is obtained. All three complexes are analyzed by single–crystal X–ray diffraction, depicting distorted octahedral geometry around vanadium. In the reaction of H2L1 with VIVOSO4 partial hydrolysis of the tripodal ligand results in elimination of the pyridyl fragment of L1 and the formation of H[VVO2(L2)] 4, containing the ONO tridentate ligand 6,6'–azanediylbis(methylene)bis(2,4–di–tert–butylphenol), H2L2 II. Compound 4, which was not fully characterized, undergoes dimerization in acetone yielding the hydroxido–bridged [{VVO(L2)}2µ–(HO)2] 5, having distorted octahedral geometry around each vanadium. In contrast, from a solution of 4 in acetonitrile, the dinuclear compound [{VVO(L2)}2µ–O] 6 is obtained, with trigonal bipyramidal geometry around each vanadium. The methoxido complex 2 is successfully employed as a functional catechol–oxidase mimic in the oxidation of catechol to o–quinone under air. The process is confirmed to follow a Michaelis–Menten type kinetics with respect to catechol, the Vmax and KM values obtained being 7.66×10–6 M min -1 and 0.0557 M, respectively, and the turnover frequency is 0.0541 min–1. Complex 2 is also used as a catalyst precursor for the oxidative bromination of thymol in aqueous medium. The selectivity shows quite interesting trends, namely when not using excess of primary oxidizing agent, H2O2 the para mono–brominated product corresponds to ~93 % of the products and no dibromo derivative is formed.

Keywords: oxidovanadium (V) complexes, tripodal ligand, crystal structure, catechol oxidase mimetic activity

Procedia PDF Downloads 316
2261 Antimicrobial Activities of Lactic Acid Bacteria from Fermented Foods and Probiotic Products

Authors: Alec Chabwinja, Cannan Tawonezvi, Jerneja Vidmar, Constance Chingwaru, Walter Chingwaru

Abstract:

Objective: To evaluate the potential of commercial fermented / probiotic products available in Zimbabwe or internationally, and strains of Lactobacillus plantarum (L. plantarum) as prophylaxis and therapy against diarrhoeal and sexually transmitted infections. Methods: The antimicrobial potential of cultures of lactobacilli enriched from 4 Zimbabwean commercial food/beverage products, namely Dairibord Lacto sour milk (DLSM), Probrand sour milk (PSM), Kefalos Vuka cheese (KVC) and Chibuku opaque beer (COB); three probiotic products obtainable in Europe and internationally; and four strains of L. plantarum obtained from Balkan traditional cheeses and Zimbabwean foods against clinical strains of Escherichia coli (E. coli) and non-clinical strains of Candida albicans and Rhodotorula spp. was assayed using the well diffusion method. Three commercial Agar diffusion assay and a competitive exclusion assay were carried out on Mueller-Hinton agar. Results: Crude cultures of putative lactobacillus strains obtained from Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer) exhibited significantly greater antimicrobial activities against clinical strains of E. coli than strains of L. plantarum isolated from Balkan cheeses (CLP1, CLP2 or CLP3) or crude microbial cultures from commercial paediatric probiotic products (BG, PJ and PL) of a culture of Lactobacillus rhamnosus LGG (p < 0.05). Furthermore, the following has high antifungal activities against the two yeasts: supernatant-free microbial pellet (SFMP) from an extract of M. azedarach leaves (27mm ± 2.5) > cell-free culture supernatants (CFCS) from Maaz Dairy sour milk and Mnandi sour milk (approximately 26mm ± 1.8) > CFCS and SFMP from Amansi hodzeko (25mm ± 1.5) > CFCS from Parinari curatellifolia fruit (24mm ± 1.5), SFMP from P. curatellifolia fruit (24mm ± 1.4) and SFMP from mahewu (20mm ± 1.5). These cultures also showed high tolerance to acidic conditions (~pH4). Conclusions: The putative lactobacilli from four commercial Zimbabwean dairy products (Probrand sour milk, Kefalos Vuka vuka cheese and Chibuku opaque beer), and three strains of L. plantarum from Balkan cheeses (CLP1, CLP2 or CLP3) exhibited high antibacterial activities, while Maaz Dairy sour-, Mnandi sour- and Amansi hodzeko milk products had high antifungal activities. Our selection of Zimbabwean probiotic products has potential for further development into probiotic products for use in the control diarrhea caused by pathogenic strains of E. coli or yeast infections. Studies to characterise the probiotic potential of the live cultures in the products are underway.

Keywords: lactic acid bacteria, Staphylococcus aureus, Streptococcus spp, yeast, inhibition, acid tolerance

Procedia PDF Downloads 390
2260 Evolutionary Prediction of the Viral RNA-Dependent RNA Polymerase of Chandipura vesiculovirus and Related Viral Species

Authors: Maneesh Kumar, Roshan Kamal Topno, Manas Ranjan Dikhit, Vahab Ali, Ganesh Chandra Sahoo, Bhawana, Major Madhukar, Rishikesh Kumar, Krishna Pandey, Pradeep Das

Abstract:

Chandipura vesiculovirus is an emerging (-) ssRNA viral entity belonging to the genus Vesiculovirus of the family Rhabdoviridae, associated with fatal encephalitis in tropical regions. The multi-functionally active viral RNA-dependent RNA polymerase (vRdRp) that has been incorporated with conserved amino acid residues in the pathogens, assigned to synthesize distinct viral polypeptides. The lack of proofreading ability of the vRdRp produces many mutated variants. Here, we have performed the evolutionary analysis of 20 viral protein sequences of vRdRp of different strains of Chandipura vesiculovirus along with other viral species from genus Vesiculovirus inferred in MEGA6.06, employing the Neighbour-Joining method. The p-distance algorithmic method has been used to calculate the optimum tree which showed the sum of branch length of about 1.436. The percentage of replicate trees in which the associated taxa are clustered together in the bootstrap test (1000 replicates), is shown next to the branches. No mutation was observed in the Indian strains of Chandipura vesiculovirus. In vRdRp, 1230(His) and 1231(Arg) are actively participated in catalysis and, are found conserved in different strains of Chandipura vesiculovirus. Both amino acid residues were also conserved in the other viral species from genus Vesiculovirus. Many isolates exhibited maximum number of mutations in catalytic regions in strains of Chandipura vesiculovirus at position 26(Ser→Ala), 47 (Ser→Ala), 90(Ser→Tyr), 172(Gly→Ile, Val), 172(Ser→Tyr), 387(Asn→Ser), 1301(Thr→Ala), 1330(Ala→Glu), 2015(Phe→Ser) and 2065(Thr→Val) which make them variants under different tropical conditions from where they evolved. The result clarifies the actual concept of RNA evolution using vRdRp to develop as an evolutionary marker. Although, a limited number of vRdRp protein sequence similarities for Chandipura vesiculovirus and other species. This might endow with possibilities to identify the virulence level during viral multiplication in a host.

Keywords: Chandipura, (-) ssRNA, viral RNA-dependent RNA polymerase, neighbour-joining method, p-distance algorithmic, evolutionary marker

Procedia PDF Downloads 178
2259 Evaluation of Phonophoresis with Dexamethasone in Treatment of Hypertrophic Burn Scar

Authors: Alireza Pishgahi, Mohammad Rahbar, Javad Shokri, Shahla Dareshiri, Yaghoub Salekzamani, Fariba Eslamian

Abstract:

Background and Objectives: Hypertrophic scars are one of the complications following a burn injury. Intralesional corticosteroid injection is an invasive method for treatment of this complication. We had design a single blinded randomized control trial to deliver dexamethasone by phonophoresis and evaluate its efficacy on hypertrophic burn scars characteristics. Material and Methods: 56 cases of hypertrophic burn scar due to burn injury allocated randomly to dexamethasone and control group. Individuals in case group received 10 sessions of dexamethasone 0.4% phonophoresis. Patients in control group had placebo phonophoresis (ultrasound with normal routine aquatic gel without any dexamethasone) with the same protocol. At the beginning of study and one week after last session, hypertrophic scar characteristics and pruritus were measured by ‘Vancouver Scar Scale’, and ‘5-D Pruritus Scale’ respectively in both groups. Results: Despite mild improvement in Vancouver Scar Scale score one week after intervention in dexamethasone phonophoresis group in comparison to control subjects, but this difference was not significant (p=0.08). Pruritus score perceived subjectively were significantly lower one week after intervention in dexamethasone groups in comparison to control subjects (p=0.00). Conclusion: Dexamethasone phonophoresis is a safe and effective treatment method for burn hypertrophic scar pruritus, but its efficacy for scar characteristics improvement needs to be evaluated by larger studies with long-term follow-up period.

Keywords: dexamethasone, hypertrophic scar, phonophoresis, pruritus

Procedia PDF Downloads 159
2258 Investigating the Effect of the Pedagogical Agent on Visual Attention in Attention Deficit Hyperactivity Disorder Students

Authors: Nasrin Mohammadhasani, Rosa Angela Fabio

Abstract:

The attention to relevance information is the key element for learning. Otherwise, Attention Deficit Hyperactivity Disorder (ADHD) students have a fuzzy visual pattern that prevents them to attention and remember learning subject. The present study aimed to test the hypothesis that the presence of a pedagogical agent can effectively support ADHD learner's attention and learning outcomes in a multimedia learning environment. The learning environment was integrated with a pedagogical agent, named Koosha as a social peer. This study employed a pretest and posttest experimental design with control group. The statistical population was 30 boys students, age 10-11 with ADHD that randomly assigned to learn with/without an agent in well designed environment for mathematic. The results suggested that experimental and control groups show a significant difference in time when they participated and mathematics achievement. According to this research, using the pedagogical agent can enhance learning of ADHD students by gaining and guiding their attention to relevance information part on display, so it can be considered as asocial cue that provides theme cognitive supports.

Keywords: attention, computer assisted instruction, multimedia learning environment, pedagogical agent

Procedia PDF Downloads 288
2257 The Use of Digital Stories in the Development of Critical Literacy

Authors: Victoria Zenotz

Abstract:

For Fairclough (1989) critical literacy is a tool to enable readers and writers to build up meaning in discourse. More recently other authors (Leu et al., 2004) have included the new technology context in their definition of literacy. In their view being literate nowadays means to “successfully use and adapt to the rapidly changing information and communication technologies and contexts that continuously emerge in our world and influence all areas of our personal and professional lives.” (Leu et al., 2004: 1570). In this presentation the concept of critical literacy will be related to the creation of digital stories. In the first part of the presentation concepts such as literacy and critical literacy are examined. We consider that real social practices will help learners may improve their literacy level. Accordingly, we show some research, which was conducted at a secondary school in the north of Spain (2013-2014), to illustrate how the “writing” of digital stories may contribute to the development of critical literacy. The use of several instruments allowed the collection of data at the different stages of their creative process including watching and commenting models for digital stories, planning a storyboard, creating and selecting images, adding voices and background sounds, editing and sharing the final product. The results offer some valuable insights into learners’ literacy progress.

Keywords: literacy, computer assisted language learning, esl

Procedia PDF Downloads 379
2256 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys

Authors: Hexiong Liu

Abstract:

Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.

Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy

Procedia PDF Downloads 59
2255 Management of Hypoglycemia in Von Gierke’s Disease

Authors: Makda Aamir, Sood Aayushi, Syed Omar, Nihan Khuld, Iskander Peter, Ijaz Naeem, Sharma Nishant

Abstract:

Introduction:Glycogen Storage Disease Type-1 (GSD-1) is a rare phenomenon primarily affecting the liver and kidney. Excessive accumulation of glycogen and fat in liver, kidney, and intestinal mucosa is noted in patients with deficiency of Glucose-6-phosphatase deficiency. Patients with GSD-1 have a wide spectrum of symptoms, including hepatomegaly, hypoglycemia, lactic acidemia, hyperlipidemia, hyperuricemia, and growth retardation. Age of onset, rate of disease progression and its severity is variable in this disease.Case:An 18-year-old male with GSD-1a, Von Gierke’s disease, hyperuricemia, and hypertension presented to the hospital with nausea and vomiting. The patient followed an hourly cornstarch regimen during the day and overnight through infusion via a PEG tube. The complaints started at work, where he was unable to tolerate oral cornstarch. He washemodynamically stable on arrival. ABG showed pH 7.372, PaCO2 30.3, and PaO2 92.2. WBC 16.80, K+ 5.8, HCO3 13, BUN 28, Cr 2.2, Glucose 60, AST 115, ALT 128, Cholesterol 352, Triglycerides >1000, Uric Acid 10.6, Lactic Acid 11.8 which trended down to 8.0. CT abdomen showed hepatomegaly and fatty infiltration with the PEG tube in place.He was admitted to the ICU and started on D5NS for hypoglycemia and lactic acidosis. Per request by the patient’s pediatrician, he was transitioned to IV D10/0.45NS at 110mL/Hr to maintain blood glucose above 75 mg/L. Frequent accuchecks were done till he could tolerate his dietary regimen with cornstarch. Lactic acid downtrend to 2.9, and accuchecks ranged between 100-110. Cr improved to 1.3, and his home medications (Allopurinol and Lisinopril) were resumed. He was discharged in stable condition with plans for further genetic therapy work up.Discussion:Mainstay therapy for Von Gierke’s Disease is the prevention of metabolic derangements for which dietary and lifestyle changes are recommended. A low fructose and sucrose diet is recommended by limiting the intake of galactose and lactose to one serving per day. Hypoglycemia treatment in such patients is two-fold, utilizing both quick and stable release sources. Cornstarch has been one such therapy since the 1980s; its slow digestion provides a steady release of glucose over a longer period of time as compared with other sources of carbohydrates. Dosing guidelines vary from age to age and person to person, but it is highly recommended to check BG levels frequently to maintain a BG > 70 mg/dL. Associated high levels of triglycerides and cholesterol can be treated with statins, fibrates, etc. Conclusion:The management of hypoglycemia in GSD 1 disease presents various obstacles which could prove to be fatal. Due to the deficiency of G6P, treatment with a specialized hypoglycemic regimen is warranted. A D10 ½ NS infusion can be used to maintain blood sugar levels as well as correct metabolic or lactate imbalances. Infusion should be gradually weaned off after the patient can tolerate oral feeds as this can help prevent the risk of hypoglycemia and other derangements. Further research is needed in regards to these patients for more sustainable regimens.

Keywords: von gierke, glycogen storage disease, hypoglycemia, genetic disease

Procedia PDF Downloads 90
2254 Bio Based Agro Textiles

Authors: K. Sakthivel

Abstract:

With the continuous increase in population worldwide, stress increased among agricultural peoples, so it is necessary to increase the yield of agro-products. But it is not possible to meet fully with the traditionally adopted ways of using pesticides and herbicides. Today, agriculture and horticulture has realized the need of tomorrow and opting for various technologies to get higher overall yield, quality agro-products. Most of today’s synthetic polymers are produced from petrochemical bi-products and are not biodegradable. Persistent polymers generate significant sources of environmental pollution, harming wildlife when they are disposed in nature. The disposal of non degradable plastic bags adversely affects human and wild life. Moreover incineration of plastic waste presents environmental issues as well, since it yields toxic emissions. Material incineration is also limited due to the difficulties to find accurate and economically viable outlets. In addition plastic recycling shows a negative eco balance due to the necessity in nearly all cases to wash the plastic waste as well as the energy consumption during the recycling process phases. As plastics represent a large part of the waste collection at the local regional and national levels institutions are aware of the significant savings that compostable or biodegradable materials would generate. Polylactic acid (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and wheat, has attracted much attention for automotive parts and also can be applied in agro textiles. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the stereo complex PLA, we developed by the four unit processes, fermentation, separation, lactide conversion, and polymerization. Then the polymer is converted into mulching film and applied in agriculture field. PLA agro textiles have better tensile strength, tearing strength and with stand from UV rays than polyester agro textile and polypropylene-based products.

Keywords: biodegradation, environment, mulching film, PLA, technical textiles

Procedia PDF Downloads 372
2253 The Effects of Climate Change and Upstream Dam Development on Sediment Distribution in the Vietnamese Mekong Delta

Authors: Trieu Anh Ngoc, Nguyen Quang Kim

Abstract:

Located at the downstream of the Mekong Delta, the Vietnamese Mekong Delta is well-known as 'rice bowl' of Vietnam. The Vietnamese Mekong Delta experiences widespread flooding annually where is habitat for about 17 million people. The economy of this region mainly depends on the agricultural productivities. The suspended sediment load in the Mekong River plays an important role in carrying contaminants and nutrients to the delta and changing the geomorphology of the delta river system. In many past decades, flooding and suspended sediment were considered as indispensable factors in agricultural cultivations. Although flooding in the wet season caused serious inundation in paddy field and affected livelihoods, it is an effective facility for flushing acid and saline to this area - alluvial soil heavily contaminated with acid and salt intrusion. In addition, sediment delivery to this delta contained rich-nutrients distributed and deposited on the fields through flooding process. In recent decades, the changing of flow and sediment transport have been strongly and clearly occurring due to upstream dam development and climate change. However, effects of sediment delivery on agricultural cultivations were less attention. This study investigated the impacts of upstream flow on sediment distribution in the Vietnamese Mekong Delta. Flow fluctuation and sediment distribution were simulated by the Mike 11 model, including hydrodynamics model and advection-dispersion model. Various scenarios were simulated based on anticipated upstream discharges. Our findings indicated that sediment delivery into the Vietnamese Mekong Delta come from not only Tien River but also border of Cambodia floodplains. Sediment distribution in the Vietnamese Mekong Delta is dramatically changed by the distance from the main rivers and the secondary channels. The dam development in the upstream is one of the major factors leading a decrease in sediment discharge as well as sediment deposition. Moreover, sea level rise partially contributed to decrease in sediment transport and change of sediment distribution between upstream and downstream of the Vietnamese Mekong Delta.

Keywords: sediment transport, sea level rise, climate change, Mike Model

Procedia PDF Downloads 257