Search results for: pedagogical materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7486

Search results for: pedagogical materials

5206 Use of Low-Cost Hydrated Hydrogen Sulphate-Based Protic Ionic Liquids for Extraction of Cellulose-Rich Materials from Common Wheat (Triticum Aestivum) Straw

Authors: Chris Miskelly, Eoin Cunningham, Beatrice Smyth, John. D. Holbrey, Gosia Swadzba-Kwasny, Emily L. Byrne, Yoan Delavoux, Mantian Li.

Abstract:

Recently, the use of ionic liquids (ILs) for the preparation of lignocellulose derived cellulosic materials as alternatives to petrochemical feedstocks has been the focus of considerable research interest. While the technical viability of IL-based lignocellulose treatment methodologies has been well established, the high cost of reagents inhibits commercial feasibility. This work aimed to assess the technoeconomic viability of the preparation of cellulose rich materials (CRMs) using protic ionic liquids (PILs) synthesized from low cost alkylamines and sulphuric acid. For this purpose, the tertiary alkylamines, triethylamine, and dimethylbutylamine were selected. Bulk scale production cost of the synthesized PILs, triethylammonium hydrogen sulphate and dimetheylbutylammonium hydrogen sulphate, was reported as $0.78 kg-1 to $1.24 kg-1. CRMs were prepared through the treatment of common wheat (Triticum aestivum) straw with these PILs. By controlling treatment parameters, CRMs with a cellulose content of ≥ 80 wt% were prepared. This was achieved using a T. aestivum straw to PIL loading ratio of 1:15 w/w, a treatment duration of 180 minutes, and ethanol as a cellulose antisolvent. Infrared spectra data and decreased onset degradation temperature of CRMs (ΔTONSET ~ 70 °C) suggested the formation of cellulose sulphate esters during treatment. Chemical derivatisation can aid the dispersion of prepared CRMs in non-polar polymer/ composite matrices, but act as a barrier to thermal processing at temperatures above 150 °C. It was also shown that treatment increased the crystallinity of CRMs (ΔCrI ~ 40 %) without altering the native crystalline structure or crystallite size (~ 2.6 nm) of cellulose; peaks associated with the cellulose I crystalline planes (110), (200), and (004) were observed at Bragg angles 16.0 °, 22.5 ° and 35.0 ° respectively. This highlighted the inability of assessed PILs to dissolve crystalline cellulose and was attributed to the high acidity (pKa ~ - 1.92 to - 6.42) of sulphuric acid derived anions. Electron micrographs revealed that the stratified multilayer tissue structure of untreated T. aestivum straw was significantly modified during treatment. T. aestivum straw particles were disassembled during treatment, with prepared CRMs adopting a golden-brown film-like appearance. This work demonstrated the degradation of non-cellulosic fractions of lignocellulose without dissolution of cellulose. It is the first to report on the derivatisation of cellulose during treatment with protic hydrogen sulphate ionic liquids, and the potential implications of this with reference to biopolymer feedstock preparation.

Keywords: cellulose, extraction, protic ionic liquids, esterification, thermal stability, waste valorisation, biopolymer feedstock

Procedia PDF Downloads 36
5205 Development the Potential of Parking Tax and Parking Retribution Revenues: Case Study in Bekasi City

Authors: Ivan Yudianto

Abstract:

The research objectives are to analyze the factors that impede the Parking Tax and Parking Retribution collection in Bekasi City Government, analyzing the factors that can increase local own revenue from the tax sector of parking tax and parking retribution, analyze monitoring the parking retribution collection by the Bekasi City Government, analyze strategies Bekasi City Government through the preparation of a roadmap and action plan to increase parking tax and parking retribution revenues. The approach used in this research is a qualitative approach. Qualitative research is used because the problem is not yet clear and the object to be studied will be holistic, complex, and dynamic, and the relationship will be interactive symptoms. Methods of data collection and technical analysis of the data was in-depth interviews, participant observation, documentary materials, literature, and triangulation, as well as new methods such as the methods of visual materials and internet browsing. The results showed that there are several factors that become an obstacle such as the parking taxpayer does not disclose the actual parking revenue, the parking taxpayer are late or do not pay Parking Tax, many parking locations controlled by illegal organizations, shortage of human resources in charge levy and supervise the parking tax and parking retribution collection in the Bekasi City Government, surveillance parking tax and parking retribution are not scheduled on a regular basis. Several strategic priorities in order to develop the potential of the Parking Tax and Parking Retribution in the Bekasi City Government, namely through increased controling and monitoring of the Parking Taxpayer, forming a team of auditors to audit the Parking Taxpayer, seek law enforcement persuasive and educative to reduce Parking Taxpayer wayward, providing strict sanctions against the Parking Taxpayer disobedient, revised regulations mayors about locations of parking in Bekasi City, rationalize revenues target of Parking Retribution, conducting takeover attempts parking location on the roadside of the individual or specific group, and drafting regional regulations on parking subscribe.

Keywords: local own revenue, parking retribution, parking tax, parking taxpayer

Procedia PDF Downloads 326
5204 Fabrication of Superhydrophobic Galvanized Steel by Sintering Zinc Nanopowder

Authors: Francisco Javier Montes Ruiz-Cabello, Guillermo Guerrero-Vacas, Sara Bermudez-Romero, Miguel Cabrerizo Vilchez, Miguel Angel Rodriguez-Valverde

Abstract:

Galvanized steel is one of the widespread metallic materials used in industry. It consists on a iron-based alloy (steel) coated with a layer of zinc with variable thickness. The zinc is aimed to prevent the inner steel from corrosion and staining. Its production is cheaper than the stainless steel and this is the reason why it is employed in the construction of materials with large dimensions in aeronautics, urban/ industrial edification or ski-resorts. In all these applications, turning the natural hydrophilicity of the metal surface into superhydrophobicity is particularly interesting and would open a wide variety of additional functionalities. However, producing a superhydrophobic surface on galvanized steel may be a very difficult task. Superhydrophobic surfaces are characterized by a specific surface texture which is reached either by coating the surface with a material that incorporates such texture, or by conducting several roughening methods. Since galvanized steel is already a coated material, the incorporation of a second coating may be undesired. On the other hand, the methods that are recurrently used to incorporate the surface texture leading to superhydrophobicity in metals are aggressive and may damage their surface. In this work, we used a novel strategy which goal is to produce superhydrophobic galvanized steel by a two-step non-aggressive process. The first process is aimed to create a hierarchical structure by incorporating zinc nanoparticles sintered on the surface at a temperature slightly lower than the zinc’s melting point. The second one is a hydrophobization by a thick fluoropolymer layer deposition. The wettability of the samples is characterized in terms of tilting plate and bouncing drop experiments, while the roughness is analyzed by confocal microscopy. The durability of the produced surfaces was also explored.

Keywords: galvanaized steel, superhydrophobic surfaces, sintering nanoparticles, zinc nanopowder

Procedia PDF Downloads 150
5203 Enhancing Student Learning Experience Online through Collaboration with Pre-Service Teachers

Authors: Jessica Chakowa

Abstract:

Learning a foreign language requires practice that needs to be undertaken beyond the classroom. Nowadays, learners can find a lot of resources online, but it can be challenging for them to find suitable material, receive timely and effective feedback on their progress, and, more importantly practice the target language with native speakers. This paper focuses on the development of interactive activities combined with online tutoring sessions to consolidate and enhance the learning experience of beginner students of French at * University. This project is based on collaboration with four pre-service teachers from a French university. It calls for authentic language learning material, real-life situations, cultural awareness, and aims for the sustainability of learning and teaching. The paper will first present the design of the project as part of a holistic approach. It will then provide some examples of activities before commenting on the learners and the teachers’ experiences based on quantitative and qualitative data obtained through activity reports, surveys and focus groups. The main findings of the study lie in the tension between the willingness to achieve pedagogical goals and to be involved in authentic interactions, highlighting the complementary between the role of the learner and the role of teacher. The paper will conclude on benefits, challenges and recommendations when implementing such educational projects.

Keywords: authenticity, language teaching and learning, online interaction, sustainability

Procedia PDF Downloads 121
5202 Study Properties of Bamboo Composite after Treatment Surface by Chemical Method

Authors: Kiatnarong Supapanmanee, Ekkarin Phongphinittana, Pongsak Nimdum

Abstract:

Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material.

Keywords: bamboo fiber, bamboo strip, composite material, bamboo composite, pure bamboo, surface modification, mechanical properties of bamboo, bamboo finite element method

Procedia PDF Downloads 92
5201 Use of Metallic and Bimetallic Nanostructures as Constituents of Active Bio-Based Films

Authors: Lina F. Ballesteros, Hafsae Lamsaf, Miguel A. Cerqueira, Lorenzo M. Pastrana, Sandra Carvalho, Jose A. Teixeira, S. Calderon V.

Abstract:

The use of bio-based packaging materials containing metallic and bimetallic nanostructures is relatively modern technology. In this sense, the food packaging industry has been investigating biological and renewable resources that can replace petroleum-based materials to reduce the environmental impact and, at the same time, including new functionalities using nanotechnology. Therefore, the main objective of the present work consisted of developing bio-based poly-lactic acid (PLA) films with Zinc (Zn) and Zinc-Iron (Zn-Fe) nanostructures deposited by magnetron sputtering. The structural, antimicrobial, and optical properties of the films were evaluated when exposed at 60% and 96% relative humidity (RH). The morphology and elemental analysis of the samples were determined by scanning (transmission) electron microscopy (SEM and STEM), and inductively coupled plasma optical emission spectroscopy (ICP-OES). The structure of the PLA was monitored before and after deposition by Fourier transform infrared spectroscopy (FTIR) analysis, and the antimicrobial and color assays were performed by using the zone of inhibition (ZOI) test and a Minolta colorimeter, respectively. Finally, the films were correlated in terms of the deposit conditions, Zn or Zn-Fe concentrations, and thickness. The results revealed PLA films with different morphologies, compositions, and thicknesses of Zn or Zn-Fe nanostructures. The samples showed a significant antibacterial and antifungal activity against E. coli, P. aeruginosa, P. fluorescens, S. aureus, and A. niger, and considerable changes of color and opacity at 96% RH, especially for the thinner nanostructures (150-250 nm). On the other hand, when the Fe fraction was increased, the lightness of samples increased, as well as their antimicrobial activity when compared to the films with pure Zn. Hence, these findings are relevant to the food packaging field since intelligent and active films with multiple properties can be developed.

Keywords: biopolymers, functional properties, magnetron sputtering, Zn and Zn-Fe nanostructures

Procedia PDF Downloads 121
5200 The Flexural Behavior of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Exposed for Different Environment Conditions

Authors: Rajai Al-Rousan

Abstract:

The repair and strengthening of concrete structures is a big challenge for the concrete industry for both engineers and contractors. Due to increasing economical constraints, the current trend is to repair/upgrade deteriorated and functionally obsolete structures rather than replacing them with new structures. CFRP has been used previously by air space industries regardless of the high costs. The decrease in the costs of the composite materials, as results of the technology improvement, has made CFRP an alternative to conventional materials for many applications. The primary objective of this research is to investigate the flexural behavior of reinforced concrete (RC) beams externally strengthened with CFRP composites exposed for three years for the following conditions: (a) room temperature, (b) cyclic ponding in 15% salt-water solution, (c) hot-water of 65oC, and (d) rapid freeze/thaw cycles. Results indicated that the after three years of various environmental conditions, the bond strength between the concrete beams and CFRP sheets was not affected. No signs of separation or debonding of CFRP sheets were observed before testing. Also, externally strengthening RC beams with CFRP sheets leads to a substantial increase in the ductility of concrete structures. This is a result of forcing the concrete to undergo inelastic deformation, resulting in compression failure of the structure after yielding of steel reinforcement. In addition, exposure to heat water tank for three years reduces the ultimate load by about 11%. This 11% reduction in the ultimate load equates to about 53%, 46% and 68% loss of the gain of the strength attributed to the CFRP of 2/3 Layer, 1 Layers and 2 Layers CFRP Sheets respectively. This mean that with decreasing of number of layers the environmental exposure had an efficient effect on concrete by protection concrete from environmental effect and adverse effect on the bond performance.

Keywords: flexural, behavior, CFRP, composites, environment, conditions

Procedia PDF Downloads 310
5199 Creation and Evaluation of an Academic Blog of Tools for the Self-Correction of Written Production in English

Authors: Brady, Imelda Katherine, Da Cunha Fanego, Iria

Abstract:

Today's university students are considered digital natives and the use of Information Technologies (ITs) forms a large part of their study and learning. In the context of language studies, applications that help with revisions of grammar or vocabulary are particularly useful, especially if they are open access. There are studies that show the effectiveness of this type of application in the learning of English as a foreign language and that using IT can help learners become more autonomous in foreign language acquisition, given that these applications can enhance awareness of the learning process; this means that learners are less dependent on the teacher for corrective feedback. We also propose that the exploitation of these technologies also enhances the work of the language instructor wishing to incorporate IT into his/her practice. In this context, the aim of this paper is to present the creation of a repository of tools that provide support in the writing and correction of texts in English and the assessment of their usefulness on behalf of university students enrolled in the English Studies Degree. The project seeks to encourage the development of autonomous learning through the acquisition of skills linked to the self-correction of written work in English. To comply with the above, our methodology follows five phases. First of all, a selection of the main open-access online applications available for the correction of written texts in English is made: AutoCrit, Hemingway, Grammarly, LanguageTool, OutWrite, PaperRater, ProWritingAid, Reverso, Slick Write, Spell Check Plus and Virtual Writing Tutor. Secondly, the functionalities of each of these tools (spelling, grammar, style correction, etc.) are analyzed. Thirdly, explanatory materials (texts and video tutorials) are prepared on each tool. Fourth, these materials are uploaded into a repository of our university in the form of an institutional blog, which is made available to students and the general public. Finally, a survey was designed to collect students’ feedback. The survey aimed to analyse the usefulness of the blog and the quality of the explanatory materials as well as the degree of usefulness that students assigned to each of the tools offered. In this paper, we present the results of the analysis of data received from 33 students in the 1st semester of the 21-22 academic year. One result we highlight in our paper is that the students have rated this resource very highly, in addition to offering very valuable information on the perceived usefulness of the applications provided for them to review. Our work, carried out within the framework of a teaching innovation project funded by our university, emphasizes that teachers need to design methodological strategies that help their students improve the quality of their productions written in English and, by extension, to improve their linguistic competence.

Keywords: academic blog, open access tools, online self-correction, written production in English, university learning

Procedia PDF Downloads 102
5198 Using Sugar Mill Waste for Biobased Epoxy Composites

Authors: Ulku Soydal, Mustafa Esen Marti, Gulnare Ahmetli

Abstract:

In this study, precipitated calcium carbonate lime waste (LW) from sugar beet process was recycled as the raw material for the preparation of composite materials. Epoxidized soybean oil (ESO) was used as a co-matrix in 50 wt% with DGEBA type epoxy resin (ER). XRD was used for characterization of composites. Effects of ESO and LW filler amounts on mechanical properties of neat ER were investigated. Modification of ER with ESO remarkably enhanced plasticity of ER.

Keywords: epoxy resin, biocomposite, lime waste, properties

Procedia PDF Downloads 315
5197 The Challenges to Information Communication Technology Integration in Mathematics Teaching and Learning

Authors: George Onomah

Abstract:

Background: The integration of information communication technology (ICT) in Mathematics education faces notable challenges, which this study aimed to dissect and understand. Objectives: The primary goal was to assess the internal and external factors affecting the adoption of ICT by in-service Mathematics teachers. Internal factors examined included teachers' pedagogical beliefs, prior teaching experience, attitudes towards computers, and proficiency with technology. External factors included the availability of technological resources, the level of ICT training received, the sufficiency of allocated time for technology use, and the institutional culture within educational environments. Methods: A descriptive survey design was employed to methodically investigate these factors. Data collection was carried out using a five-point Likert scale questionnaire, administered to a carefully selected sample of 100 in-service Mathematics teachers through a combination of purposive and convenience sampling techniques. Findings: Results from multiple regression analysis revealed a significant underutilization of ICT in Mathematics teaching, highlighting a pronounced deficiency in current classroom practices. Recommendations: The findings suggest an urgent need for educational department heads to implement regular and comprehensive ICT training programs aimed at enhancing teachers' technological capabilities and promoting the integration of ICT in Mathematics teaching methodologies.

Keywords: ICT, Mathematics, integration, barriers

Procedia PDF Downloads 40
5196 Investigating the Efficacy of Developing Critical Thinking through Literature Reading

Authors: Julie Chuah Suan Choo

Abstract:

Due to the continuous change in workforce and the demands of the global workplace, many employers had lamented that the majority of university graduates were not prepared in the key areas of employment such as critical thinking, writing, self-direction and global knowledge which are most needed for the purposes of promotion. Further, critical thinking skills are deemed as integral parts of transformational pedagogy which aims at having a more informed society. To add to this, literature teaching has recently been advocated for enhancing students’ critical thinking and reasoning. Thus this study explored the effects of incorporating a few strategies in teaching literature, namely a Shakespeare play, into a course design to enhance these skills. An experiment involving a pretest and posttest using the California Critical Thinking Skills Test (CCTST) were administered on 80 first-year students enrolled in the Bachelor of Arts programme who were randomly assigned into the control group and experimental group. For the next 12 weeks, the experimental group was given intervention which included guided in-class discussion with Socratic questioning skills, learning log to detect their weaknesses in logical reasoning; presentations and quizzes. The results of CCTST which included paired T-test using SPSS version 22 indicated significant differences between the two groups. Findings have significant implications on the course design as well as pedagogical practice in using literature to enhance students’ critical thinking skills.

Keywords: literature teaching, critical thinking, California critical thinking skills test (CCTST), course design

Procedia PDF Downloads 463
5195 Students’ Notions About Bioethical Issues - A Comparative Study in Indian Subcontinent

Authors: Astha Saxena

Abstract:

The present study is based in Indian subcontinent and aims at exploring students’ conceptions about ethical issues related to Biotechnology at both high school and undergraduate level. The data collection methods involved taking classroom notes, recording students’ observations and arguments, and focussed group discussions with students. The data was analysed using classroom discourse analysis and interpretive approaches. The findings depicted different aspects of students’ thinking, meaning making and ethical understanding with respect to complex bioethical issues such as genetically modified crops, in-vitro fertilization (IVF), human genomic project, cloning, etc., at high school as well as undergraduate level. The paper offers a comparative account of students’ arguments with respect to ethical issues in biotechnology at the high school & undergraduate level, where it shows a clear gradation in their ethical understanding from high school to undergraduate level, which can be attributed to their enhanced subject-matter knowledge. The nature of students’ arguments reveal that there is more reliance on the utilitarian aspect of these biotechnologies as against a holistic understanding about a particular bioethical issue. This study has implications for science teachers to delve into students’ thinking and notions about ethical issues in biotechnology and accordingly design appropriate pedagogical approaches.

Keywords: ethical issues, biotechnology, ethical understanding, argument, ethical reasoning, pedagogy

Procedia PDF Downloads 81
5194 Effect of Particle Size Variations on the Tribological Properties of Porcelain Waste Added Epoxy Composites

Authors: B. Yaman, G. Acikbas, N. Calis Acikbas

Abstract:

Epoxy based materials have advantages in tribological applications due to their unique properties such as light weight, self-lubrication capacity and wear resistance. On the other hand, their usage is often limited by their low load bearing capacity and low thermal conductivity values. In this study, it is aimed to improve tribological and also mechanical properties of epoxy by reinforcing with ceramic based porcelain waste. It is well-known that the reuse or recycling of waste materials leads to reduction in production costs, ease of manufacturing, saving energy, etc. From this perspective, epoxy and epoxy matrix composites containing 60wt% porcelain waste with different particle size in the range of below 90µm and 150-250µm were fabricated, and the effect of filler particle size on the mechanical and tribological properties was investigated. The microstructural characterization was carried out by scanning electron microscopy (SEM), and phase analysis was determined by X-ray diffraction (XRD). The Archimedes principle was used to measure the density and porosity of the samples. The hardness values were measured using Shore-D hardness, and bending tests were performed. Microstructural investigations indicated that porcelain particles were homogeneously distributed and no agglomerations were encountered in the epoxy resin. Mechanical test results showed that the hardness and bending strength were increased with increasing particle size related to low porosity content and well embedding to the matrix. Tribological behavior of these composites was evaluated in terms of friction, wear rates and wear mechanisms by ball-on-disk contact with dry and rotational sliding at room temperature against WC ball with a diameter of 3mm. Wear tests were carried out at room temperature (23–25°C) with a humidity of 40 ± 5% under dry-sliding conditions. The contact radius of cycles was set to 5 mm at linear speed of 30 cm/s for the geometry used in this study. In all the experiments, 3N of constant test load was applied at a frequency of 8 Hz and prolonged to 400m wear distance. The friction coefficient of samples was recorded online by the variation in the tangential force. The steady-state CoFs were changed in between 0,29-0,32. The dimensions of the wear tracks (depth and width) were measured as two-dimensional profiles by a stylus profilometer. The wear volumes were calculated by integrating these 2D surface areas over the diameter. Specific wear rates were computed by dividing the wear volume by the applied load and sliding distance. According to the experimental results, the use of porcelain waste in the fabrication of epoxy resin composites can be suggested to be potential materials due to allowing improved mechanical and tribological properties and also providing reduction in production cost.

Keywords: epoxy composites, mechanical properties, porcelain waste, tribological properties

Procedia PDF Downloads 195
5193 Understanding Project Failures in Construction: The Critical Impact of Financial Capacity

Authors: Nnadi Ezekiel Oluwaseun Ejiofor

Abstract:

This research investigates the effects of poor cost estimation, material cost variations, and payment punctuality on the financial health and execution of construction projects in Nigeria. To achieve the objectives of the study, a quantitative research approach was employed, and data was gathered through an online survey of 74 construction industry professionals consisting of quantity surveyors, contractors, and other professionals. The study surveyed input on cost estimation errors, price fluctuations, and payment delays, among other factors. The responses of the respondents were analyzed using a five-point Likert scale and the Relative Importance Index (RII). The findings demonstrated that the errors in cost estimating in the Bill of Quantity (BOQ) have a high degree of negative impact on the reputation and image of the participants in the projects. The greatest effect was experienced on the likelihood of obtaining future endeavors for contractors (mean value = 3.42), followed by the likelihood of obtaining new commissions by quantity surveyors (mean value = 3.40). The level of inaccuracy in costing that undershoots exposes them to risks was most serious in terms of easement of construction and effects of shortage of funds to pursue bankruptcy (hence fears of mean value = 3.78). There was also considerable financial damage as a result of cost underestimation, whereby contractors suffered the worst loss in profit (mean value = 3.88). Every expense comes with its own peculiar risk and uncertainty. Pressure on the cost of materials and every other expense attributed to the building and completion of a structure adds risks to the performance figures of a project. The greatest weight (mean importance score = 4.92) was attributed to issues like market inflation in building materials, while the second greatest weight (mean importance score = 4.76) was due to increased transportation charges. On the other hand, delays in payments arising from issues of the clients like poor availability of funds (RII=0.71) and contracting issues such as disagreements on the valuation of works done (RII=0.72) or other reasons were also found to lead to project delays and additional costs. The results affirm the importance of proper cost estimation on the health of organization finances and project risks and finishes within set time limits. As for the suggestions, it is proposed to progress on the methods of costing, engender better communications with the stakeholders, and manage the delays by way of contracting and financial control. This study enhances the existing literature on construction project management by suggesting ways to deal with adverse cost inaccuracies and availability of materials due to delays in payments which, if addressed, would greatly improve the economic performance of the construction business.

Keywords: cost estimation, construction project management, material price fluctuations, payment delays, financial impact

Procedia PDF Downloads 8
5192 The Socio-Technical Relationship between Architects and Nano-Enhanced Materials: An Ethnographic Study in Cairo, Egypt

Authors: Ramy Bakir

Abstract:

Advancements in the field of nanoscience and nanotechnology have had a sweeping effect on the manufacturing industry in the last two decades, and have specifically allowed for the enhancement of a multitude of applications in the field of building technology. Research carried out in the architectural field in the past decade highlights how those enhancements have improved the structural and environmental performance of buildings, and/or how they developed the aesthetic value of façade or interior treatments. In developing countries, such as Egypt, the actual use of those nano-enhanced applications and their benefits rarely manifest. Hence this paper investigates the socio-technical relationship between the architectural design process and nanotechnology in Cairo using participant observation within an ethnographic study. The study focused on the socio-cultural context of an environmental design process in a specific design firm, and the role of nano-enhanced applications in it, and provided a thick description of the design decisions made within the preliminary stages of the design process of a residential building in Cairo, Egypt. Using Grounded Theory, and through the analysis and coding of the qualitative data collected, this paper was able to identify specific socio-cultural issues influencing individual architect cognition, clarifying how the context of the design process of the studied project affected the design team members’ responses to nano-enhanced materials. This paper presents those findings within a framework of the three identified statuses of response to nanotechnology and classifies the socio-cultural reasons influencing them. In doing so, the paper aims to shed more light on the relation between nanotechnology and architects in their natural environment, and hence allow both to benefit more from a clearer understanding of how the socio-cultural context, along with the benefits of using nanotechnology, influences the design decisions made.

Keywords: nanotechnology, design process, socio-cultural context, nano-enhanced applications

Procedia PDF Downloads 267
5191 Evaluation of the Heating Capability and in vitro Hemolysis of Nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) Ferrites Prepared by Sol-gel Method

Authors: Laura Elena De León Prado, Dora Alicia Cortés Hernández, Javier Sánchez

Abstract:

Among the different cancer treatments that are currently used, hyperthermia has a promising potential due to the multiple benefits that are obtained by this technique. In general terms, hyperthermia is a method that takes advantage of the sensitivity of cancer cells to heat, in order to damage or destroy them. Within the different ways of supplying heat to cancer cells and achieve their destruction or damage, the use of magnetic nanoparticles has attracted attention due to the capability of these particles to generate heat under the influence of an external magnetic field. In addition, these nanoparticles have a high surface area and sizes similar or even lower than biological entities, which allow their approaching and interaction with a specific region of interest. The most used magnetic nanoparticles for hyperthermia treatment are those based on iron oxides, mainly magnetite and maghemite, due to their biocompatibility, good magnetic properties and chemical stability. However, in order to fulfill more efficiently the requirements that demand the treatment of magnetic hyperthermia, there have been investigations using ferrites that incorporate different metallic ions, such as Mg, Mn, Co, Ca, Ni, Cu, Li, Gd, etc., in their structure. This paper reports the synthesis of nanosized MgxMn1-xFe2O4 (x = 0.3 and 0.4) ferrites by sol-gel method and their evaluation in terms of heating capability and in vitro hemolysis to determine the potential use of these nanoparticles as thermoseeds for the treatment of cancer by magnetic hyperthermia. It was possible to obtain ferrites with nanometric sizes, a single crystalline phase with an inverse spinel structure and a behavior near to that of superparamagnetic materials. Additionally, at concentrations of 10 mg of magnetic material per mL of water, it was possible to reach a temperature of approximately 45°C, which is within the range of temperatures used for the treatment of hyperthermia. The results of the in vitro hemolysis assay showed that, at the concentrations tested, these nanoparticles are non-hemolytic, as their percentage of hemolysis is close to zero. Therefore, these materials can be used as thermoseeds for the treatment of cancer by magnetic hyperthermia.

Keywords: ferrites, heating capability, hemolysis, nanoparticles, sol-gel

Procedia PDF Downloads 342
5190 Investigating Iraqi EFL University Students' Productive Knowledge of Grammatical Collocations in English

Authors: Adnan Z. Mkhelif

Abstract:

Grammatical collocations (GCs) are word combinations containing a preposition or a grammatical structure, such as an infinitive (e.g. smile at, interested in, easy to learn, etc.). Such collocations tend to be difficult for Iraqi EFL university students (IUS) to master. To help address this problem, it is important to identify the factors causing it. This study aims at investigating the effects of L2 proficiency, frequency of GCs and their transparency on IUSs’ productive knowledge of GCs. The study involves 112 undergraduate participants with different proficiency levels, learning English in formal contexts in Iraq. The data collection instruments include (but not limited to) a productive knowledge test (designed by the researcher using the British National Corpus (BNC)), as well as the grammar part of the Oxford Placement Test (OPT). The study findings have shown that all the above-mentioned factors have significant effects on IUSs’ productive knowledge of GCs. In addition to establishing evidence of which factors of L2 learning might be relevant to learning GCs, it is hoped that the findings of the present study will contribute to more effective methods of teaching that can better address and help overcome the problems IUSs encounter in learning GCs. The study is thus hoped to have significant theoretical and pedagogical implications for researchers, syllabus designers as well as teachers of English as a foreign/second language.

Keywords: corpus linguistics, frequency, grammatical collocations, L2 vocabulary learning, productive knowledge, proficiency, transparency

Procedia PDF Downloads 248
5189 If the Architecture Is in Harmony With Its Surrounding, It Reconnects People With Nature

Authors: Aboubakr Mashali

Abstract:

Context: The paper focuses on the relationship between architecture and nature, emphasizing the importance of incorporating natural elements in design to reconnect individuals with the natural environment. It highlights the positive impact of a harmonious architecture on people's well-being and the environment, as well as the concept of sustainable architecture. Research aim: The aim of this research is to showcase how nature can be integrated into architectural designs, ultimately reestablishing a connection between humans and the natural world. Methodology: The research employs an in-depth approach, delving into the subject matter through extensive research and the analysis of case studies. These case studies provide practical examples and insights into successful architectural designs that have effectively incorporated nature. Findings: The findings suggest that when architecture and nature coexist harmoniously, it creates a positive atmosphere and enhances people's wellbeing. The use of materials obtained from nature in their raw or minimally refined form, such as wood, clay, stone, and bamboo, contributes to a natural atmosphere within the built environment. Additionally, a color palette inspired by nature, consisting of earthy tones, green, brown, and rusty shades, further enhances the harmonious relationship between individuals and their surroundings. The paper also discusses the concept of sustainable architecture, where materials used are renewable, and energy consumption is minimal. It acknowledges the efforts of organizations such as the US Green Building Council in promoting sustainable design practices. Theoretical importance: This research contributes to the understanding of the relationship between architecture and nature and highlights the importance of incorporating natural elements into design. It emphasizes the potential of naturefriendly architecture to create greener, resilient, and sustainable cities. Data collection and analysis procedures: The researcher gathered data through comprehensive research, examining existing literature, and studying relevant case studies. The analysis involved studying the successful implementation of nature in architectural design and its impact on individuals and the environment. Question addressed: The research addresses the question of how nature can be incorporated into architectural designs to reconnect humans with the nature. Conclusion: In conclusion, this research highlights the significance of architecture being in harmony with its surrounding, which in turn should be in harmony with nature. By incorporating nature in architectural designs, individuals can rediscover their connection with nature and experience its positive impact on their well-being. The use of natural materials and a color palette inspired by nature further enhances this relationship. Additionally, embracing sustainable design practices contributes to the creation of greener and more resilient cities. This research underscores the importance of integrating nature-friendly architecture to foster a healthier and more sustainable future.

Keywords: nature, architecture, reconnecting, greencities, sustainable, openspaces, landscape

Procedia PDF Downloads 73
5188 The Role of Digital Text in School and Vernacular Literacies: Students Digital Practices at Cybercafés in Mexico

Authors: Guadalupe López-Bonilla

Abstract:

Students of all educational levels participate in literacy practices that may involve print or digital media. Scholars from the New Literacy Studies distinguish practices that fulfill institutional purposes such as those established at schools from literate practices aimed at doing other kinds of activities, such as reading instructions in order to play a video game; the first are known as institutional practices while the latter are considered vernacular literacies. When students perform these kinds of activities they engage with print and digital media according to the demands of the task. In this paper, it is aimed to discuss the results of a research project focusing on literacy practices of high school students at 10 urban cybercafés in Mexico. The main objective was to analyze the literacy practices of students performing both school tasks and vernacular literacies. The methodology included a focused ethnography with online and face to face observations of 10 high school students (5 male and 5 female) and interviews after performing each task. In the results, it is presented how students treat texts as open, dynamic and relational artifacts when engaging in vernacular literacies; while texts are conceived as closed, authoritarian and fixed documents when performing school activities. Samples of each type of activity are shown followed by a discussion of the pedagogical implications for improving school literacy.

Keywords: digital literacy, text, school literacy, vernacular practices

Procedia PDF Downloads 272
5187 Multiple-Material Flow Control in Construction Supply Chain with External Storage Site

Authors: Fatmah Almathkour

Abstract:

Managing and controlling the construction supply chain (CSC) are very important components of effective construction project execution. The goals of managing the CSC are to reduce uncertainty and optimize the performance of a construction project by improving efficiency and reducing project costs. The heart of much SC activity is addressing risk, and the CSC is no different. The delivery and consumption of construction materials is highly variable due to the complexity of construction operations, rapidly changing demand for certain components, lead time variability from suppliers, transportation time variability, and disruptions at the job site. Current notions of managing and controlling CSC, involve focusing on one project at a time with a push-based material ordering system based on the initial construction schedule and, then, holding a tremendous amount of inventory. A two-stage methodology was proposed to coordinate the feed-forward control of advanced order placement with a supplier to a feedback local control in the form of adding the ability to transship materials between projects to improve efficiency and reduce costs. It focused on the single supplier integrated production and transshipment problem with multiple products. The methodology is used as a design tool for the CSC because it includes an external storage site not associated with one of the projects. The idea is to add this feature to a highly constrained environment to explore its effectiveness in buffering the impact of variability and maintaining project schedule at low cost. The methodology uses deterministic optimization models with objectives that minimizing the total cost of the CSC. To illustrate how this methodology can be used in practice and the types of information that can be gleaned, it is tested on a number of cases based on the real example of multiple construction projects in Kuwait.

Keywords: construction supply chain, inventory control supply chain, transshipment

Procedia PDF Downloads 122
5186 Saving Energy through Scalable Architecture

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

In this paper, we focus on the importance of scalable architecture for data centers and buildings in general to help an enterprise achieve environmental sustainability. The scalable architecture helps in many ways, such as adaptability to the business and user requirements, promotes high availability and disaster recovery solutions that are cost effective and low maintenance. The scalable architecture also plays a vital role in three core areas of sustainability: economy, environment, and social, which are also known as the 3 pillars of a sustainability model. If the architecture is scalable, it has many advantages. A few examples are that scalable architecture helps businesses and industries to adapt to changing technology, drive innovation, promote platform independence, and build resilience against natural disasters. Most importantly, having a scalable architecture helps industries bring in cost-effective measures for energy consumption, reduce wastage, increase productivity, and enable a robust environment. It also helps in the reduction of carbon emissions with advanced monitoring and metering capabilities. Scalable architectures help in reducing waste by optimizing the designs to utilize materials efficiently, minimize resources, decrease carbon footprints by using low-impact materials that are environmentally friendly. In this paper we also emphasize the importance of cultural shift towards the reuse and recycling of natural resources for a balanced ecosystem and maintain a circular economy. Also, since all of us are involved in the use of computers, much of the scalable architecture we have studied is related to data centers.

Keywords: scalable architectures, sustainability, application design, disruptive technology, machine learning and natural language processing, AI, social media platform, cloud computing, advanced networking and storage devices, advanced monitoring and metering infrastructure, climate change

Procedia PDF Downloads 106
5185 University Level Spanish Heritage Language Students' Use of Metaphor in Writing: Exploring Auto-Biographical Linguistic Narratives

Authors: Lorraine Ramos

Abstract:

The question of heritage language learners in foreign language classrooms has been widely debated in second language education, especially with Spanish in a U.S. Instructors of Spanish as a foreign language have brought pedagogical focus to Spanish heritage language students in order to retain, develop and maintain their first language. This paper proposes a thorough examination of the use of conceptual metaphors within autobiographical linguistic narratives as a key indicator of the writing development of advanced Spanish-language students. By pairing genre theory from Systemic Functional Linguistics with metaphor theory, this paper will examine the metaphors used by 3rd and 4th year university Spanish students within the narrative genre from a corpus of 16, 091 words. The investigation has found that heritage language students use a variety of bicultural metaphors, transferred from both languages to conceptualize their linguistic development, in addition to using metaphor in specific narrative stages as a literary strategy. Since it has been found that the metaphors used were transcultural, the use of conceptual metaphors in heritage language learners can be further examined to help these students achieve their linguistic and academic goals in the Spanish by transferring from their knowledge in English. In conclusion, by closely examining the function of student discourse through their multicultural metaphoric competence, this study provides important insights on how to enable instructors to best further their students’ writing development in the target language.

Keywords: academic writing development, heritage language learners, language attitudes and ideologies, metaphor

Procedia PDF Downloads 228
5184 Molecular Engineering of Intrinsically Microporous Polybenzimidazole for Energy-efficient Gas Separation

Authors: Mahmoud Abdulhamid, Rifan Hardian, Prashant Bhatt, Shuvo Datta, Adrian Ramirez, Jorge Gascon, Mohamed Eddaoudi, Gyorgy Szekely

Abstract:

Polybenzimidazole (PBI) is a high-performance polymer that exhibits high thermal and chemical stability. However, it suffers from low porosity and low fractional free volume, which hinder its application as separation material. Herein, we demonstrate the molecular engineering of gas separation materials by manipulating a PBI backbone possessing kinked moieties. PBI was selected as it contains NH groups which increase the affinity towards CO₂, increase sorption capacity, and favors CO₂ over other gasses. We have designed and synthesized an intrinsically microporous polybenzimidazole (iPBI) featuring a spirobisindane structure. Introducing a kinked moiety in conjunction with crosslinking enhanced the polymer properties, markedly increasing the gas separation performance. In particular, the BET surface area of PBI increased 30-fold by replacing a flat benzene ring with a kinked structure. iPBI displayed a good CO₂ uptake of 1.4 mmol g⁻¹ at 1 bar and 3.6 mmol g⁻¹ at 10 bar. Gas sorption uptake and breakthrough experiments were conducted using mixtures of CO₂/CH₄ (50%/50%) and CO₂/N₂ (50%/50%), which revealed the high selectivity of CO₂ over both CH₄ and N₂. The obtained CO₂/N₂ selectivity is attractive for power plant flue gas application requiring CO₂ capturing materials. Energy and process simulations of biogas CO₂ removal demonstrated that up to 70% of the capture energy could be saved when iPBI was used rather than the current amine technology (methyl diethanolamine [MDEA]). Similarly, the combination of iPBI and MDEA in a hybrid system exhibited the highest CO₂ capture yield (99%), resulting in nearly 50% energy saving. The concept of enhancing the porosity of PBI using kinked moieties provides new scope for designing highly porous polybenzimidazoles for various separation processes.

Keywords: polybenzimidazole (PBI), intrinsically microporous polybenzimidazole (iPBI), gas separation, pnergy and process simulations

Procedia PDF Downloads 92
5183 An Exploration of First Year Bachelor of Education Degree Students’ Learning Preferences in Academic Literacy in a Private Higher Education Institution: A Case for the Blended Learning Approach

Authors: K. Kannapathi-Naidoo

Abstract:

The higher education landscape has undergone changes in the past decade, with concepts such as blended learning, online learning, and hybrid models appearing more frequently in research and practice. The year 2020 marked a mass migration from face-to-face learning and more traditional forms of education to online learning in higher education institutions across the globe due to the Covid-19 pandemic. As a result, contact learning students and lecturing staff alike were thrust into the world of online learning at an unprecedented pace. Traditional modes of learning had to be amended, and pedagogical strategies required adjustments. This study was located within a compulsory first-year academic literacy module in a higher education institution. The study aimed to explore students’ learning preferences between online, face-face, and blended learning within the context of academic literacy. Data was collected through online qualitative questionnaires administered to 150 first-year students, which were then analysed thematically. The findings of the study revealed that 48.5% of the participants preferred a blended learning approach to academic literacy. The main themes that emerged in support of their preference were best of both worlds, flexibility, productivity, and lecturer accessibility. As a result, this paper advocates for the blended learning approach for academic literacy skills-based modules.

Keywords: academic literacy, blended learning, online learning, student learning preferences

Procedia PDF Downloads 75
5182 Carbon Footprint of Road Project for Sustainable Development: Lessons Learnt from Traffic Management of a Developing Urban Centre

Authors: Sajjad Shukur Ullah, Syed Shujaa Safdar Gardezi

Abstract:

Road infrastructure plays a vital role in the economic activities of any economy. Besides derived benefits from these facilities, the utilization of extensive energy resources, fuels, and materials results in a negative impact on the environment in terms of carbon footprint; carbon footprint is the overall amount of greenhouse gas (GHG) generated from any action. However, this aspect of environmental impact from road structure is not seriously considered during such developments, thus undermining a critical factor of sustainable development, which usually remains unaddressed, especially in developing countries. The current work investigates the carbon footprint impact of a small road project (0.8 km, dual carriageway) initiated for traffic management in an urban centre. Life cycle assessment (LCA) with boundary conditions of cradle to the site has been adopted. The only construction phase of the life cycle has been assessed at this stage. An impact of 10 ktons-CO2 (6260 ton-CO2/km) has been assessed. The rigid pavement dominated the contributions as compared to a flexible component. Among the structural elements, the underpass works shared the major portion. Among the materials, the concrete and steel utilized for various structural elements resulted in more than 90% of the impact. The earth-moving equipment was dominant in operational carbon. The results have highlighted that road infrastructure projects pose serious threats to the environment during their construction and which need to be considered during the approval stages. This work provides a guideline for supporting sustainable development that could only be ensured when such endeavours are properly assessed by industry professionals and decide various alternative environmental conscious solutions for the future.

Keywords: construction waste management, kiloton, life cycle assessment, rigid pavement

Procedia PDF Downloads 100
5181 Patriotic Education through Private/Everyday Narratives: What We Can Learn from Young People

Authors: Yijie Wang, Hanwei Cheng

Abstract:

Under the Chinese educational context, the materials for patriotic education typically take the form of grand narratives. However, in post-modern times the younger members of society tend to welcome elements of more micro and personal nature. It is therefore important to explore how patriotism can be integrated into an ‘everyday’, private narrative that holds more attraction for the young. Based on semi-structured interviews of eight Chinese graduate students, this research examines how Chinese young people draw materials to establish national identity and develop love for the country from everyday-life details, as well as how they perceive, interpret and articulate their patriotism through private narratives. And implications for patriotic education are proposed accordingly. Several conclusions are drawn from the pre-interviews. Firstly, sensory experiences that remind people of their country—such as the taste of Chinese delicacies and the sound of a traditional instrument—are a major source of patriotic feelings. Secondly, the love for the country often stems from and is continued to be mediated by the emotional attachment with other people, typically significant others, and patriotism is articulated (or acknowledged) by the young as a kind of ‘sentiment’ rather than ‘faith’ or ‘belief’. Thirdly, for young people who are currently studying abroad, their birth country represents a kind of familiar, well-accustomed life or lifestyle, and any nostalgic realization of it leads to increased national belonging and sense of identity. Fourthly, the awareness of the country’s transformations—positive ones and neutral ones alike—triggers young people affections towards the country, and even negative transformations may result in promoted sense of self-involvement and therefore consolidate national identity. Implications for patriotic education can be drawn accordingly, and although the research is conducted under the Chinese context, it will hopefully contribute to the understanding of relevant fields.

Keywords: national identity, patriotic education, private narrative, young people

Procedia PDF Downloads 194
5180 Developing Students’ Academic Writing Skills through Scientific Reading: Using Questions and Answer Activities

Authors: Makhim Artikova, Shavkat Duschanov

Abstract:

So far, there have been a plethora of attempts to improve learners’ academic writing skills. However, this issue remains to be a real concern among the majority of students, especially those who are standing on their academic life threshold. The purpose of this research is improving students’ academic writing skills through 'Questions and Answer Reading' activities. Using well-prepared and well-chosen reading materials (from textbooks, scientific journals, or magazines) and applying questions and answer activities in the classroom facilitate learners to become great critical readers. Furthermore, it boosts their writing skills, which are the most crucial part of students’ personal and academic developments. In this activity, the class is divided into small groups of four. Then, the instructor will give students whether one section of the text or full text asking them to read and to find unfamiliar words within the group. After discovering the meaning of unknown words, each group has to share their findings with the class. In the next stage of the activity, students should be asked to create questions in a group based on the given reading material. Follow by each group should ask the other groups their questions which are an excellent opportunity to challenge leads to improve critical thinking skills. In the last part, the students are asked to write the text or article summary, which is the activity core that pilots to the writing skills perfection. This engaging activity highlights the effectiveness of incorporating reading materials into the classroom when it comes to improving students’ composition writings. Structural writing after every reading activity resulted in improving students’ coherence and cohesion in writing well-organized essays. Having experimented with high school 9th and 11th-grade students, implementing reading activities into the classroom is proved to be a productive tool to enhance one’s academic writing skills. In the future, this method planning to be implemented among university students.

Keywords: academic writing, coherence and cohesion, questions and answer activities, scientific reading

Procedia PDF Downloads 110
5179 Energy Options and Environmental Impacts of Carbon Dioxide Utilization Pathways

Authors: Evar C. Umeozor, Experience I. Nduagu, Ian D. Gates

Abstract:

The energy requirements of carbon dioxide utilization (CDU) technologies/processes are diverse, so also are their environmental footprints. This paper explores the energy and environmental impacts of systems for CO₂ conversion to fuels, chemicals, and materials. Energy needs of the technologies and processes deployable in CO₂ conversion systems are met by one or combinations of hydrogen (chemical), electricity, heat, and light. Likewise, the environmental footprint of any CO₂ utilization pathway depends on the systems involved. So far, evaluation of CDU systems has been constrained to particular energy source/type or a subset of the overall system needed to make CDU possible. This introduces limitations to the general understanding of the energy and environmental implications of CDU, which has led to various pitfalls in past studies. A CDU system has an energy source, CO₂ supply, and conversion units. We apply a holistic approach to consider the impacts of all components in the process, including various sources of energy, CO₂ feedstock, and conversion technologies. The electricity sources include nuclear power, renewables (wind and solar PV), gas turbine, and coal. Heat is supplied from either electricity or natural gas, and hydrogen is produced from either steam methane reforming or electrolysis. The CO₂ capture unit uses either direct air capture or post-combustion capture via amine scrubbing, where applicable, integrated configurations of the CDU system are explored. We demonstrate how the overall energy and environmental impacts of each utilization pathway are obtained by aggregating the values for all components involved. Proper accounting of the energy and emission intensities of CDU must incorporate total balances for the utilization process and differences in timescales between alternative conversion pathways. Our results highlight opportunities for the use of clean energy sources, direct air capture, and a number of promising CO₂ conversion pathways for producing methanol, ethanol, synfuel, urea, and polymer materials.

Keywords: carbon dioxide utilization, processes, energy options, environmental impacts

Procedia PDF Downloads 147
5178 Studies on Distribution of the Doped Pr3+ Ions in the LaF3 Based Transparent Oxyfluoride Glass-Ceramic

Authors: Biswajit Pal, Amit Mallik, Anil K. Barik

Abstract:

Current years have witnessed a phenomenal growth in the research on the rare earth-doped transparent host materials, the essential components in optoelectronics that meet up the increasing demand for fabrication of high quality optical devices especially in telecommunication system. The combination of low phonon energy (because of fluoride environment) and high chemical durability with superior mechanical stability (due to oxide environment) makes the oxyfluoride glass–ceramics the promising and useful materials in optoelectronics. The present work reports on the undoped and doped (1 mol% Pr2O3) glass ceramics of composition 16.52 Al2O3•1.5AlF3• 12.65LaF3•4.33Na2O•64.85 SiO2 (mol%), prepared by melting technique initially that follows annealation at 450 ºC for 1 h. The glass samples so obtained were heat treated at constant 600 ºC with a variation in heat treatment schedule (10- 80 h). TEM techniques were employed to structurally characterize the glass samples. Pr2O3 affects the phase separation in the glass and delays the onset of crystallization in the glass ceramic. The modified crystallization mechanism is established from the analysis of advanced STEM/EDXS results. The phase separated droplets after annealing turn into 10-20 nm of LaF3 nano crystals those upon scrutiny are found to be dotted with the doped Pr3+ ions within the crystals themselves. The EDXS results also suggest that the inner LaF3 crystal core is swallowed by an Al enriched layer that follows a Si enriched surrounding shell as the outer core. This greatly increases the viscosity in the periphery of the crystals that restricts further crystal growth to account for the formation of nano sized crystals.

Keywords: advanced STEM/EDXS, crystallization mechanism, nano crystals, pr3+ ion doped glass and glass ceramic, structural characterization

Procedia PDF Downloads 185
5177 Infrared Detection Device for Accurate Scanning 3D Objects

Authors: Evgeny A. Rybakov, Dmitry P. Starikov

Abstract:

This article contains information about creating special unit for scanning 3D objects different nature, different materials, for example plastic, plaster, cardboard, wood, metal and etc. The main part of the unit is infrared transducer, which is sends the wave to the object and receive back wave for calculating distance. After that, microcontroller send to PC data, and computer program create model for printing from the plastic, gypsum, brass, etc.

Keywords: clutch, infrared, microcontroller, plastic, shaft, stage

Procedia PDF Downloads 443