Search results for: infra-red sensors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2393

Search results for: infra-red sensors

113 Optimum Drilling States in Down-the-Hole Percussive Drilling: An Experimental Investigation

Authors: Joao Victor Borges Dos Santos, Thomas Richard, Yevhen Kovalyshen

Abstract:

Down-the-hole (DTH) percussive drilling is an excavation method that is widely used in the mining industry due to its high efficiency in fragmenting hard rock formations. A DTH hammer system consists of a fluid driven (air or water) piston and a drill bit; the reciprocating movement of the piston transmits its kinetic energy to the drill bit by means of stress waves that propagate through the drill bit towards the rock formation. In the literature of percussive drilling, the existence of an optimum drilling state (Sweet Spot) is reported in some laboratory and field experimental studies. An optimum rate of penetration is achieved for a specific range of axial thrust (or weight-on-bit) beyond which the rate of penetration decreases. Several authors advance different explanations as possible root causes to the occurrence of the Sweet Spot, but a universal explanation or consensus does not exist yet. The experimental investigation in this work was initiated with drilling experiments conducted at a mining site. A full-scale drilling rig (equipped with a DTH hammer system) was instrumented with high precision sensors sampled at a very high sampling rate (kHz). Data was collected while two boreholes were being excavated, an in depth analysis of the recorded data confirmed that an optimum performance can be achieved for specific ranges of input thrust (weight-on-bit). The high sampling rate allowed to identify the bit penetration at each single impact (of the piston on the drill bit) as well as the impact frequency. These measurements provide a direct method to identify when the hammer does not fire, and drilling occurs without percussion, and the bit propagate the borehole by shearing the rock. The second stage of the experimental investigation was conducted in a laboratory environment with a custom-built equipment dubbed Woody. Woody allows the drilling of shallow holes few centimetres deep by successive discrete impacts from a piston. After each individual impact, the bit angular position is incremented by a fixed amount, the piston is moved back to its initial position at the top of the barrel, and the air pressure and thrust are set back to their pre-set values. The goal is to explore whether the observed optimum drilling state stems from the interaction between the drill bit and the rock (during impact) or governed by the overall system dynamics (between impacts). The experiments were conducted on samples of Calca Red, with a drill bit of 74 millimetres (outside diameter) and with weight-on-bit ranging from 0.3 kN to 3.7 kN. Results show that under the same piston impact energy and constant angular displacement of 15 degrees between impact, the average drill bit rate of penetration is independent of the weight-on-bit, which suggests that the sweet spot is not caused by intrinsic properties of the bit-rock interface.

Keywords: optimum drilling state, experimental investigation, field experiments, laboratory experiments, down-the-hole percussive drilling

Procedia PDF Downloads 89
112 Exploring the Neural Mechanisms of Communication and Cooperation in Children and Adults

Authors: Sara Mosteller, Larissa K. Samuelson, Sobanawartiny Wijeakumar, John P. Spencer

Abstract:

This study was designed to examine how humans are able to teach and learn semantic information as well as cooperate in order to jointly achieve sophisticated goals. Specifically, we are measuring individual differences in how these abilities develop from foundational building blocks in early childhood. The current study adopts a paradigm for novel noun learning developed by Samuelson, Smith, Perry, and Spencer (2011) to a hyperscanning paradigm [Cui, Bryant and Reiss, 2012]. This project measures coordinated brain activity between a parent and child using simultaneous functional near infrared spectroscopy (fNIRS) in pairs of 2.5, 3.5 and 4.5-year-old children and their parents. We are also separately testing pairs of adult friends. Children and parents, or adult friends, are seated across from one another at a table. The parent (in the developmental study) then teaches their child the names of novel toys. An experimenter then tests the child by presenting the objects in pairs and asking the child to retrieve one object by name. Children are asked to choose from both pairs of familiar objects and pairs of novel objects. In order to explore individual differences in cooperation with the same participants, each dyad plays a cooperative game of Jenga, in which their joint score is based on how many blocks they can remove from the tower as a team. A preliminary analysis of the noun-learning task showed that, when presented with 6 word-object mappings, children learned an average of 3 new words (50%) and that the number of objects learned by each child ranged from 2-4. Adults initially learned all of the new words but were variable in their later retention of the mappings, which ranged from 50-100%. We are currently examining differences in cooperative behavior during the Jenga playing game, including time spent discussing each move before it is made. Ongoing analyses are examining the social dynamics that might underlie the differences between words that were successfully learned and unlearned words for each dyad, as well as the developmental differences observed in the study. Additionally, the Jenga game is being used to better understand individual and developmental differences in social coordination during a cooperative task. At a behavioral level, the analysis maps periods of joint visual attention between participants during the word learning and the Jenga game, using head-mounted eye trackers to assess each participant’s first-person viewpoint during the session. We are also analyzing the coherence in brain activity between participants during novel word-learning and Jenga playing. The first hypothesis is that visual joint attention during the session will be positively correlated with both the number of words learned and with the number of blocks moved during Jenga before the tower falls. The next hypothesis is that successful communication of new words and success in the game will each be positively correlated with synchronized brain activity between the parent and child/the adult friends in cortical regions underlying social cognition, semantic processing, and visual processing. This study probes both the neural and behavioral mechanisms of learning and cooperation in a naturalistic, interactive and developmental context.

Keywords: communication, cooperation, development, interaction, neuroscience

Procedia PDF Downloads 252
111 Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing

Authors: Magdalena Wilk-Kozubek, Magdalena Rowińska, Krzysztof Rola, Joanna Cybińska

Abstract:

Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus.

Keywords: color developer, leuco dye, thin film, thermochromism

Procedia PDF Downloads 99
110 Design of an Ultra High Frequency Rectifier for Wireless Power Systems by Using Finite-Difference Time-Domain

Authors: Felipe M. de Freitas, Ícaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende

Abstract:

There is a dispersed energy in Radio Frequencies (RF) that can be reused to power electronics circuits such as: sensors, actuators, identification devices, among other systems, without wire connections or a battery supply requirement. In this context, there are different types of energy harvesting systems, including rectennas, coil systems, graphene and new materials. A secondary step of an energy harvesting system is the rectification of the collected signal which may be carried out, for example, by the combination of one or more Schottky diodes connected in series or shunt. In the case of a rectenna-based system, for instance, the diode used must be able to receive low power signals at ultra-high frequencies. Therefore, it is required low values of series resistance, junction capacitance and potential barrier voltage. Due to this low-power condition, voltage multiplier configurations are used such as voltage doublers or modified bridge converters. Lowpass filter (LPF) at the input, DC output filter, and a resistive load are also commonly used in the rectifier design. The electronic circuits projects are commonly analyzed through simulation in SPICE (Simulation Program with Integrated Circuit Emphasis) environment. Despite the remarkable potential of SPICE-based simulators for complex circuit modeling and analysis of quasi-static electromagnetic fields interaction, i.e., at low frequency, these simulators are limited and they cannot model properly applications of microwave hybrid circuits in which there are both, lumped elements as well as distributed elements. This work proposes, therefore, the electromagnetic modelling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-high frequencies, with application in rectifiers coupled to antennas, as in energy harvesting systems, that is, in rectennas. For this purpose, the numerical method FDTD (Finite-Difference Time-Domain) is applied and SPICE computational tools are used for comparison. In the present work, initially the Ampere-Maxwell equation is applied to the equations of current density and electric field within the FDTD method and its circuital relation with the voltage drop in the modeled component for the case of lumped parameter using the FDTD (Lumped-Element Finite-Difference Time-Domain) proposed in for the passive components and the one proposed in for the diode. Next, a rectifier is built with the essential requirements for operating rectenna energy harvesting systems and the FDTD results are compared with experimental measurements.

Keywords: energy harvesting system, LE-FDTD, rectenna, rectifier, wireless power systems

Procedia PDF Downloads 131
109 Irradion: Portable Small Animal Imaging and Irradiation Unit

Authors: Josef Uher, Jana Boháčová, Richard Kadeřábek

Abstract:

In this paper, we present a multi-robot imaging and irradiation research platform referred to as Irradion, with full capabilities of portable arbitrary path computed tomography (CT). Irradion is an imaging and irradiation unit entirely based on robotic arms for research on cancer treatment with ion beams on small animals (mice or rats). The platform comprises two subsystems that combine several imaging modalities, such as 2D X-ray imaging, CT, and particle tracking, with precise positioning of a small animal for imaging and irradiation. Computed Tomography: The CT subsystem of the Irradion platform is equipped with two 6-joint robotic arms that position a photon counting detector and an X-ray tube independently and freely around the scanned specimen and allow image acquisition utilizing computed tomography. Irradiation measures nearly all conventional 2D and 3D trajectories of X-ray imaging with precisely calibrated and repeatable geometrical accuracy leading to a spatial resolution of up to 50 µm. In addition, the photon counting detectors allow X-ray photon energy discrimination, which can suppress scattered radiation, thus improving image contrast. It can also measure absorption spectra and recognize different materials (tissue) types. X-ray video recording and real-time imaging options can be applied for studies of dynamic processes, including in vivo specimens. Moreover, Irradion opens the door to exploring new 2D and 3D X-ray imaging approaches. We demonstrate in this publication various novel scan trajectories and their benefits. Proton Imaging and Particle Tracking: The Irradion platform allows combining several imaging modules with any required number of robots. The proton tracking module comprises another two robots, each holding particle tracking detectors with position, energy, and time-sensitive sensors Timepix3. Timepix3 detectors can track particles entering and exiting the specimen and allow accurate guiding of photon/ion beams for irradiation. In addition, quantifying the energy losses before and after the specimen brings essential information for precise irradiation planning and verification. Work on the small animal research platform Irradion involved advanced software and hardware development that will offer researchers a novel way to investigate new approaches in (i) radiotherapy, (ii) spectral CT, (iii) arbitrary path CT, (iv) particle tracking. The robotic platform for imaging and radiation research developed for the project is an entirely new product on the market. Preclinical research systems with precision robotic irradiation with photon/ion beams combined with multimodality high-resolution imaging do not exist currently. The researched technology can potentially cause a significant leap forward compared to the current, first-generation primary devices.

Keywords: arbitrary path CT, robotic CT, modular, multi-robot, small animal imaging

Procedia PDF Downloads 89
108 Augmenting Navigational Aids: The Development of an Assistive Maritime Navigation Application

Authors: A. Mihoc, K. Cater

Abstract:

On the bridge of a ship the officers are looking for visual aids to guide navigation in order to reconcile the outside world with the position communicated by the digital navigation system. Aids to navigation include: Lighthouses, lightships, sector lights, beacons, buoys, and others. They are designed to help navigators calculate their position, establish their course or avoid dangers. In poor visibility and dense traffic areas, it can be very difficult to identify these critical aids to guide navigation. The paper presents the usage of Augmented Reality (AR) as a means to present digital information about these aids to support navigation. To date, nautical navigation related mobile AR applications have been limited to the leisure industry. If proved viable, this prototype can facilitate the creation of other similar applications that could help commercial officers with navigation. While adopting a user centered design approach, the team has developed the prototype based on insights from initial research carried on board of several ships. The prototype, built on Nexus 9 tablet and Wikitude, features a head-up display of the navigational aids (lights) in the area, presented in AR and a bird’s eye view mode presented on a simplified map. The application employs the aids to navigation data managed by Hydrographic Offices and the tablet’s sensors: GPS, gyroscope, accelerometer, compass and camera. Sea trials on board of a Navy and a commercial ship revealed the end-users’ interest in using the application and further possibility of other data to be presented in AR. The application calculates the GPS position of the ship, the bearing and distance to the navigational aids; all within a high level of accuracy. However, during testing several issues were highlighted which need to be resolved as the prototype is developed further. The prototype stretched the capabilities of Wikitude, loading over 500 objects during tests in a major port. This overloaded the display and required over 45 seconds to load the data. Therefore, extra filters for the navigational aids are being considered in order to declutter the screen. At night, the camera is not powerful enough to distinguish all the lights in the area. Also, magnetic interference with the bridge of the ship generated a continuous compass error of the AR display that varied between 5 and 12 degrees. The deviation of the compass was consistent over the whole testing durations so the team is now looking at the possibility of allowing users to manually calibrate the compass. It is expected that for the usage of AR in professional maritime contexts, further development of existing AR tools and hardware is needed. Designers will also need to implement a user-centered design approach in order to create better interfaces and display technologies for enhanced solutions to aid navigation.

Keywords: compass error, GPS, maritime navigation, mobile augmented reality

Procedia PDF Downloads 330
107 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network

Procedia PDF Downloads 129
106 Controlling Deforestation in the Densely Populated Region of Central Java Province, Banjarnegara District, Indonesia

Authors: Guntur Bagus Pamungkas

Abstract:

As part of a tropical country that is normally rich in forest land areas, Indonesia has always been in the world's spotlight due to its significantly increasing process of deforestation. In one hand, it is related to the mainstay for maintaining the sustainability of the earth's ecosystem functions. On the other hand, they also cover the various potential sources of the global economy. Therefore, it can always be the target of different scale of investors to excessively exploit them. No wonder the emergence of disasters in various characteristics always comes up. In fact, the deforestation phenomenon does not only occur in various forest land areas in the main islands of Indonesia but also includes Java Island, the most densely populated areas in the world. This island only remains the forest land of about 9.8% of the total forest land in Indonesia due to its long history of it, especially in Central Java Province, the most densely populated area in Java. Again, not surprisingly, this province belongs to the area with the highest frequency of disasters because of it, landslides in particular. One of the areas that often experience it is Banjarnegara District, especially in mountainous areas that lies in the range from 1000 to 3000 meters above sea level, where the remains of land forest area can easyly still be found. Even among them still leaves less untouchable tropical rain forest whose area also covers part of a neighboring district, Pekalongan, which is considered to be the rest of the world's little paradise on Earth. The district's landscape is indeed beautiful, especially in the Dieng area, a major tourist destination in Central Java Province after Borobudur Temple. However, annually hazardous always threatens this district due to this landslide disaster. Even, there was a tragic event that was buried with its inhabitants a few decades ago. This research aims to find part of the concept of effective forest management through monitoring the presence of remaining forest areas in this area. The research implemented monitoring of deforestation rates using the Stochastic Cellular Automata-Markov Chain (SCA-MC) method, which serves to provide a spatial simulation of land use and cover changes (LULCC). This geospatial process uses the Landsat-8 OLI image product with Thermal Infra-Red Sensors (TIRS) Band 10 in 2020 and Landsat 5 TM with TIRS Band 6 in 2010. Then it is also integrated with physical and social geography issues using the QGIS 2.18.11 application with the Mollusce Plugin, which serves to clarify and calculate the area of land use and cover, especially in forest areas—using the LULCC method, which calculates the rate of forest area reduction in 2010-2020 in Banjarnegara District. Since the dependence of this area on the use of forest land is quite high, concepts and preventive actions are needed, such as rehabilitation and reforestation of critical lands through providing proper monitoring and targeted forest management to restore its ecosystem in the future.

Keywords: deforestation, populous area, LULCC method, proper control and effective forest management

Procedia PDF Downloads 135
105 Applications of Digital Tools, Satellite Images and Geographic Information Systems in Data Collection of Greenhouses in Guatemala

Authors: Maria A. Castillo H., Andres R. Leandro, Jose F. Bienvenido B.

Abstract:

During the last 20 years, the globalization of economies, population growth, and the increase in the consumption of fresh agricultural products have generated greater demand for ornamentals, flowers, fresh fruits, and vegetables, mainly from tropical areas. This market situation has demanded greater competitiveness and control over production, with more efficient protected agriculture technologies, which provide greater productivity and allow us to guarantee the quality and quantity that is required in a constant and sustainable way. Guatemala, located in the north of Central America, is one of the largest exporters of agricultural products in the region and exports fresh vegetables, flowers, fruits, ornamental plants, and foliage, most of which were grown in greenhouses. Although there are no official agricultural statistics on greenhouse production, several thesis works, and congress reports have presented consistent estimates. A wide range of protection structures and roofing materials are used, from the most basic and simple ones for rain control to highly technical and automated structures connected with remote sensors for monitoring and control of crops. With this breadth of technological models, it is necessary to analyze georeferenced data related to the cultivated area, to the different existing models, and to the covering materials, integrated with altitude, climate, and soil data. The georeferenced registration of the production units, the data collection with digital tools, the use of satellite images, and geographic information systems (GIS) provide reliable tools to elaborate more complete, agile, and dynamic information maps. This study details a methodology proposed for gathering georeferenced data of high protection structures (greenhouses) in Guatemala, structured in four phases: diagnosis of available information, the definition of the geographic frame, selection of satellite images, and integration with an information system geographic (GIS). It especially takes account of the actual lack of complete data in order to obtain a reliable decision-making system; this gap is solved through the proposed methodology. A summary of the results is presented in each phase, and finally, an evaluation with some improvements and tentative recommendations for further research is added. The main contribution of this study is to propose a methodology that allows to reduce the gap of georeferenced data in protected agriculture in this specific area where data is not generally available and to provide data of better quality, traceability, accuracy, and certainty for the strategic agricultural decision öaking, applicable to other crops, production models and similar/neighboring geographic areas.

Keywords: greenhouses, protected agriculture, GIS, Guatemala, satellite image, digital tools, precision agriculture

Procedia PDF Downloads 194
104 Potential of Aerodynamic Feature on Monitoring Multilayer Rough Surfaces

Authors: Ibtissem Hosni, Lilia Bennaceur Farah, Saber Mohamed Naceur

Abstract:

In order to assess the water availability in the soil, it is crucial to have information about soil distributed moisture content; this parameter helps to understand the effect of humidity on the exchange between soil, plant cover and atmosphere in addition to fully understanding the surface processes and the hydrological cycle. On the other hand, aerodynamic roughness length is a surface parameter that scales the vertical profile of the horizontal component of the wind speed and characterizes the surface ability to absorb the momentum of the airflow. In numerous applications of the surface hydrology and meteorology, aerodynamic roughness length is an important parameter for estimating momentum, heat and mass exchange between the soil surface and atmosphere. It is important on this side, to consider the atmosphere factors impact in general, and the natural erosion in particular, in the process of soil evolution and its characterization and prediction of its physical parameters. The study of the induced movements by the wind over soil vegetated surface, either spaced plants or plant cover, is motivated by significant research efforts in agronomy and biology. The known major problem in this side concerns crop damage by wind, which presents a booming field of research. Obviously, most models of soil surface require information about the aerodynamic roughness length and its temporal and spatial variability. We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform and the Mallat algorithm to describe natural surface roughness. We have introduced multi-layer aspect of the humidity of the soil surface, to take into account a volume component in the problem of backscattering radar signal. As humidity increases, the dielectric constant of the soil-water mixture increases and this change is detected by microwave sensors. Nevertheless, many existing models in the field of radar imagery, cannot be applied directly on areas covered with vegetation due to the vegetation backscattering. Thus, the radar response corresponds to the combined signature of the vegetation layer and the layer of soil surface. Therefore, the key issue of the numerical estimation of soil moisture is to separate the two contributions and calculate both scattering behaviors of the two layers by defining the scattering of the vegetation and the soil blow. This paper presents a synergistic methodology, and it is for estimating roughness and soil moisture from C-band radar measurements. The methodology adequately represents a microwave/optical model which has been used to calculate the scattering behavior of the aerodynamic vegetation-covered area by defining the scattering of the vegetation and the soil below.

Keywords: aerodynamic, bi-dimensional, vegetation, synergistic

Procedia PDF Downloads 269
103 Differential Survival Rates of Pseudomonas aeruginosa Strains on the Wings of Pantala flavescens

Authors: Banu Pradheepa Kamarajan, Muthusamy Ananthasubramanian

Abstract:

Biofilm forming Pseudomonads occupy the top third position in causing hospital acquired infections. P. aeruginosa is notoriously known for its tendency to develop drug resistance. Major classes of drug such as β-lactams, aminoglycosides, quinolones, and polymyxins are found ineffective against multi-drug resistance Pseudomonas. To combat the infections, rather than administration of a single antibiotic, use of combinations (tobramycin and essential oils from plants and/or silver nanoparticles, chitosan, nitric oxide, cis-2-decenoic acid) in single formulation are suggested to control P. aeruginosa biofilms. Conventional techniques to prevent hospital-acquired implant infections such as coatings with antibiotics, controlled release of antibiotics from the implant material, contact-killing surfaces, coating the implants with functional DNase I and, coating with glycoside hydrolase are being followed. Coatings with bioactive components besides having limited shelf-life, require cold-chain and, are likely to fail when bacteria develop resistance. Recently identified nano-scale physical architectures on the insect wings are expected to have potential bactericidal property. Nanopillars are bactericidal to Staphylococcus aureus, Bacillus subtilis, K. pnuemoniae and few species of Pseudomonas. Our study aims to investigate the survival rate of biofilm forming Pseudomonas aeruginosa strain over non-biofilm forming strain on the nanopillar architecture of dragonfly (Pantala flavescens) wing. Dragonflies were collected near house-hold areas and, insect identification was carried out by the Department of Entomology, Tamilnadu Agricultural University, Coimbatore, India. Two strains of P. aeruginosa such as PAO1 (potent biofilm former) and MTCC 1688 (non-weak biofilm former) were tested against the glass coverslip (control) and wings of dragonfly (test) for 48 h. The wings/glass coverslips were incubated with bacterial suspension in 48-well plate. The plates were incubated at 37 °C under static condition. Bacterial attachment on the nanopillar architecture of the wing surface was visualized using FESEM. The survival rate of P. aeruginosa was tested using colony counting technique and flow cytometry at 0.5 h, 1 h, 2 h, 7 h, 24 h, and 48 h post-incubation. Cell death was analyzed using propidium iodide staining and DNA quantification. The results indicated that the survival rate of non-biofilm forming P. aeruginosa is 0.2 %, whilst that of biofilm former is 45 % on the dragonfly wings at the end of 48 h. The reduction in the survival rate of biofilm and non-biofilm forming P. aeruginosa was 20% and 40% respectively on the wings compared to the glass coverslip. In addition, Fourier Transformed Infrared Radiation was used to study the modification in the surface chemical composition of the wing during bacterial attachment and, post-sonication. This result indicated that the chemical moieties are not involved in the bactericidal property of nanopillars by the conserved characteristic peaks of chitin pre and post-sonication. The nanopillar architecture of the dragonfly wing efficiently deters the survival of non-biofilm forming P. aeruginosa, but not the biofilm forming strain. The study highlights the ability of biofilm formers to survive on wing architecture. Understanding this survival strategy will help in designing the architecture that combats the colonization of biofilm forming pathogens.

Keywords: biofilm, nanopillars, Pseudomonas aeruginosa, survival rate

Procedia PDF Downloads 174
102 Constitutive Androstane Receptor (CAR) Inhibitor CINPA1 as a Tool to Understand CAR Structure and Function

Authors: Milu T. Cherian, Sergio C. Chai, Morgan A. Casal, Taosheng Chen

Abstract:

This study aims to use CINPA1, a recently discovered small-molecule inhibitor of the xenobiotic receptor CAR (constitutive androstane receptor) for understanding the binding modes of CAR and to guide CAR-mediated gene expression profiling studies in human primary hepatocytes. CAR and PXR are xenobiotic sensors that respond to drugs and endobiotics by modulating the expression of metabolic genes that enhance detoxification and elimination. Elevated levels of drug metabolizing enzymes and efflux transporters resulting from CAR activation promote the elimination of chemotherapeutic agents leading to reduced therapeutic effectiveness. Multidrug resistance in tumors after chemotherapy could be associated with errant CAR activity, as shown in the case of neuroblastoma. CAR inhibitors used in combination with existing chemotherapeutics could be utilized to attenuate multidrug resistance and resensitize chemo-resistant cancer cells. CAR and PXR have many overlapping modulating ligands as well as many overlapping target genes which confounded attempts to understand and regulate receptor-specific activity. Through a directed screening approach we previously identified a new CAR inhibitor, CINPA1, which is novel in its ability to inhibit CAR function without activating PXR. The cellular mechanisms by which CINPA1 inhibits CAR function were also extensively examined along with its pharmacokinetic properties. CINPA1 binding was shown to change CAR-coregulator interactions as well as modify CAR recruitment at DNA response elements of regulated genes. CINPA1 was shown to be broken down in the liver to form two, mostly inactive, metabolites. The structure-activity differences of CINPA1 and its metabolites were used to guide computational modeling using the CAR-LBD structure. To rationalize how ligand binding may lead to different CAR pharmacology, an analysis of the docked poses of human CAR bound to CITCO (a CAR activator) vs. CINPA1 or the metabolites was conducted. From our modeling, strong hydrogen bonding of CINPA1 with N165 and H203 in the CAR-LBD was predicted. These residues were validated to be important for CINPA1 binding using single amino-acid CAR mutants in a CAR-mediated functional reporter assay. Also predicted were residues making key hydrophobic interactions with CINPA1 but not the inactive metabolites. Some of these hydrophobic amino acids were also identified and additionally, the differential coregulator interactions of these mutants were determined in mammalian two-hybrid systems. CINPA1 represents an excellent starting point for future optimization into highly relevant probe molecules to study the function of the CAR receptor in normal- and pathophysiology, and possible development of therapeutics (for e.g. use for resensitizing chemoresistant neuroblastoma cells).

Keywords: antagonist, chemoresistance, constitutive androstane receptor (CAR), multi-drug resistance, structure activity relationship (SAR), xenobiotic resistance

Procedia PDF Downloads 287
101 Analysis of Stress and Strain in Head Based Control of Cooperative Robots through Tetraplegics

Authors: Jochen Nelles, Susanne Kohns, Julia Spies, Friederike Schmitz-Buhl, Roland Thietje, Christopher Brandl, Alexander Mertens, Christopher M. Schlick

Abstract:

Industrial robots as part of highly automated manufacturing are recently developed to cooperative (light-weight) robots. This offers the opportunity of using them as assistance robots and to improve the participation in professional life of disabled or handicapped people such as tetraplegics. Robots under development are located within a cooperation area together with the working person at the same workplace. This cooperation area is an area where the robot and the working person can perform tasks at the same time. Thus, working people and robots are operating in the immediate proximity. Considering the physical restrictions and the limited mobility of tetraplegics, a hands-free robot control could be an appropriate approach for a cooperative assistance robot. To meet these requirements, the research project MeRoSy (human-robot synergy) develops methods for cooperative assistance robots based on the measurement of head movements of the working person. One research objective is to improve the participation in professional life of people with disabilities and, in particular, mobility impaired persons (e.g. wheelchair users or tetraplegics), whose participation in a self-determined working life is denied. This raises the research question, how a human-robot cooperation workplace can be designed for hands-free robot control. Here, the example of a library scenario is demonstrated. In this paper, an empirical study that focuses on the impact of head movement related stress is presented. 12 test subjects with tetraplegia participated in the study. Tetraplegia also known as quadriplegia is the worst type of spinal cord injury. In the experiment, three various basic head movements were examined. Data of the head posture were collected by a motion capture system; muscle activity was measured via surface electromyography and the subjective mental stress was assessed via a mental effort questionnaire. The muscle activity was measured for the sternocleidomastoid (SCM), the upper trapezius (UT) or trapezius pars descendens, and the splenius capitis (SPL) muscle. For this purpose, six non-invasive surface electromyography sensors were mounted on the head and neck area. An analysis of variance shows differentiated muscular strains depending on the type of head movement. Systematically investigating the influence of different basic head movements on the resulting strain is an important issue to relate the research results to other scenarios. At the end of this paper, a conclusion will be drawn and an outlook of future work will be presented.

Keywords: assistance robot, human-robot interaction, motion capture, stress-strain-concept, surface electromyography, tetraplegia

Procedia PDF Downloads 315
100 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations

Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso

Abstract:

Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.

Keywords: pipeline, leakage, detection, AI

Procedia PDF Downloads 191
99 Graphene-Graphene Oxide Dopping Effect on the Mechanical Properties of Polyamide Composites

Authors: Daniel Sava, Dragos Gudovan, Iulia Alexandra Gudovan, Ioana Ardelean, Maria Sonmez, Denisa Ficai, Laurentia Alexandrescu, Ecaterina Andronescu

Abstract:

Graphene and graphene oxide have been intensively studied due to the very good properties, which are intrinsic to the material or come from the easy doping of those with other functional groups. Graphene and graphene oxide have known a broad band of useful applications, in electronic devices, drug delivery systems, medical devices, sensors and opto-electronics, coating materials, sorbents of different agents for environmental applications, etc. The board range of applications does not come only from the use of graphene or graphene oxide alone, or by its prior functionalization with different moieties, but also it is a building block and an important component in many composite devices, its addition coming with new functionalities on the final composite or strengthening the ones that are already existent on the parent product. An attempt to improve the mechanical properties of polyamide elastomers by compounding with graphene oxide in the parent polymer composition was attempted. The addition of the graphene oxide contributes to the properties of the final product, improving the hardness and aging resistance. Graphene oxide has a lower hardness and textile strength, and if the amount of graphene oxide in the final product is not correctly estimated, it can lead to mechanical properties which are comparable to the starting material or even worse, the graphene oxide agglomerates becoming a tearing point in the final material if the amount added is too high (in a value greater than 3% towards the parent material measured in mass percentages). Two different types of tests were done on the obtained materials, the hardness standard test and the tensile strength standard test, and they were made on the obtained materials before and after the aging process. For the aging process, an accelerated aging was used in order to simulate the effect of natural aging over a long period of time. The accelerated aging was made in extreme heat. For all materials, FT-IR spectra were recorded using FT-IR spectroscopy. From the FT-IR spectra only the bands corresponding to the polyamide were intense, while the characteristic bands for graphene oxide were very small in comparison due to the very small amounts introduced in the final composite along with the low absorptivity of the graphene backbone and limited number of functional groups. In conclusion, some compositions showed very promising results, both in tensile strength test and in hardness tests. The best ratio of graphene to elastomer was between 0.6 and 0.8%, this addition extending the life of the product. Acknowledgements: The present work was possible due to the EU-funding grant POSCCE-A2O2.2.1-2013-1, Project No. 638/12.03.2014, code SMIS-CSNR 48652. The financial contribution received from the national project ‘New nanostructured polymeric composites for centre pivot liners, centre plate and other components for the railway industry (RONERANANOSTRUCT)’, No: 18 PTE (PN-III-P2-2.1-PTE-2016-0146) is also acknowledged.

Keywords: graphene, graphene oxide, mechanical properties, dopping effect

Procedia PDF Downloads 314
98 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 217
97 Biosynthesis of a Nanoparticle-Antibody Phthalocyanine Photosensitizer for Use in Targeted Photodynamic Therapy of Cervical Cancer

Authors: Elvin P. Chizenga, Heidi Abrahamse

Abstract:

Cancer cell resistance to therapy is the main cause of treatment failures and the poor prognosis of cancer convalescence. The progression of cervical cancer to other parts of the genitourinary system and the reported recurrence rates are overwhelming. Current treatments, including surgery, chemo and radiation have been inefficient in eradicating the tumor cells. These treatments are also associated with poor prognosis and reduced quality of life, including fertility loss. This has inspired the need for the development of new treatment modalities to eradicate cervical cancer successfully. Photodynamic Therapy (PDT) is a modern treatment modality that induces cell death by photochemical interactions of light and a photosensitizer, which in the presence of molecular oxygen, yields a set of chemical reactions that generate Reactive Oxygen Species (ROS) and other free radical species causing cell damage. Enhancing PDT using modified drug delivery can increase the concentration of the photosensitizer in the tumor cells, and this has the potential to maximize its therapeutic efficacy. In cervical cancer, all infected cells constitutively express genes of the E6 and E7 HPV viral oncoproteins, resulting in high concentrations of E6 and E7 in the cytoplasm. This provides an opportunity for active targeting of cervical cancer cells using immune-mediated drug delivery to maximize therapeutic efficacy. The use of nanoparticles in PDT has also proven effective in enhancing therapeutic efficacy. Gold nanoparticles (AuNps) in particular, are explored for their use in biomedicine due to their biocompatibility, low toxicity, and enhancement of drug uptake by tumor cells. In this present study, a biomolecule comprising of AuNPs, anti-E6 monoclonal antibodies, and Aluminium Phthalocyanine photosensitizer was synthesized for use in targeted PDT of cervical cancer. The AuNp-Anti-E6-Sulfonated Aluminium Phthalocyanine mix (AlPcSmix) photosensitizing biomolecule was synthesized by coupling AuNps and anti-E6 monoclonal antibodies to the AlPcSmix via Polyethylene Glycol (PEG) chemical links. The final product was characterized using Transmission Electron Microscope (TEM), Zeta Potential, Uv-Vis Spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), and X-ray diffraction (XRD), to confirm its chemical structure and functionality. To observe its therapeutic role in treating cervical cancer, cervical cancer cells, HeLa cells were seeded in 3.4 cm² diameter culture dishes at a concentration of 5x10⁵ cells/ml, in vitro. The cells were treated with varying concentrations of the photosensitizing biomolecule and irradiated using a 673.2 nm wavelength of laser light. Post irradiation cellular responses were performed to observe changes in morphology, viability, proliferation, cytotoxicity, and cell death pathways induced. Dose-Dependent response of the cells to treatment was demonstrated as significant morphologic changes, increased cytotoxicity, and decreased cell viability and proliferation This study presented a synthetic biomolecule for targeted PDT of cervical cancer. The study suggested that PDT using this AuNp- Anti-E6- AlPcSmix photosensitizing biomolecule is a very effective treatment method for the eradication of cervical cancer cells, in vitro. Further studies in vivo need to be conducted to support the use of this biomolecule in treating cervical cancer in clinical settings.

Keywords: anti-E6 monoclonal antibody, cervical cancer, gold nanoparticles, photodynamic therapy

Procedia PDF Downloads 125
96 Synthesis and Properties of Poly(N-(sulfophenyl)aniline) Nanoflowers and Poly(N-(sulfophenyl)aniline) Nanofibers/Titanium dioxide Nanoparticles by Solid Phase Mechanochemical and Their Application in Hybrid Solar Cell

Authors: Mazaher Yarmohamadi-Vasel, Ali Reza Modarresi-Alama, Sahar Shabzendedara

Abstract:

Purpose/Objectives: The first purpose was synthesize Poly(N-(sulfophenyl)aniline) nanoflowers (PSANFLs) and Poly(N-(sulfophenyl)aniline) nanofibers/titanium dioxide nanoparticles ((PSANFs/TiO2NPs) by a solid-state mechano-chemical reaction and template-free method and use them in hybrid solar cell. Also, our second aim was to increase the solubility and the processability of conjugated nanomaterials in water through polar functionalized materials. poly[N-(4-sulfophenyl)aniline] is easily soluble in water because of the presence of polar groups of sulfonic acid in the polymer chain. Materials/Methods: Iron (III) chloride hexahydrate (FeCl3∙6H2O) were bought from Merck Millipore Company. Titanium oxide nanoparticles (TiO2, <20 nm, anatase) and Sodium diphenylamine-4-sulfonate (99%) were bought from Sigma-Aldrich Company. Titanium dioxide nanoparticles paste (PST-20T) was prepared from Sharifsolar Co. Conductive glasses coated with indium tin oxide (ITO) were bought from Xinyan Technology Co (China). For the first time we used the solid-state mechano-chemical reaction and template-free method to synthesize Poly(N-(sulfophenyl)aniline) nanoflowers. Moreover, for the first time we used the same technique to synthesize nanocomposite of Poly(N-(sulfophenyl)aniline) nanofibers and titanium dioxide nanoparticles (PSANFs/TiO2NPs) also for the first time this nanocomposite was synthesized. Examining the results of electrochemical calculations energy gap obtained by CV curves and UV–vis spectra demonstrate that PSANFs/TiO2NPs nanocomposite is a p-n type material that can be used in photovoltaic cells. Doctor blade method was used to creat films for three kinds of hybrid solar cells in terms of different patterns like ITO│TiO2NPs│Semiconductor sample│Al. In the following, hybrid photovoltaic cells in bilayer and bulk heterojunction structures were fabricated as ITO│TiO2NPs│PSANFLs│Al and ITO│TiO2NPs│PSANFs /TiO2NPs│Al, respectively. Fourier-transform infrared spectra, field emission scanning electron microscopy (FE-SEM), ultraviolet-visible spectra, cyclic voltammetry (CV) and electrical conductivity were the analysis that used to characterize the synthesized samples. Results and Conclusions: FE-SEM images clearly demonstrate that the morphology of the synthesized samples are nanostructured (nanoflowers and nanofibers). Electrochemical calculations of band gap from CV curves demonstrated that the forbidden band gap of the PSANFLs and PSANFs/TiO2NPs nanocomposite are 2.95 and 2.23 eV, respectively. I–V characteristics of hybrid solar cells and their power conversion efficiency (PCE) under 100 mWcm−2 irradiation (AM 1.5 global conditions) were measured that The PCE of the samples were 0.30 and 0.62%, respectively. At the end, all the results of solar cell analysis were discussed. To sum up, PSANFLs and PSANFLs/TiO2NPs were successfully synthesized by an affordable and straightforward mechanochemical reaction in solid-state under the green condition. The solubility and processability of the synthesized compounds have been improved compared to the previous work. We successfully fabricated hybrid photovoltaic cells of synthesized semiconductor nanostructured polymers and TiO2NPs as different architectures. We believe that the synthesized compounds can open inventive pathways for the development of other Poly(N-(sulfophenyl)aniline based hybrid materials (nanocomposites) proper for preparing new generation solar cells.

Keywords: mechanochemical synthesis, PSANFLs, PSANFs/TiO2NPs, solar cell

Procedia PDF Downloads 67
95 Graphene Metamaterials Supported Tunable Terahertz Fano Resonance

Authors: Xiaoyong He

Abstract:

The manipulation of THz waves is still a challenging task due to lack of natural materials interacted with it strongly. Designed by tailoring the characters of unit cells (meta-molecules), the advance of metamaterials (MMs) may solve this problem. However, because of Ohmic and radiation losses, the performance of MMs devices is subjected to the dissipation and low quality factor (Q-factor). This dilemma may be circumvented by Fano resonance, which arises from the destructive interference between a bright continuum mode and dark discrete mode (or a narrow resonance). Different from symmetric Lorentz spectral curve, Fano resonance indicates a distinct asymmetric line-shape, ultrahigh quality factor, steep variations in spectrum curves. Fano resonance is usually realized through symmetry breaking. However, if concentric double rings (DR) are placed closely to each other, the near-field coupling between them gives rise to two hybridized modes (bright and narrowband dark modes) because of the local asymmetry, resulting into the characteristic Fano line shape. Furthermore, from the practical viewpoint, it is highly desirable requirement that to achieve the modulation of Fano spectral curves conveniently, which is an important and interesting research topics. For current Fano systems, the tunable spectral curves can be realized by adjusting the geometrical structural parameters or magnetic fields biased the ferrite-based structure. But due to limited dispersion properties of active materials, it is still a tough work to tailor Fano resonance conveniently with the fixed structural parameters. With the favorable properties of extreme confinement and high tunability, graphene is a strong candidate to achieve this goal. The DR-structure possesses the excitation of so-called “trapped modes,” with the merits of simple structure and high quality of resonances in thin structures. By depositing graphene circular DR on the SiO2/Si/ polymer substrate, the tunable Fano resonance has been theoretically investigated in the terahertz regime, including the effects of graphene Fermi level, structural parameters and operation frequency. The results manifest that the obvious Fano peak can be efficiently modulated because of the strong coupling between incident waves and graphene ribbons. As Fermi level increases, the peak amplitude of Fano curve increases, and the resonant peak position shifts to high frequency. The amplitude modulation depth of Fano curves is about 30% if Fermi level changes in the scope of 0.1-1.0 eV. The optimum gap distance between DR is about 8-12 μm, where the value of figure of merit shows a peak. As the graphene ribbon width increases, the Fano spectral curves become broad, and the resonant peak denotes blue shift. The results are very helpful to develop novel graphene plasmonic devices, e.g. sensors and modulators.

Keywords: graphene, metamaterials, terahertz, tunable

Procedia PDF Downloads 344
94 Azadirachta indica Derived Protein Encapsulated Novel Guar Gum Nanocapsules against Colon Cancer

Authors: Suman Chaudhary, Rupinder K. Kanwar, Jagat R. Kanwar

Abstract:

Azadirachta indica, also known as Neem belonging to the mahogany family is actively gaining interest in the era of modern day medicine due to its extensive applications in homeopathic medicine such as Ayurveda and Unani. More than 140 phytochemicals have been extracted from neem leaves, seed, bark and flowers for agro-medicinal applications. Among the various components, neem leaf protein (NLP) is currently the most investigated active ingredient, due to its immunomodulatory activities against tumor growth. However, these therapeutic ingredients of neem are susceptible to degradation and cannot withstand the drastic pH changes under physiological environment, and therefore, there is an urgent need of an alternative strategy such as a nano-delivery system to exploit its medicinal benefits. This study hypothesizes that guar gum (GG) derived biodegradable nano-carrier based encapsulation of NLP will improve its stability, specificity and sensitivity, thus facilitating targeted anti-cancer therapeutics. GG is a galactomannan derived from the endosperm of the guar beans seeds. Synthesis of guar nanocapsules (NCs) was performed using nanoprecipitation technique where the GG was encapsulated with NLP. Preliminary experiments conducted to characterize the NCs confirmed spherical morphology with a narrow size distribution of 30-40 nm. Differential scanning colorimetric analysis (DSC) validated the stability of these NCs even at a temperature range of 50-60°C which was well within the physiological and storage conditions. Thermogravimetric (TGA) analysis indicated high decomposition temperature of these NCs ranging upto 350°C. Additionally, Fourier Transform Infrared spectroscopy (FTIR) and the SDS-PAGE data acquired confirmed the successful encapsulation of NLP in the NCs. The anti-cancerous therapeutic property of this NC was tested on colon cancer cells (caco-2) as they are one of the most prevalent form of cancer. These NCs (both NLP loaded and void) were also tested on human intestinal epithelial cells (FHs 74) cells to evaluate their effect on normal cells. Cytotoxicity evaluation of the NCs in the cell lines confirmed that the IC50 for NLP in FHs 74 cells was ~2 fold higher than in caco-2 cells, indicating that this nanoformulation system possessed biocompatible anti-cancerous properties Immunoconfocal microscopy analysis confirmed the time dependent internalization of the NCs within 6h. Recent findings performed using Annexin V and PI staining indicated a significant increase (p ≤ 0.001) in the early and late apoptotic cell population when treated with the NCs signifying the role of NLP in inducing apoptosis in caco-2 cells. This was further validated using Western blot, Polymerase chain reaction (PCR) and Fluorescence activated cell sorter (FACS) aided protein expressional analysis which presented a downregulation of survivin, an anti-apoptotic cell marker and upregulation of Bax/Bcl-2 ratio (pro-apoptotic indicator). Further, both the NLP NC and unencapsulated NLP treatment destabilized the mitochondrial membrane potential subsequently facilitating the release of the pro-apoptotic caspase cascade initiator, cytochrome-c. Future studies will be focused towards granting specificity to these NCs towards cancer cells, along with a comprehensive analysis of the anti-cancer potential of this naturally occurring compound in different cancer and in vivo animal models, will validate the clinical application of this unprecedented protein therapeutic.

Keywords: anti-tumor, guar gum, nanocapsules, neem leaf protein

Procedia PDF Downloads 177
93 Monitoring of Rice Phenology and Agricultural Practices from Sentinel 2 Images

Authors: D. Courault, L. Hossard, V. Demarez, E. Ndikumana, D. Ho Tong Minh, N. Baghdadi, F. Ruget

Abstract:

In the global change context, efficient management of the available resources has become one of the most important topics, particularly for sustainable crop development. Timely assessment with high precision is crucial for water resource and pest management. Rice cultivated in Southern France in the Camargue region must face a challenge, reduction of the soil salinity by flooding and at the same time reduce the number of herbicides impacting negatively the environment. This context has lead farmers to diversify crop rotation and their agricultural practices. The objective of this study was to evaluate this crop diversity both in crop systems and in agricultural practices applied to rice paddy in order to quantify the impact on the environment and on the crop production. The proposed method is based on the combined use of crop models and multispectral data acquired from the recent Sentinel 2 satellite sensors launched by the European Space Agency (ESA) within the homework of the Copernicus program. More than 40 images at fine spatial resolution (10m in the optical range) were processed for 2016 and 2017 (with a revisit time of 5 days) to map crop types using random forest method and to estimate biophysical variables (LAI) retrieved by inversion of the PROSAIL canopy radiative transfer model. Thanks to the high revisit time of Sentinel 2 data, it was possible to monitor the soil labor before flooding and the second sowing made by some farmers to better control weeds. The temporal trajectories of remote sensing data were analyzed for various rice cultivars for defining the main parameters describing the phenological stages useful to calibrate two crop models (STICS and SAFY). Results were compared to surveys conducted with 10 farms. A large variability of LAI has been observed at farm scale (up to 2-3m²/m²) which induced a significant variability in the yields simulated (up to 2 ton/ha). Observations on more than 300 fields have also been collected on land use. Various maps were elaborated, land use, LAI, flooding and sowing, and harvest dates. All these maps allow proposing a new typology to classify these paddy crop systems. Key phenological dates can be estimated from inverse procedures and were validated against ground surveys. The proposed approach allowed to compare the years and to detect anomalies. The methods proposed here can be applied at different crops in various contexts and confirm the potential of remote sensing acquired at fine resolution such as the Sentinel2 system for agriculture applications and environment monitoring. This study was supported by the French national center of spatial studies (CNES, funded by the TOSCA).

Keywords: agricultural practices, remote sensing, rice, yield

Procedia PDF Downloads 274
92 Synthesis of Carbon Nanotubes from Coconut Oil and Fabrication of a Non Enzymatic Cholesterol Biosensor

Authors: Mitali Saha, Soma Das

Abstract:

The fabrication of nanoscale materials for use in chemical sensing, biosensing and biological analyses has proven a promising avenue in the last few years. Cholesterol has aroused considerable interest in recent years on account of its being an important parameter in clinical diagnosis. There is a strong positive correlation between high serum cholesterol level and arteriosclerosis, hypertension, and myocardial infarction. Enzyme-based electrochemical biosensors have shown high selectivity and excellent sensitivity, but the enzyme is easily denatured during its immobilization procedure and its activity is also affected by temperature, pH, and toxic chemicals. Besides, the reproducibility of enzyme-based sensors is not very good which further restrict the application of cholesterol biosensor. It has been demonstrated that carbon nanotubes could promote electron transfer with various redox active proteins, ranging from cytochrome c to glucose oxidase with a deeply embedded redox center. In continuation of our earlier work on the synthesis and applications of carbon and metal based nanoparticles, we have reported here the synthesis of carbon nanotubes (CCNT) by burning coconut oil under insufficient flow of air using an oil lamp. The soot was collected from the top portion of the flame, where the temperature was around 6500C which was purified, functionalized and then characterized by SEM, p-XRD and Raman spectroscopy. The SEM micrographs showed the formation of tubular structure of CCNT having diameter below 100 nm. The XRD pattern indicated the presence of two predominant peaks at 25.20 and 43.80, which corresponded to (002) and (100) planes of CCNT respectively. The Raman spectrum (514 nm excitation) showed the presence of 1600 cm-1 (G-band) related to the vibration of sp2-bonded carbon and at 1350 cm-1 (D-band) responsible for the vibrations of sp3-bonded carbon. A nonenzymatic cholesterol biosensor was then fabricated on an insulating Teflon material containing three silver wires at the surface, covered by CCNT, obtained from coconut oil. Here, CCNTs worked as working as well as counter electrodes whereas reference electrode and electric contacts were made of silver. The dimensions of the electrode was 3.5 cm×1.0 cm×0.5 cm (length× width × height) and it is ideal for working with 50 µL volume like the standard screen printed electrodes. The voltammetric behavior of cholesterol at CCNT electrode was investigated by cyclic voltammeter and differential pulse voltammeter using 0.001 M H2SO4 as electrolyte. The influence of the experimental parameters on the peak currents of cholesterol like pH, accumulation time, and scan rates were optimized. Under optimum conditions, the peak current was found to be linear in the cholesterol concentration range from 1 µM to 50 µM with a sensitivity of ~15.31 μAμM−1cm−2 with lower detection limit of 0.017 µM and response time of about 6s. The long-term storage stability of the sensor was tested for 30 days and the current response was found to be ~85% of its initial response after 30 days.

Keywords: coconut oil, CCNT, cholesterol, biosensor

Procedia PDF Downloads 282
91 Microplastic Concentrations and Fluxes in Urban Compartments: A Systemic Approach at the Scale of the Paris Megacity

Authors: Rachid Dris, Robin Treilles, Max Beaurepaire, Minh Trang Nguyen, Sam Azimi, Vincent Rocher, Johnny Gasperi, Bruno Tassin

Abstract:

Microplastic sources and fluxes in urban catchments are only poorly studied. Most often, the approaches taken focus on a single source and only carry out a description of the contamination levels and type (shape, size, polymers). In order to gain an improved knowledge of microplastic inputs at urban scales, estimating and comparing various fluxes is necessary. The Laboratoire Eau, Environnement et Systèmes Urbains (LEESU), the Laboratoire Eau Environnement (LEE) and the SIAAP (Service public de l’assainissement francilien) initiated several projects to investigate different urban sources and flows of microplastics. A systemic approach is undertaken at the scale of Paris Megacity, and several compartments are considered, including atmospheric fallout, wastewater treatments plants, runoff and combined sewer overflows. These investigations are carried out within the Limnoplast and OPUR projects. Atmospheric fallout was sampled during consecutive periods ranging from 2 to 3 weeks with a stainless-steel funnel. Both wet and dry periods were considered. Different treatment steps were sampled in 2 wastewater treatment plants (Seine-Amont for activated sludge and Seine-Centre for biofiltration) of the SIAAP, including sludge samples. Microplastics were also investigated in combined sewer overflows as well as in stormwater at the outlet suburban catchment (Sucy-en-Brie, France) during four rain events. Samples are treated using hydroperoxide digestion (H₂O₂ 30 %) in order to reduce organic material. Microplastics are then extracted from the samples with a density separation step using NaI (d=1.6 g.cm⁻³). Samples are filtered on metallic filters with a porosity of 14 µm between steps to separate them from the solutions (H₂O₂ and NaI). The last filtration was carried out on alumina filters. Infrared mapping analysis (using a micro-FTIR with an MCT detector) is performed on each alumina filter. The resulting maps are analyzed using a microplastic analysis software simple, developed by Aalborg University, Denmark and Alfred Wegener Institute, Germany. Blanks were systematically carried out to consider sample contamination. This presentation aims at synthesizing the data found in the various projects. In order to carry out a systemic approach and compare the various inputs, all the data were converted into annual microplastic fluxes (number of microplastics per year), and extrapolated to the Parisian agglomeration. PP, PE and alkyd are the most prevalent polymers found in storm water samples. Rain intensity and microplastic concentrations did not show any clear correlation. Considering the runoff volumes and the impervious surface area of the studied catchment, a flux of 4*107–9*107 MPs.yr⁻¹.ha⁻¹ was estimated. Samples of wastewater treatment plants and atmospheric fallout are currently being analyzed in order to finalize this assessment. The representativeness of such samplings and uncertainties related to the extrapolations will be discussed and gaps in knowledge will be identified. The data provided by such an approach will help to prioritize future research as well as policy efforts.

Keywords: microplastics, atmosphere, wastewater, urban runoff, Paris megacity, urban waters

Procedia PDF Downloads 180
90 Will My Home Remain My Castle? Tenants’ Interview Topics regarding an Eco-Friendly Refurbishment Strategy in a Neighborhood in Germany

Authors: Karin Schakib-Ekbatan, Annette Roser

Abstract:

According to the Federal Government’s plans, the German building stock should be virtually climate neutral by 2050. Thus, the “EnEff.Gebäude.2050” funding initiative was launched, complementing the projects of the Energy Transition Construction research initiative. Beyond the construction and renovation of individual buildings, solutions must be found at the neighborhood level. The subject of the presented pilot project is a building ensemble from the Wilhelminian period in Munich, which is planned to be refurbished based on a socially compatible, energy-saving, innovative-technical modernization concept. The building ensemble, with about 200 apartments, is part of the building cooperative. To create an optimized network and possible synergies between researchers and projects of the funding initiative, a Scientific Accompanying Research was established for cross-project analyses of findings and results in order to identify further research needs and trends. Thus, the project is characterized by an interdisciplinary approach that combines constructional, technical, and socio-scientific expertise based on a participatory understanding of research by involving the tenants at an early stage. The research focus is on getting insights into the tenants’ comfort requirements, attitudes, and energy-related behaviour. Both qualitative and quantitative methods are applied based on the Technology-Acceptance-Model (TAM). The core of the refurbishment strategy is a wall heating system intended to replace conventional radiators. A wall heating provides comfortable and consistent radiant heat instead of convection heat, which often causes drafts and dust turbulence. Besides comfort and health, the advantage of wall heating systems is an energy-saving operation. All apartments would be supplied by a uniform basic temperature control system (around perceived room temperature of 18 °C resp. 64,4 °F), which could be adapted to individual preferences via individual heating options (e. g. infrared heating). The new heating system would affect the furnishing of the walls, in terms of not allowing the wall surface to be covered too much with cupboards or pictures. Measurements and simulations of the energy consumption of an installed wall heating system are currently being carried out in a show apartment in this neighborhood to investigate energy-related, economical aspects as well as thermal comfort. In March, interviews were conducted with a total of 12 people in 10 households. The interviews were analyzed by MAXQDA. The main issue of the interview was the fear of reduced self-efficacy within their own walls (not having sufficient individual control over the room temperature or being very limited in furnishing). Other issues concerned the impact that the construction works might have on their daily life, such as noise or dirt. Despite their basically positive attitude towards a climate-friendly refurbishment concept, tenants were very concerned about the further development of the project and they expressed a great need for information events. The results of the interviews will be used for project-internal discussions on technical and psychological aspects of the refurbishment strategy in order to design accompanying workshops with the tenants as well as to prepare a written survey involving all households of the neighbourhood.

Keywords: energy efficiency, interviews, participation, refurbishment, residential buildings

Procedia PDF Downloads 126
89 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach

Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista

Abstract:

The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.

Keywords: depth, deep learning, geovisualisation, satellite images

Procedia PDF Downloads 8
88 Date Palm Wastes Turning into Biochars for Phosphorus Recovery from Aqueous Solutions: Static and Dynamic Investigations

Authors: Salah Jellali, Nusiba Suliman, Yassine Charabi, Jamal Al-Sabahi, Ahmed Al Raeesi, Malik Al-Wardy, Mejdi Jeguirim

Abstract:

Huge amounts of agricultural biomasses are worldwide produced. At the same time, large quantities of phosphorus are annually discharged into water bodies with possible serious effects onto the environment quality. The main objective of this work is to turn a local Omani biomass (date palm fronds wastes: DPFW) into an effective material for phosphorus recovery from aqueous and the reuse of this P-loaded material in agriculture as ecofriendly amendment. For this aim, the raw DPFW were firstly impregnated with 1 M salt separated solutions of CaCl₂, MgCl₂, FeCl₃, AlCl₃, and a mixture of MgCl₂/AlCl₃ for 24 h, and then pyrolyzed under N2 flow at 500 °C for 2 hours by using an adapted tubular furnace (Carbolite, UK). The synthetized biochars were deeply characterized through specific analyses concerning their morphology, structure, texture, and surface chemistry. These analyses included the use of a scanning electron microscope (SEM) coupled with an energy-dispersive X-Ray spectrometer (EDS), X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), sorption micrometrics, and X-ray Fluorescence (XRF) apparatus. Then, their efficiency in recovering phosphorus was investigated in batch mode for various contact times (1 min to 3 h), aqueous pH values (from 3 to 11), initial phosphorus concentrations (10-100 mg/L), presence of anions (nitrates, sulfates, and chlorides). In a second step, dynamic assays, by using laboratory columns (height of 30 cm and diameter of 3 cm), were performed in order to investigate the recovery of phosphorus by the modified biochar with a mixture of Mg/Al. The effect of the initial P concentration (25-100 mg/L), the bed depth height (3 to 8 g), and the flow rate (10-30 mL/min) was assessed. Experimental results showed that the biochars physico-chemical properties were very dependent on the type of the used modifying salt. The main affected parameters concerned the specific surface area, microporosity area, and the surface chemistry (pH of zero-point charge and available functional groups). These characteristics have significantly affected the phosphorus recovery efficiency from aqueous solutions. Indeed, the P removal efficiency in batch mode varies from about 5 mg/g for the Fe-modified biochar to more than 13 mg/g for the biochar functionalized with Mg/Al layered double hydroxides. Moreover, the P recovery seems to be a time dependent process and significantly affected by the pH of the aqueous media and the presence of foreign anions due to competition phenomenon. The laboratory column study of phosphorus recovery by the biochar functionalized with Mg/Al layered double hydroxides showed that this process is affected by the used phosphorus concentration, the flow rate, and especially the column bed depth height. Indeed, the phosphorus recovered amount increased from about 4.9 to more than 9.3 mg/g used biochar mass of 3 and 8 g, respectively. This work proved that salt-modified palm fronds-derived biochars could be considered as attractive and promising materials for phosphorus recovery from aqueous solutions even under dynamic conditions. The valorization of these P-loaded-modified biochars as eco-friendly amendment for agricultural soils is necessary will promote sustainability and circular economy concepts in the management of both liquid and solid wastes.

Keywords: date palm wastes, Mg/Al double-layered hydroxides functionalized biochars, phosphorus, recovery, sustainability, circular economy

Procedia PDF Downloads 81
87 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 42
86 A Nonlinear Feature Selection Method for Hyperspectral Image Classification

Authors: Pei-Jyun Hsieh, Cheng-Hsuan Li, Bor-Chen Kuo

Abstract:

For hyperspectral image classification, feature reduction is an important pre-processing for avoiding the Hughes phenomena due to the difficulty for collecting training samples. Hence, lots of researches developed feature selection methods such as F-score, HSIC (Hilbert-Schmidt Independence Criterion), and etc., to improve hyperspectral image classification. However, most of them only consider the class separability in the original space, i.e., a linear class separability. In this study, we proposed a nonlinear class separability measure based on kernel trick for selecting an appropriate feature subset. The proposed nonlinear class separability was formed by a generalized RBF kernel with different bandwidths with respect to different features. Moreover, it considered the within-class separability and the between-class separability. A genetic algorithm was applied to tune these bandwidths such that the smallest with-class separability and the largest between-class separability simultaneously. This indicates the corresponding feature space is more suitable for classification. In addition, the corresponding nonlinear classification boundary can separate classes very well. These optimal bandwidths also show the importance of bands for hyperspectral image classification. The reciprocals of these bandwidths can be viewed as weights of bands. The smaller bandwidth, the larger weight of the band, and the more importance for classification. Hence, the descending order of the reciprocals of the bands gives an order for selecting the appropriate feature subsets. In the experiments, three hyperspectral image data sets, the Indian Pine Site data set, the PAVIA data set, and the Salinas A data set, were used to demonstrate the selected feature subsets by the proposed nonlinear feature selection method are more appropriate for hyperspectral image classification. Only ten percent of samples were randomly selected to form the training dataset. All non-background samples were used to form the testing dataset. The support vector machine was applied to classify these testing samples based on selected feature subsets. According to the experiments on the Indian Pine Site data set with 220 bands, the highest accuracies by applying the proposed method, F-score, and HSIC are 0.8795, 0.8795, and 0.87404, respectively. However, the proposed method selects 158 features. F-score and HSIC select 168 features and 217 features, respectively. Moreover, the classification accuracies increase dramatically only using first few features. The classification accuracies with respect to feature subsets of 10 features, 20 features, 50 features, and 110 features are 0.69587, 0.7348, 0.79217, and 0.84164, respectively. Furthermore, only using half selected features (110 features) of the proposed method, the corresponding classification accuracy (0.84168) is approximate to the highest classification accuracy, 0.8795. For other two hyperspectral image data sets, the PAVIA data set and Salinas A data set, we can obtain the similar results. These results illustrate our proposed method can efficiently find feature subsets to improve hyperspectral image classification. One can apply the proposed method to determine the suitable feature subset first according to specific purposes. Then researchers can only use the corresponding sensors to obtain the hyperspectral image and classify the samples. This can not only improve the classification performance but also reduce the cost for obtaining hyperspectral images.

Keywords: hyperspectral image classification, nonlinear feature selection, kernel trick, support vector machine

Procedia PDF Downloads 264
85 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 99
84 Magnesium Nanoparticles for Photothermal Therapy

Authors: E. Locatelli, I. Monaco, R. C. Martin, Y. Li, R. Pini, M. Chiariello, M. Comes Franchini

Abstract:

Despite the many advantages of application of nanomaterials in the field of nanomedicine, increasing concerns have been expressed on their potential adverse effects on human health. There is urgency for novel green strategies toward novel materials with enhanced biocompatibility using safe reagents. Photothermal ablation therapy, which exploits localized heat increase of a few degrees to kill cancer cells, has appeared recently as a non-invasive and highly efficient therapy against various cancer types; anyway new agents able to generate hyperthermia when irradiated are needed and must have precise biocompatibility in order to avoid damage to healthy tissues and prevent toxicity. Recently, there has been increasing interest in magnesium as a biomaterial: it is the fourth most abundant cation in the human body, and it is essential for human metabolism. However magnesium nanoparticles (Mg NPs) have had limited diffusion due to the high reduction potential of magnesium cations, which makes NPs synthesis challenging. Herein, we report the synthesis of Mg NPs and their surface functionalization for the obtainment of a stable and biocompatible nanomaterial suitable for photothermal ablation therapy against cancer. We synthesized the Mg crystals by reducing MgCl2 with metallic lithium and exploiting naphthalene as an electron carrier: the lithium–naphthalene complex acts as the real reducing agent. Firstly, the nanocrystal particles were coated with the ligand 12-ethoxy ester dodecanehydroxamic acid, and then entrapped into water-dispersible polymeric micelles (PMs) made of the FDA-approved PLGA-b-PEG-COOH copolymer using the oil-in-water emulsion technique. Lately, we developed a more straightforward methodology by introducing chitosan, a highly biocompatible natural product, at the beginning of the process, simultaneously using lithium–naphthalene complex, thus having a one-pot procedure for the formation and surface modification of MgNPs. The obtained MgNPs were purified and fully characterized, showing diameters in the range of 50-300 nm. Notably, when coated with chitosan the particles remained stable as dry powder for more than 10 months. We proved the possibility of generating a temperature rise of a few to several degrees once MgNPs were illuminated using a 810 nm diode laser operating in continuous wave mode: the temperature rise resulted significant (0-15 °C) and concentration dependent. We then investigated potential cytotoxicity of the MgNPs: we used HN13 epithelial cells, derived from a head and neck squamous cell carcinoma and the hepa1-6 cell line, derived from hepatocellular carcinoma and very low toxicity was observed for both nanosystems. Finally, in vivo photothermal therapy was performed on xenograft hepa1-6 tumor bearing mice: the animals were treated with MgNPs coated with chitosan and showed no sign of suffering after the injection. After 12 hours the tumor was exposed to near-infrared laser light. The results clearly showed an extensive damage to tumor tissue after only 2 minutes of laser irradiation at 3Wcm-1, while no damage was reported when the tumor was treated with the laser and saline alone in control group. Despite the lower photothermal efficiency of Mg with respect to Au NPs, we consider MgNPs a promising, safe and green candidate for future clinical translations.

Keywords: chitosan, magnesium nanoparticles, nanomedicine, photothermal therapy

Procedia PDF Downloads 270