Search results for: learning physical
10490 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion
Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro
Abstract:
Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.Keywords: basketball, deep learning, feature extraction, single-camera, tracking
Procedia PDF Downloads 13910489 Lifelong Learning in Applied Fields (LLAF) Tempus Funded Project: Assessing Constructivist Learning Features in Higher Education Settings
Authors: Dorit Alt, Nirit Raichel
Abstract:
Educational practice is continually subjected to renewal needs, due mainly to the growing proportion of information communication technology, globalization of education, and the pursuit of quality. These types of renewal needs require developing updated instructional and assessment practices that put a premium on adaptability to the emerging requirements of present society. However, university instruction is criticized for not coping with these new challenges while continuing to exemplify the traditional instruction. In order to overcome this critical inadequacy between current educational goals and instructional methods, the LLAF consortium (including 16 members from 8 countries) is collaborating to create a curricular reform for lifelong learning (LLL) in teachers' education, health care and other applied fields. This project aims to achieve its objectives by developing, and piloting models for training students in LLL and promoting meaningful learning activities that could integrate knowledge with the personal transferable skills. LLAF has created a practical guide for teachers containing updated pedagogical strategies and assessment tools based on the constructivist approach for learning. This presentation will be limited to teachers' education only and to the contribution of a pre-pilot research aimed at providing a scale designed to measure constructivist activities in higher education learning environments. A mix-method approach was implemented in two phases to construct the scale: The first phase included a qualitative content analysis involving both deductive and inductive category applications of students' observations. The results foregrounded eight categories: knowledge construction, authenticity, multiple perspectives, prior knowledge, in-depth learning, teacher- student interaction, social interaction and cooperative dialogue. The students' descriptions of their classes were formulated as 36 items. The second phase employed structural equation modeling (SEM). The scale was submitted to 597 undergraduate students. The goodness of fit of the data to the structural model yielded sufficient fit results. This research elaborates the body of literature by adding a category of in-depth learning which emerged from the content analysis. Moreover, the theoretical category of social activity has been extended to include two distinctive factors: cooperative dialogue and social interaction. Implications of these findings for the LLAF project are discussed.Keywords: constructivist learning, higher education, mix-methodology, lifelong learning
Procedia PDF Downloads 33410488 DLtrace: Toward Understanding and Testing Deep Learning Information Flow in Deep Learning-Based Android Apps
Authors: Jie Zhang, Qianyu Guo, Tieyi Zhang, Zhiyong Feng, Xiaohong Li
Abstract:
With the widespread popularity of mobile devices and the development of artificial intelligence (AI), deep learning (DL) has been extensively applied in Android apps. Compared with traditional Android apps (traditional apps), deep learning based Android apps (DL-based apps) need to use more third-party application programming interfaces (APIs) to complete complex DL inference tasks. However, existing methods (e.g., FlowDroid) for detecting sensitive information leakage in Android apps cannot be directly used to detect DL-based apps as they are difficult to detect third-party APIs. To solve this problem, we design DLtrace; a new static information flow analysis tool that can effectively recognize third-party APIs. With our proposed trace and detection algorithms, DLtrace can also efficiently detect privacy leaks caused by sensitive APIs in DL-based apps. Moreover, using DLtrace, we summarize the non-sequential characteristics of DL inference tasks in DL-based apps and the specific functionalities provided by DL models for such apps. We propose two formal definitions to deal with the common polymorphism and anonymous inner-class problems in the Android static analyzer. We conducted an empirical assessment with DLtrace on 208 popular DL-based apps in the wild and found that 26.0% of the apps suffered from sensitive information leakage. Furthermore, DLtrace has a more robust performance than FlowDroid in detecting and identifying third-party APIs. The experimental results demonstrate that DLtrace expands FlowDroid in understanding DL-based apps and detecting security issues therein.Keywords: mobile computing, deep learning apps, sensitive information, static analysis
Procedia PDF Downloads 18010487 Towards Human-Interpretable, Automated Learning of Feedback Control for the Mixing Layer
Authors: Hao Li, Guy Y. Cornejo Maceda, Yiqing Li, Jianguo Tan, Marek Morzynski, Bernd R. Noack
Abstract:
We propose an automated analysis of the flow control behaviour from an ensemble of control laws and associated time-resolved flow snapshots. The input may be the rich database of machine learning control (MLC) optimizing a feedback law for a cost function in the plant. The proposed methodology provides (1) insights into the control landscape, which maps control laws to performance, including extrema and ridge-lines, (2) a catalogue of representative flow states and their contribution to cost function for investigated control laws and (3) visualization of the dynamics. Key enablers are classification and feature extraction methods of machine learning. The analysis is successfully applied to the stabilization of a mixing layer with sensor-based feedback driving an upstream actuator. The fluctuation energy is reduced by 26%. The control replaces unforced Kelvin-Helmholtz vortices with subsequent vortex pairing by higher-frequency Kelvin-Helmholtz structures of lower energy. These efforts target a human interpretable, fully automated analysis of MLC identifying qualitatively different actuation regimes, distilling corresponding coherent structures, and developing a digital twin of the plant.Keywords: machine learning control, mixing layer, feedback control, model-free control
Procedia PDF Downloads 22610486 Effective Glosses in Reading to Help L2 Vocabulary Learning for Low-Intermediate Technology University Students in Taiwan
Authors: Pi-Lan Yang
Abstract:
It is controversial which type of gloss condition (i.e., gloss language or gloss position) is more effective in second or foreign language (L2) vocabulary learning. The present study compared the performance on learning ten English words in the conditions of L2 English reading with no glosses and with glosses of Chinese equivalents/translations and L2 English definitions at the side of a page and at an attached sheet for low-intermediate Chinese-speaking learners of English, who were technology university students in Taiwan. It is found first that the performances on the immediate posttest and the delayed posttest were overall better in the gloss condition than those in the no-gloss condition. Next, it is found that the glosses of Chinese translations were more effective and sustainable than those of L2 English definitions. Finally, the effects of L2 English glosses at the side of a page were observed to be less sustainable than those at an attached sheet. In addition, an opinion questionnaire used also showed a preference for the glosses of Chinese translations in L2 English reading. These results would be discussed in terms of automated lexical access, sentence processing mechanisms, and the trade-off nature of storage and processing functions in working memory system, proposed by the capacity theory of language comprehension.Keywords: glosses of Chinese equivalents/translations, glosses of L2 English definitions, L2 vocabulary learning, L2 English reading
Procedia PDF Downloads 24810485 Analysis and Identification of Different Factors Affecting Students’ Performance Using a Correlation-Based Network Approach
Authors: Jeff Chak-Fu Wong, Tony Chun Yin Yip
Abstract:
The transition from secondary school to university seems exciting for many first-year students but can be more challenging than expected. Enabling instructors to know students’ learning habits and styles enhances their understanding of the students’ learning backgrounds, allows teachers to provide better support for their students, and has therefore high potential to improve teaching quality and learning, especially in any mathematics-related courses. The aim of this research is to collect students’ data using online surveys, to analyze students’ factors using learning analytics and educational data mining and to discover the characteristics of the students at risk of falling behind in their studies based on students’ previous academic backgrounds and collected data. In this paper, we use correlation-based distance methods and mutual information for measuring student factor relationships. We then develop a factor network using the Minimum Spanning Tree method and consider further study for analyzing the topological properties of these networks using social network analysis tools. Under the framework of mutual information, two graph-based feature filtering methods, i.e., unsupervised and supervised infinite feature selection algorithms, are used to analyze the results for students’ data to rank and select the appropriate subsets of features and yield effective results in identifying the factors affecting students at risk of failing. This discovered knowledge may help students as well as instructors enhance educational quality by finding out possible under-performers at the beginning of the first semester and applying more special attention to them in order to help in their learning process and improve their learning outcomes.Keywords: students' academic performance, correlation-based distance method, social network analysis, feature selection, graph-based feature filtering method
Procedia PDF Downloads 13210484 Interactive Learning Practices for Class Room Teaching
Authors: Shamshuddin K., Nagaraj Vannal, Diwakar Kulkarni
Abstract:
This paper presents details of teaching and learning pedagogical techniques attempted for the undergraduate engineering program to improve the concentration span of students in a classroom. The details of activities such as valid statement, quiz competition, classroom paper, group work and product marketing to make the students remain active for the entire class duration and to improve presentation skills are presented. These activities shown tremendous improvement in student’s performance in academics, also in asking questions, concept understanding and interaction with the course instructor. With these pedagogical activities we are able to achieve Program outcome elements and ABET Program outcomes such as d, i, g and h which are difficult to achieve through the conventional teaching methods.Keywords: activities, pedagogy, interactive learning, valid statement, quiz competition, classroom papers, group work, product marketing
Procedia PDF Downloads 64710483 Generic Competences, the Great Forgotten: Teamwork in the Undergraduate Degree in Translation and Interpretation
Authors: María-Dolores Olvera-Lobo, Bryan John Robinson, Juncal Gutierrez-Artacho
Abstract:
Graduates are equipped with a wide range of generic competencies which complement solid curricular competencies and facilitate their access to the labour market in diverse fields and careers. However, some generic competencies such as instrumental, personal and systemic competencies related to teamwork and interpersonal communication skills, decision-making and organization skills are seldom taught explicitly and even less often assessed. In this context, translator training has embraced a broad range of competencies specified in the undergraduate program currently taught at universities and opens up the learning experience to cover areas often ignored due to the difficulties inherent in both teaching and assessment. In practice, translator training combines two well-established approaches to teaching/learning: project-based learning and genuinely cooperative – or merely collaborative – learning. Our professional approach to translator training is a model focused on and adapted to the teleworking context of professional translation and presented through the medium of blended e-learning. Teamwork-related competencies are extremely relevant, and they require explicit and implicit teaching so that graduates can be confident about their capacity to make their way in professional contexts. In order to highlight the importance of teamwork and intra-team relationships beyond the classroom, we aim to raise awareness of teamwork processes so as to empower translation students in managing their interaction and ensure that they gain valuable pre-professional experience. With these objectives, at the University of Granada (Spain) we have developed a range of classroom activities and assessment tools. The results of their application are summarized in this study.Keywords: blended learning, collaborative teamwork, cross-curricular competencies, higher education, intra-team relationships, students’ perceptions, translator training
Procedia PDF Downloads 17010482 Introducing the Digital Backpack: Looking at Ivory Coast
Authors: Eunice H. Li
Abstract:
This e-Poster presents how the ‘digital backpack’ was introduced to primary school children in Ivory Coast. The idea of a ‘digital backpack’ was initiated by Mr. Thierry N’Doufou in 2012, who later designed and presented to the rest of the world in September 2014. The motivation behind the backpack was to relieve children of the heavy-weight they carry in their school backpacks. Another motivation was to promote Ivory Coast as a country where all children are brought into the digital era. Thierry N’Doufou regards education as the means by which his nation and the entire African Continent can be developed as a prosperous territory. The ‘digital backpack’ contains the entire curriculum for each class and favours a constructivist approach to learning. The children’s notes and exercises are also included in the pack. Additionally, teachers and parents are able to monitor remotely children’s activities while they are working with the ‘backpack’. Teachers are also able to issue homework, assess student’s progress and manage the student’s coursework. This means that teachers should always think the most appropriate pedagogies that can be used to help children to learn. Furthermore, teachers, parents and fellow students are able to have conversations and discussions by using web portals. It is also possible to access more apps if children would like to have additional learning activities. From the presentation in the e-Poster, it seems reasonable to conclude that the ‘digital backpack’ has potential to reach other-level of education. In this way, all will be able to benefit from this new invention.Keywords: pedagogy, curriculum, constructivism, social constructivism, distance learning environment, ubiquitous learning environment
Procedia PDF Downloads 66010481 The Impact of Social Interaction, Wellbeing and Mental Health on Student Achievement During COVID-19 Lockdown in Saudi Arabia
Authors: Shatha Ahmad Alharthi
Abstract:
Prior research suggests that reduced social interaction can negatively affect well-being and impair mental health (e.g., depression and anxiety), resulting in lower academic performance. The COVID-19 pandemic has significantly limited social interaction among Saudi Arabian school children since the government closed schools and implemented lockdown restrictions to reduce the spread of the disease. These restrictions have resulted in prolonged remote learning for middle school students with unknown consequences for perceived academic performance, mental health, and well-being. This research project explores how middle school Saudi students’ current remote learning practices affect their mental health (e.g., depression and anxiety) and well-being during the lockdown. Furthermore, the study will examine the association between social interaction, mental health, and well-being pertaining to students’ perceptions of their academic achievement. Research findings could lead to a better understanding of the role of lockdown on depression, anxiety, well-being and perceived academic performance. Research findings may also inform policy-makers or practitioners (e.g., teachers and school leaders) about the importance of facilitating increased social interactions in remote learning situations and help to identify important factors to consider when seeking to re-integrate students into a face-to-face classroom setting. Potential implications for future educational research include exploring remote learning interventions targeted at bolstering students’ mental health and academic achievement during periods of remote learning.Keywords: depression, anxiety, academic performance, social interaction
Procedia PDF Downloads 12110480 Positive Impact of Cartoon Movies on Adults
Authors: Yacoub Aljaffery
Abstract:
As much as we think negatively about social media such as TV and smart phones, there are many positive benefits our society can get from it. Cartoons, for example, are made specifically for children. However, in this paper, we will prove how cartoon videos can have a positive impact on adults, especially college students. Since cartoons are meant to be a good learning tool for children, as well as adults, we will show our audience how they can use cartoon in teaching critical thinking and other language skills.Keywords: social media, TV, teaching, learning, cartoon movies
Procedia PDF Downloads 32410479 Robot Movement Using the Trust Region Policy Optimization
Authors: Romisaa Ali
Abstract:
The Policy Gradient approach is one of the deep reinforcement learning families that combines deep neural networks (DNN) with reinforcement learning RL to discover the optimum of the control problem through experience gained from the interaction between the robot and its surroundings. In contrast to earlier policy gradient algorithms, which were unable to handle these two types of error because of over-or under-estimation introduced by the deep neural network model, this article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.Keywords: deep neural networks, deep reinforcement learning, proximal policy optimization, state-of-the-art, trust region policy optimization
Procedia PDF Downloads 17010478 Cybersecurity Engineering BS Degree Curricula Design Framework and Assessment
Authors: Atma Sahu
Abstract:
After 9/11, there will only be cyberwars. The cyberwars increase in intensity the country's cybersecurity workforce's hiring and retention issues. Currently, many organizations have unfilled cybersecurity positions, and to a lesser degree, their cybersecurity teams are understaffed. Therefore, there is a critical need to develop a new program to help meet the market demand for cybersecurity engineers (CYSE) and personnel. Coppin State University in the United States was responsible for developing a cybersecurity engineering BS degree program. The CYSE curriculum design methodology consisted of three parts. First, the ACM Cross-Cutting Concepts standard's pervasive framework helped curriculum designers and students explore connections among the core courses' knowledge areas and reinforce the security mindset conveyed in them. Second, the core course context was created to assist students in resolving security issues in authentic cyber situations involving cyber security systems in various aspects of industrial work while adhering to the NIST standards framework. The last part of the CYSE curriculum design aspect was the institutional student learning outcomes (SLOs) integrated and aligned in content courses, representing more detailed outcomes and emphasizing what learners can do over merely what they know. The CYSE program's core courses express competencies and learning outcomes using action verbs from Bloom's Revised Taxonomy. This aspect of the CYSE BS degree program's design is based on these three pillars: the ACM, NIST, and SLO standards, which all CYSE curriculum designers should know. This unique CYSE curriculum design methodology will address how students and the CYSE program will be assessed and evaluated. It is also critical that educators, program managers, and students understand the importance of staying current in this fast-paced CYSE field.Keywords: cyber security, cybersecurity engineering, systems engineering, NIST standards, physical systems
Procedia PDF Downloads 9710477 Medical Imaging Fusion: A Teaching-Learning Simulation Environment
Authors: Cristina Maria Ribeiro Martins Pereira Caridade, Ana Rita Ferreira Morais
Abstract:
The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with healthcare facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool developed in MATLAB using a graphical user interface for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing you to view original images and fusion images, compare processed and original images, adjust parameters, and save images. The tool proposed in an innovative teaching and learning environment consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques and necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.Keywords: image fusion, image processing, teaching-learning simulation tool, biomedical engineering education
Procedia PDF Downloads 13310476 Sustainable Transition of Universal Design for Learning-Based Teachers’ Latent Profiles from Contact to Distance Education
Authors: Alvyra Galkienė, Ona Monkevičienė
Abstract:
The full participation of all pupils in the overall educational process is defined by the concept of inclusive education, which is gradually evolving in education policy and practice. It includes the full participation of all pupils in a shared learning experience and educational practices that address barriers to learning. Inclusive education applying the principles of Universal Design for Learning (UDL), which includes promoting students' involvement in learning processes, guaranteeing a deep understanding of the analysed phenomena, initiating self-directed learning, and using e-tools to create a barrier-free environment, is a prerequisite for the personal success of each pupil. However, the sustainability of quality education is affected by the transformation of education systems. This was particularly evident during the period of the forced transition from contact to distance education in the COVID-19 pandemic. Research Problem: The transformation of the educational environment from real to virtual one and the loss of traditional forms of educational support highlighted the need for new research, revealing the individual profiles of teachers using UDL-based learning and the pathways of sustainable transfer of successful practices to non-conventional learning environments. Research Methods: In order to identify individual latent teacher profiles that encompass the essential components of UDL-based inclusive teaching and direct leadership of students' learning, the quantitative analysis software Mplius was used for latent profile analysis (LPA). In order to reveal proven, i.e., sustainable, pathways for the transit of the components of UDL-based inclusive learning to distance learning, latent profile transit analysis (LPTA) via Mplius was used. An online self-reported questionnaire was used for data collection. It consisted of blocks of questions designed to reveal the experiences of subject teachers in contact and distance learning settings. 1432 Lithuanian, Latvian, and Estonian subject teachers took part in the survey. Research Results: The LPA analysis revealed eight latent teacher profiles with different characteristics of UDL-based inclusive education or traditional teaching in contact teaching conditions. Only 4.1% of the subject teachers had a profile characterised by a sustained UDL approach to teaching: promoting pupils' self-directed learning; empowering pupils' engagement, understanding, independent action, and expression; promoting pupils' e-inclusion; and reducing the teacher's direct supervision of the students. Other teacher profiles were characterised by limited UDL-based inclusive education either due to the lack of one or more of its components or to the predominance of direct teacher guidance. The LPTA analysis allowed us to highlight the following transit paths of teacher profiles in the extreme conditions of the transition from contact to distance education: teachers staying in the same profile of UDL-based inclusive education (sustainable transit) or jumping to other profiles (unsustainable transit in case of barriers), and teachers from other profiles moving to this profile (ongoing transit taking advantage of the changed new possibilities in the teaching process).Keywords: distance education, latent teacher profiles, sustainable transit, UDL
Procedia PDF Downloads 10110475 A Literature Review Evaluating the Use of Online Problem-Based Learning and Case-Based Learning Within Dental Education
Authors: Thomas Turner
Abstract:
Due to the Covid-19 pandemic alternative ways of delivering dental education were required. As a result, many institutions moved teaching online. The impact of this is poorly understood. Is online problem-based learning (PBL) and case-based learning (CBL) effective and is it suitable in the post-pandemic era? PBL and CBL are both types of interactive, group-based learning which are growing in popularity within many dental schools. PBL was first introduced in the 1960’s and can be defined as learning which occurs from collaborative work to resolve a problem. Whereas CBL encourages learning from clinical cases, encourages application of knowledge and helps prepare learners for clinical practice. To evaluate the use of online PBL and CBL. A literature search was conducted using the CINAHL, Embase, PubMed and Web of Science databases. Literature was also identified from reference lists. Studies were only included from dental education. Seven suitable studies were identified. One of the studies found a high learner and facilitator satisfaction rate with online CBL. Interestingly one study found learners preferred CBL over PBL within an online format. A study also found, that within the context of distance learning, learners preferred a hybrid curriculum including PBL over a traditional approach. A further study pointed to the limitations of PBL within an online format, such as reduced interaction, potentially hindering the development of communication skills and the increased time and technology support required. An audience response system was also developed for use within CBL and had a high satisfaction rate. Interestingly one study found achievement of learning outcomes was correlated with the number of student and staff inputs within an online format. Whereas another study found the quantity of learner interactions were important to group performance, however the quantity of facilitator interactions was not. This review identified generally favourable evidence for the benefits of online PBL and CBL. However, there is limited high quality evidence evaluating these teaching methods within dental education and there appears to be limited evidence comparing online and faceto-face versions of these sessions. The importance of the quantity of learner interactions is evident, however the importance of the quantity of facilitator interactions appears to be questionable. An element to this may be down to the quality of interactions, rather than just quantity. Limitations of online learning regarding technological issues and time required for a session are also highlighted, however as learners and facilitators get familiar with online formats, these may become less of an issue. It is also important learners are encouraged to interact and communicate during these sessions, to allow for the development of communication skills. Interestingly CBL appeared to be preferred to PBL in an online format. This may reflect the simpler nature of CBL, however further research is required to explore this finding. Online CBL and PBL appear promising, however further research is required before online formats of these sessions are widely adopted in the post-pandemic era.Keywords: case-based learning, online, problem-based learning, remote, virtual
Procedia PDF Downloads 7910474 To What Extent Does Physical Activity and Standard of Competition Affect Quantitative Ultrasound (QUS) Measurements of Bone in Accordance with Muscular Strength and Anthropometrics in British Young Males?
Authors: Joseph Shanks, Matthew Taylor, Foong Kiew Ooi, Chee Keong Chen
Abstract:
Introduction: Evidences of relationship between bone, muscle and standard of competition among young British population is limited in literature. The current literature recognises the independent and synergistic effects of fat free and fat mass as the stimulus for osteogenesis. This study assessed the extent to which physical activity (PA) and standard of competition (CS) influences quantitative ultrasound (QUS) measurements of bone on a cross-sectional basis accounting for muscular strength and anthropometrics in British young males. Methods: Pre-screening grouped 66 males aged 18-25 years into controls (n=33) and district level athletes (DLAs) (n=33) as well as low (n=21), moderate (n=23) and high (n=22) physical activity categories (PACs). All participants underwent QUS measurements of bone (4 sites, i.e. dominant distal radius (DR), dominant mid-shaft tibia (DT), non-dominant distal radius (NR) and non-dominant mid-shaft tibia (NT)), isokinetic strength tests (dominant and non-dominant knee flexion and extension) and anthropometric measurements. Results: There were no significant differences between any of the groups with respect to QUS measurements of bone at all sites with regards to PACs or CS. Significant higher isokinetic strength values were observed in DLAs than controls (p < 0.05), and higher than low PACs (p < 0.05) at 60o.s-1 of concentric and eccentric measurements. No differences in subcutaneous fat thickness were found between all the groups (CS or PACs). Percentages of body fat were significantly higher (p < .05) in low than high PACs and CS groups. There were significant positive relationships between non dominant radial speed of sound and fat free mass at both DR (r=0.383, p=0.001) and NR (r=0.319, p=0.009) sites in all participants. Conclusion: The present study findings indicated that muscular strength and body fat are closely related to physical activity level and standard of competition. However, bone health status reflected by quantitative ultrasound (QUS) measurements of bone is not related to physical activity level and standard of competition in British young males.Keywords: bone, muscular strength, physical activity, standard of competition
Procedia PDF Downloads 51710473 Changes in Physical Soil Properties and Crop Status on Soil Enriched With Treated Manure
Authors: Vaclav Novak, Katerina Krizova, Petr Sarec
Abstract:
Modern agriculture has to face many issues from which soil degradation and lack of organic matter in the soil are only a few of them. Apart from Climate Change, human utilization of landscape is the cause of a majority part of these problems. Cattle production in Czechia has been reduced by more than half in recent 30 years. However, cattle manure is considered as staple organic fertilizer, and its role in attempts for sustainable agriculture is irreplaceable. This study aims to describe the impact of so-called activators of biological manure transformation (Z´fix, Olmix Group) mainly on physical soil properties but also on crop status. The experiment has been established in 2017; nevertheless, initial measurements of implement draft have been performed before the treated manure application. In 2018, the physical soil properties and crop status (sugar beet) has been determined and compared with the untreated manure and control variant. Significant results have been observed already in the first year, where the implement draft decreased by 9.2 % within the treated manure variant in comparison with the control variant.Keywords: field experiment, implement draft, vegetation index, sugar beet
Procedia PDF Downloads 15710472 The Association between Health-Related Quality of Life and Physical Activity in Different Domains with Other Factors in Croatian Male Police Officers
Authors: Goran Sporiš, Dinko Vuleta, Stefan Lovro
Abstract:
The purpose of the present study was to determine the associations between health-related quality of life (HRQOL) and physical activity (PA) in different domains. In this cross-sectional study, participants were 169 Croatian police officers (mean age 35.14±8.95 yrs, mean height 180.93±7.53 cm, mean weight 88.39±14.05 kg, mean body-mass index 26.90±3.39 kg/m2). The dependent variables were two general domains extracted from the HRQOL questionnaire: (1) physical component scale (PCS) and (2) mental component scale (MCS). The independent variables were job-related, transport, domestic and leisure-time PA, along with other factors: age, body-mass index, smoking status, psychological distress, socioeconomic status and time spent in sedentary behaviour. The associations between dependent and independent variables were analyzed by using multiple regression analysis. Significance was set up at p < 0.05. PCS was positively associated with leisure-time PA (β 0.28, p < 0.001) and socioeconomic status (SES) (β 0.16, p=0.005), but inversely associated with job-related PA (β -0.15, p=0.012), domestic-time PA (β -0.14, p=0.014), age (β -0.12, p=0.050), psychological distress (β -0.43, p<0.001) and sedentary behaviour (β -0.15, p=0.009). MCS was positively associated with leisure-time PA (β 0.19, p=0.013) and SES (β 0.20, p=0.002), while inversely associated with age (β -0.23, p=0.001), psychological distress (β -0.27, p<0.001) and sedentary behaviour (β -0.22, p=0.001). Our results added new information about the associations between domain-specific PA and both physical and mental component scale in police officers. Future studies should deal with the same associations in other stressful occupations.Keywords: health, fitness, police force, relations
Procedia PDF Downloads 30010471 A Development of Online Lessons to Strengthen the Learning Process of Master's Degree Students Majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University
Authors: Chaiwat Waree
Abstract:
The purposes of the research were to develop online lessons to strengthen the learning process of Master's degree students majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University; to achieve the efficiency criteria of 80/80; and to study the satisfaction of students who use online lessons to strengthen the learning process of Master’s degree students majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University. The sample consisted of 40 University students studying in semester 1, academic year 2012. The sample was determined by Purposive Sampling. Selected students were from the class which the researcher was the homeroom tutor. The tutor was responsible for the teaching of learning process. Tools used in the study were online lessons, 60-point performance test, and evaluation test of satisfaction of students on online lessons. Data analysis yielded the following results; 83.66/88.29 efficiency of online lessons measured against the criteria; the comparison of performance before and after taking online lessons using t-test yielded 29.67. The statistical significance was at 0.05; the average satisfaction level of forty students on online lessons was 4.46 with standard deviation of 0.68.Keywords: online, lessons, curriculum, instruction
Procedia PDF Downloads 22410470 Quantum Statistical Machine Learning and Quantum Time Series
Authors: Omar Alzeley, Sergey Utev
Abstract:
Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series
Procedia PDF Downloads 46910469 Assessment of Physical Characteristics of Maize (Zea Mays) Stored in Metallic Silos
Authors: B. A. Alabadan, E. S. Ajayi, C. A. Okolo
Abstract:
The storage losses recorded globally in maize (Zea mays) especially in the developing countries is worrisome. Certain degenerating changes in the physical characteristics (PC) of the grain occur due to the interaction between the stored maize and the immediate environment especially during long storage period. There has been tremendous reduction in the storage losses since the evolution of metallic silos. This study was carried out to assess the physical quality attributes of maize stored in 2500 MT and 1 MT metallic silos for a period of eight months. The PC evaluated includes percentage moisture content MC, insect damage ID, foreign matters FM, hectolitre weight HC, mould M and germinability VG. The evaluation of data obtained was done using statistical package for social sciences (SPSS 20) for windows evaluation version to determine significant levels and trend of deterioration (P < 0.05) for all the values obtained using Multiple Analysis of Variance (MANOVA) and Duncan’s multivariate test. The result shows that the PC are significant with duration of storage at (P < 0.05) except MI and FM that are significant at (P > 0.05) irrespective of the size of the metallic silos. The average mean deviation for physical properties from the control in respect to duration of storage are as follows: MC 10.0 ±0.00%, HC 72.9 ± 0.44% ID 0.29 ± 0.00%, BG 0.55±0.05%, MI 0.00 ± 0.65%, FM 0.80± 0.20%, VG 100 ± 0.03%. The variables that were found to be significant (p < 0.05) with the position of grain in the bulk are VG, MI and ID while others are insignificant at (p > 0.05). Variables were all significant (p < 0.05) with the duration of storage with (0.00) significant levels, irrespective of the size of the metallic silos, but were insignificant with the position of the grain in the bulk (p > 0.05). From the results, it can be concluded that there is a slight decrease of the following variables, with time, HC, MC, and V, probably due to weather fluctuations and grain respiration, while FM, BG, ID and M were found to increase slightly probably due to insect activity in the bigger silos and loss of moisture. The size of metallic silos has no remarkable influence on the PC of stored maize (Zea mays). Germinability was found to be better with the 1 MT silos probably due to its hermetic nature. Smaller size metallic silos are preferred for storage of seeds but bigger silos largely depend on the position of the grains in the bulk.Keywords: maize, storage, silo, physical characteristics
Procedia PDF Downloads 31010468 Improving the Teaching and Learning of Basic Mathematics: An Imperative for Sustainable Development
Authors: Dahiru Bawa Muhammad
Abstract:
Mathematics is accorded a prime position in basic education curriculum because it is envisaged to be an important tool in preparing children for life after school as well as equipping them with skills needed for secondary and higher education. As a result of this, the subject is made compulsory from primary through secondary school and candidates are expected to offer it and pass before fulfilling the requirement for higher education. Against this backdrop, this paper overviewed the basic education programme, context of teaching and learning mathematics at basic education level in Katsina State of Nigeria, relevance of the subject to different fields of human endeavours, challenges threatening the utility of the subject as a tool for the achievement of the goals of basic education programme and concluded by recommending how teaching and learning of mathematics can be improved for even development of citizens within nation states and enhanced/mutual sustainable development of nations in the global village.Keywords: basic education, junior secondary school education, mathematical centre
Procedia PDF Downloads 46310467 The Impact of Physical Exercise on Gestational Diabetes and Maternal Weight Management: A Meta-Analysis
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Physiological changes during pregnancy, such as alterations in the circulatory, respiratory, and musculoskeletal systems, can negatively impact daily physical activity. This reduced activity is often associated with an increased risk of adverse maternal health outcomes, particularly gestational diabetes mellitus (GDM) and excessive weight gain. This meta-analysis aims to evaluate the effectiveness of structured physical exercise interventions during pregnancy in reducing the risk of GDM and managing maternal weight gain. A comprehensive search was conducted across six major databases: PubMed, Cochrane Library, EMBASE, Web of Science, ScienceDirect, and ClinicalTrials.gov, covering the period from database inception until 2023. Randomized controlled trials (RCTs) that explored the effects of physical exercise programs on pregnant women with low physical activity levels were included. The search was performed using EndNote and results were managed using RevMan (Review Manager) for meta-analysis. RCTs involving healthy pregnant women with low levels of physical activity or sedentary lifestyles were selected. These RCTs must have incorporated structured exercise programs during pregnancy and reported on outcomes related to GDM and maternal weight gain. From an initial pool of 5,112 articles, 65 RCTs (involving 11,400 pregnant women) met the inclusion criteria. Data extraction was performed, followed by a quality assessment of the selected studies using the Cochrane Risk of Bias tool. The meta-analysis was conducted using RevMan software, where pooled relative risks (RR) and weighted mean differences (WMD) were calculated using a random-effects model to address heterogeneity across studies. Sensitivity analyses, subgroup analyses (based on factors such as exercise intensity, duration, and pregnancy stage), and publication bias assessments were also conducted. Structured physical exercise during pregnancy led to a significant reduction in the risk of developing GDM (RR = 0.68; P < 0.001), particularly when the exercise program was performed throughout the pregnancy (RR = 0.62; P = 0.035). In addition, maternal weight gain was significantly reduced (WMD = −1.18 kg; 95% CI −1.54 to −0.85; P < 0.001). There were no significant adverse effects reported for either the mother or the neonate, confirming that exercise interventions are safe for both. This meta-analysis highlights the positive impact of regular moderate physical activity during pregnancy in reducing the risk of GDM and managing maternal weight gain. These findings suggest that physical exercise should be encouraged as a routine part of prenatal care. However, more research is required to refine exercise recommendations and determine the most effective interventions based on individual risk factors and pregnancy stages.Keywords: gestational diabetes, maternal weight management, meta-analysis, randomized controlled trials
Procedia PDF Downloads 1810466 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 61510465 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 16110464 A Physical Treatment Method as a Prevention Method for Barium Sulfate Scaling
Authors: M. A. Salman, G. Al-Nuwaibit, M. Safar, M. Rughaibi, A. Al-Mesri
Abstract:
Barium sulfate (BaSO₄) is a hard scaling usually precipitates on the surface of equipment in many industrial systems, as oil and gas production, desalination and cooling and boiler operation. It is a scale that extremely resistance to both chemical and mechanical cleaning. So, BaSO₄ is a problematic and expensive scaling. Although barium ions are present in most natural waters at a very low concentration as low as 0.008 mg/l, it could result of scaling problems in the presence of high concentration of sulfate ion or when mixing with incompatible waters as in oil produced water. The scaling potential of BaSO₄ using seawater at the intake of seven desalination plants in Kuwait, brine water and Kuwait oil produced water was calculated and compared then the best location in regards of barium sulfate scaling was reported. Finally, a physical treatment method (magnetic treatment method) and chemical treatment method were used to control BaSO₄ scaling using saturated solutions at different operating temperatures, flow velocities, feed pHs and different magnetic strengths. The results of the two methods were discussed, and the more economical one with the reasonable performance was recommended, which is the physical treatment method.Keywords: magnetic field strength, flow velocity, retention time, barium sulfate
Procedia PDF Downloads 26810463 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 7510462 Relevance of Technology on Education
Authors: Felicia K. Oluwalola
Abstract:
This paper examines the relevance of technology on education. It identified the concept of technology on education, bringing real-world learning to the classroom situation, examples of where technology can be used. This study established the fact that technology facilitates students learning compared with traditional method of teaching. It was recommended that the teachers should use technology to supplement, not replace, other instructional modes. It should be used in conjunction with hands-on labs and activities that also address the concepts targeted by the technology. Also, technology should be students centered and not teachers centered.Keywords: computer, simulation, classroom teaching, education
Procedia PDF Downloads 45110461 Teaching the Tacit Nuances of Japanese Onomatopoeia through an E-Learning System: An Evaluation Approach of Narrative Interpretation
Authors: Xiao-Yan Li, Takashi Hashimoto, Guanhong Li, Shuo Yang
Abstract:
In Japanese, onomatopoeia is an important element in the lively expression of feelings and experiences. It is very difficult for students of Japanese to acquire onomatopoeia, especially, its nuances. In this paper, based on traditional L2 learning theories, we propose a new method to improve the efficiency of teaching the nuances – both explicit and tacit - to non-native speakers of Japanese. The method for teaching the tacit nuances of onomatopoeia consists of three elements. First is to teach the formal rules representing the explicit nuances of onomatopoeic words. Second is to have the students create new onomatopoeic words by utilizing those formal rules. The last element is to provide feedback by evaluating the onomatopoeias created. Our previous study used five-grade relative estimation. However students were confused about the five-grade system, because they could not understand the evaluation criteria only based on a figure. In this new system, then, we built an evaluation database through native speakers’ narrative interpretation. We asked Japanese native speakers to describe their awareness of the nuances of onomatopoeia in writing. Then they voted on site and defined priorities for showing to learners on the system. To verify the effectiveness of the proposed method and the learning system, we conducted a preliminary experiment involving two groups of subjects. While Group A got feedback about the appropriateness of their onomatopoeic constructions from the native speakers’ narrative interpretation, Group B got feedback just in the form of the five-grade relative estimation. A questionnaire survey administered to all of the learners clarified our learning system availability and also identified areas that should be improved. Repetitive learning of word-formation rules, creating new onomatopoeias and gaining new awareness from narrative interpretation is the total process used to teach the explicit and tacit nuances of onomatopoeia.Keywords: onomatopoeia, tacit nuance, narrative interpretation, e-learning system, second language teaching
Procedia PDF Downloads 398