Search results for: corporate credit rating prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3961

Search results for: corporate credit rating prediction

1681 Predicting the Exposure Level of Airborne Contaminants in Occupational Settings via the Well-Mixed Room Model

Authors: Alireza Fallahfard, Ludwig Vinches, Stephane Halle

Abstract:

In the workplace, the exposure level of airborne contaminants should be evaluated due to health and safety issues. It can be done by numerical models or experimental measurements, but the numerical approach can be useful when it is challenging to perform experiments. One of the simplest models is the well-mixed room (WMR) model, which has shown its usefulness to predict inhalation exposure in many situations. However, since the WMR is limited to gases and vapors, it cannot be used to predict exposure to aerosols. The main objective is to modify the WMR model to expand its application to exposure scenarios involving aerosols. To reach this objective, the standard WMR model has been modified to consider the deposition of particles by gravitational settling and Brownian and turbulent deposition. Three deposition models were implemented in the model. The time-dependent concentrations of airborne particles predicted by the model were compared to experimental results conducted in a 0.512 m3 chamber. Polystyrene particles of 1, 2, and 3 µm in aerodynamic diameter were generated with a nebulizer under two air changes per hour (ACH). The well-mixed condition and chamber ACH were determined by the tracer gas decay method. The mean friction velocity on the chamber surfaces as one of the input variables for the deposition models was determined by computational fluid dynamics (CFD) simulation. For the experimental procedure, the particles were generated until reaching the steady-state condition (emission period). Then generation stopped, and concentration measurements continued until reaching the background concentration (decay period). The results of the tracer gas decay tests revealed that the ACHs of the chamber were: 1.4 and 3.0, and the well-mixed condition was achieved. The CFD results showed the average mean friction velocity and their standard deviations for the lowest and highest ACH were (8.87 ± 0.36) ×10-2 m/s and (8.88 ± 0.38) ×10-2 m/s, respectively. The numerical results indicated the difference between the predicted deposition rates by the three deposition models was less than 2%. The experimental and numerical aerosol concentrations were compared in the emission period and decay period. In both periods, the prediction accuracy of the modified model improved in comparison with the classic WMR model. However, there is still a difference between the actual value and the predicted value. In the emission period, the modified WMR results closely follow the experimental data. However, the model significantly overestimates the experimental results during the decay period. This finding is mainly due to an underestimation of the deposition rate in the model and uncertainty related to measurement devices and particle size distribution. Comparing the experimental and numerical deposition rates revealed that the actual particle deposition rate is significant, but the deposition mechanisms considered in the model were ten times lower than the experimental value. Thus, particle deposition was significant and will affect the airborne concentration in occupational settings, and it should be considered in the airborne exposure prediction model. The role of other removal mechanisms should be investigated.

Keywords: aerosol, CFD, exposure assessment, occupational settings, well-mixed room model, zonal model

Procedia PDF Downloads 103
1680 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: complementary and alternative medicine, classification, iridology, iris, feature extraction, disease prediction

Procedia PDF Downloads 407
1679 Improving Self-Administered Medication Adherence for Older Adults: A Systematic Review

Authors: Mathumalar Loganathan, Lina Syazana, Bryony Dean Franklin

Abstract:

Background: The therapeutic benefit of self-administered medication for long-term use is limited by an average 50% non-adherence rate. Patient forgetfulness is a common factor in unintentional non-adherence. With a growing ageing population, strategies to improve self-administration of medication adherence are essential. Our aim was to review systematically the effects of interventions to optimise self-administration of medication. Method: Database searched were MEDLINE, EMBASE, PsynINFO, CINAHL from 1980 to 31 October 2013. Search terms included were ‘self-administration’, ‘self-care’, ‘medication adherence’, and ‘intervention’. Two independent reviewers undertook screening and methodological quality assessment, using the Downs and Black rating scale. Results: The search strategy retrieved 6 studies that met the inclusion and exclusion criteria. Three intervention strategies were identified: self-administration medication programme (SAMP), nursing education and medication packaging (pill calendar). A nursing education programme focused on improving patients’ behavioural self-management of drug prescribing. This was the most studied area and three studies highlighting an improvement in self-administration of medication. Conclusion: Results are mixed and there is no one interventional strategy that has proved to be effective. Nevertheless, self-administration of medication programme seems to show most promise. A multi-faceted approach and clearer policy guideline are likely to be required to improve prescribing for these vulnerable patients. Mixed results were found for SAMP. Medication packaging (pill calendar) was evaluated in one study showing a significant improvement in self-administration of medication. A meta-analysis could not be performed due to heterogeneity in the outcome measures.

Keywords: self-administered medication, intervention, prescribing, older patients

Procedia PDF Downloads 323
1678 Impact of Sociocultural Factors on Management and Utilization of Solid Waste in Ibadan Metropolis, Nigeria

Authors: Olufunmilayo Folaranmi

Abstract:

This research was carried out to examine the impact of socio-cultural factors on the management and utilization of solid waste in Ibadan Metropolis. A descriptive survey research design was adopted for the study while a systematic and stratified random sampling technique was used to select 300 respondents which were categorized into high, middle and low-density areas. Four hypothesis were tested using chi-square test on variables of unavailability of waste disposal facilities and waste management, negligence of contractors to liaise with community members, lack of adequate environmental education and waste management and utilization, low level of motivation of sanitation workers with solid wastes management, lack of community full participation with solid waste management and utilization. Results showed that significant effect of waste disposal facilities on solid waste management and utilization (X2 +16.6, P < .05). Also, there is a significant relationship between negligence of the contractors to liaise with community elites with improper disposal (X2 = 87.5, P < .05). The motivation of sanitation workers is significantly related to solid waste management (X2 = 70.4, P < .05). Adequate environmental education and awareness influenced solid waste management. There was also a significant relationship between lack of community participation with waste management disposal and improper waste disposal. Based on the findings from the study it was recommended that the quality of life in urban centers should be improved, social welfare of the populace enhanced and environment should be adequately attended to. Poverty alleviation programmes should be intensified and made to live beyond the life of a particular administration, micro-credit facilities should be available to community members to promote their welfare. Lastly, sustained environmental education programmes for citizens at all levels of education, formal and informal through the use of agencies like Ethical and Attitudinal Reorientation Commission (EARCOM) and the National Orientation Agency (NOA).

Keywords: management, social welfare, socio-cultural factors, solid waste

Procedia PDF Downloads 230
1677 Sustainable Supply Chain Management Practices, Challenges, and Opportunities: A Case Study of Small and Medium-Sized Enterprises Within the Oil and Gas Sector

Authors: Igho Ekiugbo, Christos Papanagnou

Abstract:

The energy sector continues to face increased scrutiny due to climate change challenges emanating from the burning of fossil fuels, such as coal, oil, and gas. These climate change challenges have motivated industry practitioners and researchers alike to gain an interest in the way businesses operate. This paper aimed to investigate and assess how small and medium-sized enterprises (SMEs) are reducing the impact of their operations, especially those within their supply chains, by assessing the sustainability practices they have adopted and implemented as well as the benefits and challenges of adopting such practices. Data will be collected from SMEs operating across the downstream oil and gas sector in Nigeria using questionnaire surveys. To analyse the data, confirmatory factor analysis and regression analysis will be performed. This method is deemed more suitable and appropriate for testing predefined measurements of sustainable supply chain practices as contained in the extant literature. Preliminary observations indicate a consensus on the awareness of the sustainability concept amongst the target participants. To the best of our knowledge, this paper is among the first to investigate the sustainability practices of SMEs operating in the Nigerian oil and gas sector and will therefore contribute to the sustainability and circular economic literature.

Keywords: small and medium-sized enterprises, sustainability practices, supply chains, sustainable supply chain management, corporate sustainability, oil and gas, business performance

Procedia PDF Downloads 127
1676 Fat-Tail Test of Regulatory DNA Sequences

Authors: Jian-Jun Shu

Abstract:

The statistical properties of CRMs are explored by estimating similar-word set occurrence distribution. It is observed that CRMs tend to have a fat-tail distribution for similar-word set occurrence. Thus, the fat-tail test with two fatness coefficients is proposed to distinguish CRMs from non-CRMs, especially from exons. For the first fatness coefficient, the separation accuracy between CRMs and exons is increased as compared with the existing content-based CRM prediction method – fluffy-tail test. For the second fatness coefficient, the computing time is reduced as compared with fluffy-tail test, making it very suitable for long sequences and large data-base analysis in the post-genome time. Moreover, these indexes may be used to predict the CRMs which have not yet been observed experimentally. This can serve as a valuable filtering process for experiment.

Keywords: statistical approach, transcription factor binding sites, cis-regulatory modules, DNA sequences

Procedia PDF Downloads 290
1675 A Comparative Study of Force Prediction Models during Static Bending Stage for 3-Roller Cone Frustum Bending

Authors: Mahesh Chudasama, Harit Raval

Abstract:

Conical sections and shells of metal plates manufactured by 3-roller conical bending process are widely used in the industries. The process is completed by first bending the metal plates statically and then dynamic roller bending sequentially. It is required to have an analytical model to get maximum bending force, for optimum design of the machine, for static bending stage. Analytical models assuming various stress conditions are considered and these analytical models are compared considering various parameters and reported in this paper. It is concluded from the study that for higher bottom roller inclination, the shear stress affects greatly to the static bending force whereas for lower bottom roller inclination it can be neglected.

Keywords: roller-bending, static-bending, stress-conditions, analytical-modeling

Procedia PDF Downloads 251
1674 The Moderating Roles of Bedtime Activities and Anxiety and Depression in the Relationship between Attention-Deficit/Hyperactivity Disorder and Sleep Problems in Children

Authors: Lian Tong, Yan Ye, Qiong Yan

Abstract:

Background: Children with attention-deficit/hyperactivity disorder (ADHD) often experience sleep problems, but the comorbidity mechanism has not been sufficiently studied. This study aimed to determine the comorbidity of ADHD and sleep problems as well as the moderating effects of bedtime activities and depression/anxiety symptoms on the relationship between ADHD and sleep problems. Methods: We recruited 934 primary students from third to fifth grade and their parents by stratified random sampling from three primary schools in Shanghai, China. This study used parent-reported versions of the ADHD Rating Scale-IV, Children’s Sleep Habits Questionnaire, and Achenbach Child Behavior Checklist. We used hierarchical linear regression analysis to clarify the moderating effects of bedtime activities and depression/anxiety symptoms. Results: We found that children with more ADHD symptoms had shorter sleep durations and more sleep problems on weekdays. Screen time before bedtime strengthened the relationship between ADHD and sleep-disordered breathing. Children with more screen time were more likely to have sleep onset delay, while those with less screen time had more sleep onset problems with increasing ADHD symptoms. The high bedtime eating group experienced more night waking with increasing ADHD symptoms compared with the low bedtime eating group. Anxiety/depression exacerbated total sleep problems and further interacted with ADHD symptoms to predict sleep length and sleep duration problems. Conclusions: Bedtime activities and emotional problems had important moderating effects on the relationship between ADHD and sleep problems. These findings indicate that appropriate bedtime management and emotional management may reduce sleep problems and improve sleep duration for children with ADHD symptoms.

Keywords: ADHD, sleep problems, anxiety/depression, bedtime activities, children

Procedia PDF Downloads 204
1673 Eat Right Campaign Initiative to Prevent Hypertension Amongst the Corporates in Uganda

Authors: Katanku Denis Musoga

Abstract:

Eat Right Campaign is an initiative that was started by the Nutrition Unit of Uganda Heart Institute with the objective of informing corporate workers in both the Government and Private sectors about how to eat to prevent Hypertension. In Uganda, according to the recent research undertaken by the Ministry of Health, 1 out of 4 adults is hypertensive and yet over 80% of those are not aware. This is attributed largely to poor eating habits influenced by a lack of knowledge. The major objective of the campaign was to demonstrate the need for effective strategic communication among the corporates by organizing workshops that involved dietary education, food demonstrations, and food preparation in an effort to prevent Hypertension. Permission from various Organizations was sought to carry out sensitization and health education while highlighting the significance of reducing financial losses to health care. The Campaign provided strategies for how to influence positive dietary changes. It involved screening for risk factors. A Pretest was given to the staff to ascertain their knowledge of how to eat right to prevent hypertension, and thereafter the campaign, a post-test was given to the same staff. This was done in all the 10 Organizations that we carried out the campaign. Over 80% of the staff had learned significantly and promised to practice what they had learned; also, the majority who had a higher Blood pressure measurement prior to the campaign returned with significantly lower blood pressure. Food demonstrations, preparations, and regular dietary education should be woven into the entire clinical and Public Health practice.

Keywords: eat right campaign initiative, corporates, prevent hypertension, dietary education

Procedia PDF Downloads 42
1672 Effect of Information and Communication Technology (ICT) Usage by Cassava Farmers in Otukpo Local Government Area of Benue State, Nigeria

Authors: O. J. Ajayi, J. H. Tsado, F. Olah

Abstract:

The study analyzed the effect of information and communication technology (ICT) usage on cassava farmers in Otukpo local government area of Benue state, Nigeria. Primary data was collected from 120 randomly selected cassava farmers using multi-stage sampling technique. A structured questionnaire and interview schedule was employed to generate data. Data were analyzed using descriptive (frequency, mean and percentage) and inferential statistics (OLS (ordinary least square) and Chi-square). The result revealed that majority (78.3%) were within the age range of 21-50 years implying that the respondents were within the active age for maximum production. 96.8% of the respondents had one form of formal education or the other. The sources of ICT facilities readily available in area were radio(84.2%), television(64.2%) and mobile phone(90.8%) with the latter being the most relied upon for cassava farming. Most of the farmers were aware (98.3%) and had access (95.8%) to these ICT facilities. The dependence on mobile phone and radio were highly relevant in cassava stem selection, land selection, land preparation, cassava planting technique, fertilizer application and pest and disease management. The value of coefficient of determination (R2) indicated an 89.1% variation in the output of cassava farmers explained by the inputs indicated in the regression model implying that, there is a positive and significant relationship between the inputs and output. The results also indicated that labour, fertilizer and farm size were significant at 1% level of probability while ICT use was significant at 10%. Further findings showed that finance (78.3%) was the major constraint associated with ICT use. Recommendations were made on strengthening the use of ICT especially contemporary ones like the computer and internet among farmers for easy information sourcing which can boost agricultural production, improve livelihood and subsequently food security. This may be achieved by providing credit or subsidies and information centres like telecentres and cyber cafes through government assistance or partnership.

Keywords: ICT, cassava farmers, inputs, output

Procedia PDF Downloads 311
1671 Prediction of Index-Mechanical Properties of Pyroclastic Rock Utilizing Electrical Resistivity Method

Authors: İsmail İnce

Abstract:

The aim of this study is to determine index and mechanical properties of pyroclastic rock in a practical way by means of electrical resistivity method. For this purpose, electrical resistivity, uniaxial compressive strength, point load strength, P-wave velocity, density and porosity values of 10 different pyroclastic rocks were measured in the laboratory. A simple regression analysis was made among the index-mechanical properties of the samples compatible with electrical resistivity values. A strong exponentially relation was found between index-mechanical properties and electrical resistivity values. The electrical resistivity method can be used to assess the engineering properties of the rock from which it is difficult to obtain regular shaped samples as a non-destructive method.

Keywords: electrical resistivity, index-mechanical properties, pyroclastic rocks, regression analysis

Procedia PDF Downloads 473
1670 Performance Effects of Demergers in India

Authors: Pavak Vyas, Hiral Vyas

Abstract:

Spin-offs commonly known as demergers in India, represents dismantling of conglomerates which is a common phenomenon in financial markets across the world. Demergers are carried out with different motives. A demerger generally refers to a corporate restructuring where, a large company divests its stake in in its subsidiary and distributes the shares of the subsidiary - demerged entity to the existing shareholders without any consideration. Demergers in Indian companies are over a decade old phenomena, with many companies opting for the same. This study examines the demerger regulations in Indian capital markets and the announcement period price reaction of demergers during year 2010-2015. We study total 97 demerger announcements by companies listed in India and try to establish that demergers results into abnormal returns for the shareholders of the parent company. Using event study methodology we have analyzed the security price performance of the announcement day effect 10 days prior to announcement to 10 days post demerger announcement. We find significant out-performance of the security over the benchmark index post demerger announcements. The cumulative average abnormal returns range from 3.71% on the day of announcement of a private demerger to 2.08% following 10 days surrounding the announcement, and cumulative average abnormal returns range from 5.67% on the day of announcement of a public demerger to 4.15% following10 days surrounding the announcement.

Keywords: demergers, event study, spin offs, stock returns

Procedia PDF Downloads 300
1669 Heat Transfer Enhancement by Turbulent Impinging Jet with Jet's Velocity Field Excitations Using OpenFOAM

Authors: Naseem Uddin

Abstract:

Impinging jets are used in variety of engineering and industrial applications. This paper is based on numerical simulations of heat transfer by turbulent impinging jet with velocity field excitations using different Reynolds Averaged Navier-Stokes Equations models. Also Detached Eddy Simulations are conducted to investigate the differences in the prediction capabilities of these two simulation approaches. In this paper the excited jet is simulated in non-commercial CFD code OpenFOAM with the goal to understand the influence of dynamics of impinging jet on heat transfer. The jet’s frequencies are altered keeping in view the preferred mode of the jet. The Reynolds number based on mean velocity and diameter is 23,000 and jet’s outlet-to-target wall distance is 2. It is found that heat transfer at the target wall can be influenced by judicious selection of amplitude and frequencies.

Keywords: excitation, impinging jet, natural frequency, turbulence models

Procedia PDF Downloads 273
1668 Examining the Missing Feedback Link in Environmental Kuznets Curve Hypothesis

Authors: Apra Sinha

Abstract:

The inverted U-shaped Environmental Kuznets curve (EKC) demonstrates(pollution-income relationship)that initially the pollution and environmental degradation surpass the level of income per capita; however this trend reverses since at the higher income levels, economic growth initiates environmental upgrading. However, what effect does increased environmental degradation has on growth is the missing feedback link which has not been addressed in the EKC hypothesis. This paper examines the missing feedback link in EKC hypothesis in Indian context by examining the casual association between fossil fuel consumption, carbon dioxide emissions and economic growth for India. Fossil fuel consumption here has been taken as a proxy of driver of economic growth. The casual association between the aforementioned variables has been analyzed using five interventions namely 1) urban development for which urbanization has been taken proxy 2) industrial development for which industrial value added has been taken proxy 3) trade liberalization for which sum of exports and imports as a share of GDP has been taken as proxy 4)financial development for which a)domestic credit to private sector and b)net foreign assets has been taken as proxies. The choice of interventions for this study has been done keeping in view the economic liberalization perspective of India. The main aim of the paper is to investigate the missing feedback link for Environmental Kuznets Curve Hypothesis before and after incorporating the intervening variables. The period of study is from 1971 to 2011 as it covers pre and post liberalization era in India. All the data has been taken from World Bank country level indicators. The Johansen and Juselius cointegration testing methodology and Error Correction based Granger causality have been applied on all the variables. The results clearly show that out of five interventions, only in two interventions the missing feedback link is being addressed. This paper can put forward significant policy implications for environment protection and sustainable development.

Keywords: environmental Kuznets curve hypothesis, fossil fuel consumption, industrialization, trade liberalization, urbanization

Procedia PDF Downloads 252
1667 Aerodynamic Designing of Supersonic Centrifugal Compressor Stages

Authors: Y. Galerkin, A. Rekstin, K. Soldatova

Abstract:

Universal modeling method well proven for industrial compressors was applied for design of the high flow rate supersonic stage. Results were checked by ANSYS CFX and NUMECA Fine Turbo calculations. The impeller appeared to be very effective at transonic flow velocities. Stator elements efficiency is acceptable at design Mach numbers too. Their loss coefficient versus inlet flow angle performances correlates well with Universal modeling prediction. The impeller demonstrated ability of satisfactory operation at design flow rate. Supersonic flow behavior in the impeller inducer at the shroud blade to blade surface Φdes deserves additional study.

Keywords: centrifugal compressor stage, supersonic impeller, inlet flow angle, loss coefficient, return channel, shock wave, vane diffuser

Procedia PDF Downloads 467
1666 Independent Directors and Board Decisions

Authors: Shital Jhunjhunwala, Shweta Saraf

Abstract:

Research Question: The study, based on a survey, empirically tests the impact of the board’s engagement in the decision-making process on firm outcomes. It also examines the moderating effect of board leadership and board independence on the relationship. Research Findings: Boards’ engagement in the decision-making process is found to be vital for firm performance, wherein effective monitoring by the board outperforms their strategic guidance role in achieving desired outcomes. The separation of CEO and Chairman positively moderates the board’s engagement in protecting stakeholders’ interests, but lack of independence and passive behaviour of independent directors raises concern on the efficacy of independent directors. Theoretical Implications: The study provides the framework for process-oriented corporate governance research, where investigation of boards’ behaviour inside the boardroom develops a deeper understanding of board processes. Practitioner Implications: The study highlights the necessity of developing boards’ focus in a company on monitoring managerial actions. It suggests the need to separate the position of CEO and Chairman for addressing the interest of all stakeholders. It recommends policymakers review the existing mandate on board independence and create alternate monitoring mechanisms for addressing agency conflict.

Keywords: board, decision-making process, engagement, independence, leadership, innovation, stakeholders, firm performance, qualitative, India

Procedia PDF Downloads 109
1665 Enhancing Understanding and Engagement in Linear Motion Using 7R-Based Module

Authors: Mary Joy C. Montenegro, Voltaire M. Mistades

Abstract:

This action research was implemented to enhance the teaching of linear motion and to improve students' conceptual understanding and engagement using a developed 7R-based module called 'module on vectors and one-dimensional kinematics' (MVOK). MVOK was validated in terms of objectives, contents, format, and language used, presentation, usefulness, and overall presentation. The validation process revealed a value of 4.7 interpreted as 'Very Acceptable' with a substantial agreement (0. 60) from the validators. One intact class of 46 Grade 12 STEM students from one of the public schools in Paranaque City served as the participants of this study. The students were taught using the module during the first semester of the academic year 2019–2020. Employing the mixed-method approach, quantitative data were gathered using pretest/posttest, activity sheets, problem sets, and survey form, while qualitative data were obtained from surveys, interviews, observations, and reflection log. After the implementation, there was a significant difference of 18.4 on students’ conceptual understanding as shown in their pre-test and post-test scores on the 24-item test with a moderate Hake gain equal to 0.45 and an effect size of 0.83. Moreover, the scores on activity and problem sets have a 'very good' to 'excellent' rating, which signifies an increase in the level of students’ conceptual understanding. There also exists a significant difference between the mean scores of students’ engagement overall (t= 4.79, p = 0.000, p < 0.05) and in the dimension of emotion (t = 2.51, p = 0.03) and participation/interaction (t = 5.75, p = 0.001). These findings were supported by gathered qualitative data. Positive views were elicited from the students since it is an accessible tool for learning and has well-detailed explanations and examples. The results of this study may substantiate that using MVOK will lead to better physics content understanding and higher engagement.

Keywords: conceptual understanding, engagement, linear motion, module

Procedia PDF Downloads 131
1664 The Effect of Ice in Pain Control before Digital Nerve Block

Authors: Fatemeh Rasooli, Behzad Simiari, Pooya Payandemehr, Amir Nejati, Maryam Bahreini, Atefeh Abdollahi

Abstract:

Introduction: Pain is a complex physiological reaction to tissue injury. In the course of painful procedures such as nerve block, ice has been shown to be a feasible and inexpensive material to control pain. It delays nerve conduction, actives other senses and reduces inflammatory and painful responses. This study assessed the effect of ice in reducing pain caused by needling and infiltration during digital block. Patient satisfaction recorded as a secondary outcome. Methods: This study was designed as a non-blinded randomized clinical trial approved by Tehran University of Medical Sciences Ethical Committee. Informed consent was taken from all the participants who were then randomly divided into two groups. Digital block performed by standard approach in selected patients. Tubes of ice were prepared in gloves and were fragmented at a time of application for circling around the finger. Tubes were applied for 6 minutes before digital nerve block in the site of needling in the case group. Patients in the control group underwent digital nerve block with the conventional method without ice administration. Numeric Rating Scale (NRS) used for grading pain. 0 used for no pain and 10 for the worst pain that patient had experienced until now. Scores were analyzed by Wilcoxon Rank Sum test and compared in case and control groups. Results: 100 patients aged 16-50 years were enrolled. Mean NRS scores with and without ice were 1.5 mm (S.D ± 1.44) and 6.8 mm (S.D ± 1.40) for needling pain and for infiltration pain were 2.7mm ( S.D ±1.65) and 8.5mm ( S.D ± 1.47), respectively (p<0.001). Besides, patients’ satisfactions were significantly higher in the ice group (p<0.001). Conclusion: Application of ice for 6 minutes significantly reduced pain of needling and infiltration in digital nerve block; thus, it seems to be a feasible and inexpensive material which acts effectively to decrease pain and stress before the procedure.

Keywords: digital block, ice, needle, pain

Procedia PDF Downloads 236
1663 A Comparison of Ethical Perceptions of Business Students In MINA

Authors: Leonie Jooste

Abstract:

The main purpose of this article is to explore the ethical values of accounting students at Universities and Business Managers. Financial fraud (earnings management) is continuing to exist and published in literature and social media. However, irrespective of extensive publication, and academic research, financial fraud is still happening or still being committed. The student of today may be the manager in the future. In a study by Bruns and Merchant, the authors found that the morality of short-term earnings management was of little concern to researchers and accounting practitioners. However, in the light of increased financial frauds and failures, new and increased emphasis has been placed on the importance of the concepts of earnings quality, earnings management practices, and the inclusion of business ethics in accounting syllabi. This study uses a quantitative analysis related to the Bruns and Merchant survey of accounting students. 59 accounting students in the MENA area were surveyed in 2022 to measure their ethical values regarding earning management practices in organisations. The results of this survey were compared the surveys in 2013 to determine if courses in business ethics offered at the university influenced the perceptions of students on unethical behaviour in business practices. For the data analysis, the mean values and significant differences were calculated and compared. Overall, the results showed that there was hardly any significant difference between the two surveys.

Keywords: ethics, earnings management, corporate social responsibility, business courses.

Procedia PDF Downloads 121
1662 COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration

Authors: Tayeb Aissaoui, Inas M. AlNashef

Abstract:

In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry.

Keywords: COSMO-RS, deep eutectic solvents, dehydration, natural gas, structure, organic salt

Procedia PDF Downloads 292
1661 Evaluating Service Trustworthiness for Service Selection in Cloud Environment

Authors: Maryam Amiri, Leyli Mohammad-Khanli

Abstract:

Cloud computing is becoming increasingly popular and more business applications are moving to cloud. In this regard, services that provide similar functional properties are increasing. So, the ability to select a service with the best non-functional properties, corresponding to the user preference, is necessary for the user. This paper presents an Evaluation Framework of Service Trustworthiness (EFST) that evaluates the trustworthiness of equivalent services without need to additional invocations of them. EFST extracts user preference automatically. Then, it assesses trustworthiness of services in two dimensions of qualitative and quantitative metrics based on the experiences of past usage of services. Finally, EFST determines the overall trustworthiness of services using Fuzzy Inference System (FIS). The results of experiments and simulations show that EFST is able to predict the missing values of Quality of Service (QoS) better than other competing approaches. Also, it propels users to select the most appropriate services.

Keywords: user preference, cloud service, trustworthiness, QoS metrics, prediction

Procedia PDF Downloads 287
1660 Mathematical Modeling and Optimization of Burnishing Parameters for 15NiCr6 Steel

Authors: Tarek Litim, Ouahiba Taamallah

Abstract:

The present paper is an investigation of the effect of burnishing on the surface integrity of a component made of 15NiCr6 steel. This work shows a statistical study based on regression, and Taguchi's design has allowed the development of mathematical models to predict the output responses as a function of the technological parameters studied. The response surface methodology (RSM) showed a simultaneous influence of the burnishing parameters and observe the optimal processing parameters. ANOVA analysis of the results resulted in the validation of the prediction model with a determination coefficient R=90.60% and 92.41% for roughness and hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=10kgf, i=3passes, and f=0.074mm/rev, which favours minimum roughness and maximum hardness. The result was validated by the desirability of D= (0.99 and 0.95) for roughness and hardness, respectively.

Keywords: 15NiCr6 steel, burnishing, surface integrity, Taguchi, RSM, ANOVA

Procedia PDF Downloads 191
1659 Fan-Subbing in East Asia: Audience Involvement in Transnational Media Flows

Authors: Jason D. Lin, Christine Sim

Abstract:

This paper examines the nature of transnational media flows in East Asia, specifically expounding on the popularity of Korean dramas in China and Taiwan. Situated in interdisciplinary academic work from cultural studies, media studies, and linguistics, this project locates the significance of certain genres and regions in determining why some are subject to flow while others remain within domestic borders. Moreover, transnational flows can take one of two routes –official translations and adaptations by media corporations and subtitles written by fans in online communities. The work of 'fan-subbing' has allowed for a more democratized showcase of what bilingual fans consume and are invested in sharing, rather than what major media companies deem relevant and monetizable. This reflects a culture of relatability driven by audiences rather than by corporate direction. Of course, a variety of technological, political, and economic factors play imperative roles in how both professional and fan-made subtitles flowed across borders and between nations. While fan-subbed media may be subject to criticism because of a lack of formal regulation, these limitations can, in some cases, be overcome by the agency afforded to audiences in the digital landscape. Finally, this paper offers a critical lens for deliberating the lasting impact of fan involvement on both professional practices and the flows of mainstream media throughout East Asia.

Keywords: audience studies, bilingual, cultural proximity, fan-subbing, online communities, subtitles

Procedia PDF Downloads 129
1658 A Multicriteria Framework for Assessing Energy Audit Software for Low-Income Households

Authors: Charles Amoo, Joshua New, Bill Eckman

Abstract:

Buildings in the United States account for a significant proportion of energy consumption and greenhouse gas (GHG) emissions, and this trend is expected to continue as well as rise in the near future. Low-income households, in particular, bear a disproportionate burden of high building energy consumption and spending due to high energy costs. Energy efficiency improvements need to reach an average of 4% per year in this decade in order to meet global net zero emissions target by 2050, but less than 1 % of U.S. buildings are improved each year. The government has recognized the importance of technology in addressing this issue, and energy efficiency programs have been developed to tackle the problem. The Weatherization Assistance Program (WAP), the largest residential whole-house energy efficiency program in the U.S., is specifically designed to reduce energy costs for low-income households. Under the WAP, energy auditors must follow specific audit procedures and use Department of Energy (DOE) approved energy audit tools or software. This article proposes an expanded framework of factors that should be considered in energy audit software that is approved for use in energy efficiency programs, particularly for low-income households. The framework includes more than 50 factors organized under 14 assessment criteria and can be used to qualitatively and quantitatively score different energy audit software to determine their suitability for specific energy efficiency programs. While the tool can be useful for developers to build new tools and improve existing software, as well as for energy efficiency program administrators to approve or certify tools for use, there are limitations to the model, such as the lack of flexibility that allows continuous scoring to accommodate variability and subjectivity. These limitations can be addressed by using aggregate scores of each criterion as weights that could be combined with value function and direct rating scores in a multicriteria decision analysis for a more flexible scoring.

Keywords: buildings, energy efficiency, energy audit, software

Procedia PDF Downloads 77
1657 An Approach for Thermal Resistance Prediction of Plain Socks in Wet State

Authors: Tariq Mansoor, Lubos Hes, Vladimir Bajzik

Abstract:

Socks comfort has great significance in our daily life. This significance even increased when we have undergone a work of low or high activity. It causes the sweating of our body with different rates. In this study, plain socks with differential fibre composition were wetted to saturated level. Then after successive intervals of conditioning, these socks are characterized by thermal resistance in dry and wet states. Theoretical thermal resistance is predicted by using combined filling coefficients and thermal conductivity of wet polymers instead of dry polymer (fibre) in different models. By this modification, different mathematical models could predict thermal resistance at different moisture levels. Furthermore, predicted thermal resistance by different models has reasonable correlation range between (0.84 -0.98) with experimental results in both dry (lab conditions moisture) and wet states. "This work is supported by Technical University of Liberec under SGC-2019. Project number is 21314".

Keywords: thermal resistance, mathematical model, plain socks, moisture loss rate

Procedia PDF Downloads 198
1656 Assessment of Pull Mechanism at Enhancing Maize Farmers’ Utilisation of Aflasafe Bio-Control Measures in Oyo State, Nigeria

Authors: Jonathan A. Akinwale, Ibukun J. Agotola

Abstract:

There is a need to rethink how technology is being disseminated to end users in order to ensure wide adoption and utilisation. Aflasafe bio-control was developed to combat aflatoxin in maize to ensure food safety for the end users. This study was designed to assess how the pull mechanism is enhancing the utilisation of this proven technology among maize farmers in Oyo State, Nigeria. The study determines the awareness of farmers on Aflasafe, sources of purchase of Aflasafe, incentives towards the usage of Aflasafe, constraints to farmers’ utilisation and factors influencing farmers’ utilisation of Aflasafe bio-control measures. Respondents were selected using a multi-stage sampling procedure. Data were collected from respondents through interview schedule and analyzed using descriptive statistics (means, frequencies, and percentages) and inferential statistics (Pearson Product Moment Correlation and regression analysis). The result showed that 89% of the farmers indicated implementers as the outlet for the purchase of Aflasafe. Also, premium payment and provision of technical assistance were the highly ranked incentives to the utilisation of Aflasafe among the farmers. The study also revealed that the major constraints face by respondents were low access to credit facility, inadequate sources of purchase, and lack of storage facilities. A little above half (54%) of the farmers were found to have fully utilized Aflasafe in maize production. Pearson Product Moment Correlation (PPMC) analysis revealed that there was a significant correlation between incentives and utilisation of Aflasafe (r-value=0.274; p ≤ 0.01). The result of the regression analysis indicated maize production experience (β=0.572), output (β=0.531), years of formal education (β=0.404) and household size (β=0.391) as the leading factors influencing farmers utilisation of Aflasafe bio-control in maize production. The study, therefore, recommends that governments and non-governmental organisations should be interested in making Aflasafe available to the maize farmers either through loan provision or price subsidy.

Keywords: Aflasafe bio-control, maize production, production incentives, pull mechanism, utilisation

Procedia PDF Downloads 125
1655 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 127
1654 Investigating Sustainable Construction and Demolition Waste Management Practices in South Africa

Authors: Ademilade J. Aboginije, Clinton O. Aigbavboa

Abstract:

South Africa is among the emerging economy, which has a policy and suitable environment that dynamically stimulates waste management practices of diverting waste away from landfill through prevention, reuse, recycling, and recovery known as the 4R-approaches. The focus of this paper is to investigate the existing structures and processes that are environmentally responsible, then determine the resource-efficiency of the waste management practices in the South Africa construction industry. This paper indicates the results of an investigation carried out by using a systematic review of several related literatures to assess the sustainability of waste management scenarios with secondary material recovery to pinpoint all influential criteria and consequently, highlights a step by step approach to adequately analyze the process by using the indicators that can clearly and fully value the waste management practices in South Africa. Furthermore, a life cycle Analytical tool is used to support the development of a framework which can be applied in measuring the sustainability of existing waste management practices in South Africa. Finding shows that sustainable C&D waste management practices stance a great prospect far more noticeable in terms of job creation and opportunities, saving cost and conserving natural resources when incorporated, especially in the process of recycling and reusing of C&D waste materials in several construction projects in South Africa. However, there are problems such as; inadequacy of waste to energy plants, low compliances to policies and sustainable principles, lack of enough technical capacities confronting the effectiveness of the current waste management practices. Thus, with the increase in the pursuit of sustainable development in most developing countries, this paper determines how sustainability can be measured and used in top-level decision-making policy within construction and demolition waste management for a sustainable built environment.

Keywords: construction industry, green-star rating, life-cycle analysis, sustainability, zero-waste hierarchy

Procedia PDF Downloads 128
1653 The Implementation of a Numerical Technique to Thermal Design of Fluidized Bed Cooler

Authors: Damiaa Saad Khudor

Abstract:

The paper describes an investigation for the thermal design of a fluidized bed cooler and prediction of heat transfer rate among the media categories. It is devoted to the thermal design of such equipment and their application in the industrial fields. It outlines the strategy for the fluidization heat transfer mode and its implementation in industry. The thermal design for fluidized bed cooler is used to furnish a complete design for a fluidized bed cooler of Sodium Bicarbonate. The total thermal load distribution between the air-solid and water-solid along the cooler is calculated according to the thermal equilibrium. The step by step technique was used to accomplish the thermal design of the fluidized bed cooler. It predicts the load, air, solid and water temperature along the trough. The thermal design for fluidized bed cooler revealed to the installation of a heat exchanger consists of (65) horizontal tubes with (33.4) mm diameter and (4) m length inside the bed trough.

Keywords: fluidization, powder technology, thermal design, heat exchangers

Procedia PDF Downloads 513
1652 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression

Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu

Abstract:

The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.

Keywords: artificial neural network (ANN), finite element method (FEM), perforated sections, thin-walled Steel, ultimate load

Procedia PDF Downloads 352