Search results for: innovation network
4117 Evaluating Multiple Diagnostic Tests: An Application to Cervical Intraepithelial Neoplasia
Authors: Areti Angeliki Veroniki, Sofia Tsokani, Evangelos Paraskevaidis, Dimitris Mavridis
Abstract:
The plethora of diagnostic test accuracy (DTA) studies has led to the increased use of systematic reviews and meta-analysis of DTA studies. Clinicians and healthcare professionals often consult DTA meta-analyses to make informed decisions regarding the optimum test to choose and use for a given setting. For example, the human papilloma virus (HPV) DNA, mRNA, and cytology can be used for the cervical intraepithelial neoplasia grade 2+ (CIN2+) diagnosis. But which test is the most accurate? Studies directly comparing test accuracy are not always available, and comparisons between multiple tests create a network of DTA studies that can be synthesized through a network meta-analysis of diagnostic tests (DTA-NMA). The aim is to summarize the DTA-NMA methods for at least three index tests presented in the methodological literature. We illustrate the application of the methods using a real data set for the comparative accuracy of HPV DNA, HPV mRNA, and cytology tests for cervical cancer. A search was conducted in PubMed, Web of Science, and Scopus from inception until the end of July 2019 to identify full-text research articles that describe a DTA-NMA method for three or more index tests. Since the joint classification of the results from one index against the results of another index test amongst those with the target condition and amongst those without the target condition are rarely reported in DTA studies, only methods requiring the 2x2 tables of the results of each index test against the reference standard were included. Studies of any design published in English were eligible for inclusion. Relevant unpublished material was also included. Ten relevant studies were finally included to evaluate their methodology. DTA-NMA methods that have been presented in the literature together with their advantages and disadvantages are described. In addition, using 37 studies for cervical cancer obtained from a published Cochrane review as a case study, an application of the identified DTA-NMA methods to determine the most promising test (in terms of sensitivity and specificity) for use as the best screening test to detect CIN2+ is presented. As a conclusion, different approaches for the comparative DTA meta-analysis of multiple tests may conclude to different results and hence may influence decision-making. Acknowledgment: This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Extension of Network Meta-Analysis for the Comparison of Diagnostic Tests ” (MIS 5047640).Keywords: colposcopy, diagnostic test, HPV, network meta-analysis
Procedia PDF Downloads 1394116 Seismicity and Source Parameter of Some Events in Abu Dabbab Area, Red Sea Coast
Authors: Hamed Mohamed Haggag
Abstract:
Prior to 12 November 1955, no earthquakes have been reported from the Abu Dabbab area in the International Seismological Center catalogue (ISC). The largest earthquake in Abu Dabbab area occurred on November 12, 1955 with magnitude Mb 6.0. The closest station from the epicenter was at Helwan (about 700 km to the north), so the depth of this event is not constrained and no foreshocks or aftershocks were recorded. Two other earthquakes of magnitude Mb 4.5 and 5.2 took place in the same area on March 02, 1982 and July 02, 1984, respectively. Since the installation of Aswan Seismic Network stations in 1982, (250-300 km to the south-west of Abu Dabbab area) then the Egyptian Natoinal Seismic Network stations, it was possible to record some activity from Abu Dabbab area. The recorded earthquakes at Abu Dabbab area as recorded from 1982 to 2014 shows that the earthquake epicenters are distributed in the same direction of the main trends of the faults in the area, which is parallel to the Red Sea coast. The spectral analysis was made for some earthquakes. The source parameters, seismic moment (Mo), source dimension (r), stress drop (Δδ), and apparent stress (δ) are determined for these events. The spectral analysis technique was completed using MAG software program.Keywords: Abu Dabbab, seismicity, seismic moment, source parameter
Procedia PDF Downloads 4624115 Study on Principals Using Change Leadership to Promote School Innovation: A Case Study of a Primary School in Taiwan
Authors: Chih-Wen Fan
Abstract:
Backgrounds/ Research goals : School improvement requires change leadership, which often means discomfort. Principals are the key people that determine the effectiveness of schools. In an era of organization’s pursuit of speed and effectiveness, school administration has to be accountable and innovative. Effective principals work to improve achievement by focusing on the administrative and teaching quality of improvement. However, there is a lack of literature addressing the relevant case studies on school change leadership. This article explores how principals can use change leadership to drive school change. It analyze the driving factors of principal changes in the case school, the beliefs of change leadership, specific methods, and what impact they have. Methods: This study applies the case study research method to the selected primary school located in an urban area for case study, which has achieved excellent performance after reform and innovation. The researchers selected an older primary school located in an urban area that was transformed into a high-performance primary school after changes were enacted by the principal. The selected case was recommended by three supervisors of the Education Department. The case school underwent leadership change by the new principal during his term, and won an award from the Ministry of Education. Total of 8 teachers are interviewed. The data encoding includes interviews and documents. Expected results/ conclusions: The conclusions of the study are, as follows: (1) The influence for Principal Lin's change leadership is from internal and external environmental development and change pressures. (2) The principal's belief in change leadership is to recognize the sense of crisis, and to create a climate of change and demand for change. (3) The principal's specific actions are intended to identify key members, resolve resistance, use innovative thinking, and promote organizational learning. (4) Principal Lin's change leadership can enhance the professional functions of all employees through appropriate authorization. (5) The effectiveness of change leadership lies in teachers' participation in decision-making; the school's reputation has been enhanced through featured courses.Keywords: change leadership, empowerment, crisis awareness, case study
Procedia PDF Downloads 1384114 Dynamics of the Coupled Fitzhugh-Rinzel Neurons
Authors: Sanjeev Kumar Sharma, Arnab Mondal, Ranjit Kumar Upadhyay
Abstract:
Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. We consider a FitzHugh-Rinzel (FH-R) model and studied the different dynamics of the model by considering the parameter c as the predominant parameter. The model exhibits different types of neuronal responses such as regular spiking, mixed-mode bursting oscillations (MMBOs), elliptic bursting, etc. Based on the bifurcation diagram, we consider the three regimes (MMBOs, elliptic bursting, and quiescent state). An analytical treatment for the occurrence of the supercritical Hopf bifurcation is studied. Further, we extend our study to a network of a hundred neurons by considering the bi-directional synaptic coupling between them. In this article, we investigate the alternation of spiking propagation and bursting phenomena of an uncoupled and coupled FH-R neurons. We explore that the complete graph of heterogenous desynchronized neurons can exhibit different types of bursting oscillations for certain coupling strength. For higher coupling strength, all the neurons in the network show complete synchronization.Keywords: excitable neuron model, spiking-bursting, stability and bifurcation, synchronization networks
Procedia PDF Downloads 1284113 Cooperative Diversity Scheme Based on MIMO-OFDM in Small Cell Network
Authors: Dong-Hyun Ha, Young-Min Ko, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
In Heterogeneous network (HetNet) can provide high quality of a service in a wireless communication system by composition of small cell networks. The composition of small cell networks improves cell coverage and capacity to the mobile users.Recently, various techniques using small cell networks have been researched in the wireless communication system. In this paper, the cooperative scheme obtaining high reliability is proposed in the small cell networks. The proposed scheme suggests a cooperative small cell system and the new signal transmission technique in the proposed system model. The new signal transmission technique applies a cyclic delay diversity (CDD) scheme based on the multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system to obtain improved performance. The improved performance of the proposed scheme is confirmed by the simulation results.Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM
Procedia PDF Downloads 5024112 On the Development of a Homogenized Earthquake Catalogue for Northern Algeria
Authors: I. Grigoratos, R. Monteiro
Abstract:
Regions with a significant percentage of non-seismically designed buildings and reduced urban planning are particularly vulnerable to natural hazards. In this context, the project ‘Improved Tools for Disaster Risk Mitigation in Algeria’ (ITERATE) aims at seismic risk mitigation in Algeria. Past earthquakes in North Algeria caused extensive damages, e.g. the El Asnam 1980 moment magnitude (Mw) 7.1 and Boumerdes 2003 Mw 6.8 earthquakes. This paper will address a number of proposed developments and considerations made towards a further improvement of the component of seismic hazard. In specific, an updated earthquake catalog (until year 2018) is compiled, and new conversion equations to moment magnitude are introduced. Furthermore, a network-based method for the estimation of the spatial and temporal distribution of the minimum magnitude of completeness is applied. We found relatively large values for Mc, due to the sparse network, and a nonlinear trend between Mw and body wave (mb) or local magnitude (ML), which are the most common scales reported in the region. Lastly, the resulting b-value of the Gutenberg-Richter distribution is sensitive to the declustering method.Keywords: conversion equation, magnitude of completeness, seismic events, seismic hazard
Procedia PDF Downloads 1654111 Makerspaces as Centers of Innovation: An Assessment of the Impact of Technology Incubation Centers in Nigeria
Authors: Bisi Olawoyin
Abstract:
The idea of knowledge sharing facilitated by the internet and complemented by a collaborative offline process in form of shared workshops called Makerspaces has become an attractive economic development agenda worldwide. Towards this end, Nigeria has established a number of Technology Incubation Centers (TICs) across the country with a view to using them as institutional mechanisms for commercializing Research and Development results; thus helping to promote venture creation and economic development. This study thus examines the impact of the nurturing by the TICs, on the performance of selected incubated enterprises that have grown into medium scale businesses in different sectors of the economy. The objective is to determine the extent to which the process of incubation has contributed to their growth in relation to similar businesses that developed outside the TICs. Six enterprises nurtured by TICs and six others outside, these were selected for the study. Data were collected in respect of the twelve enterprises covering their first five years of operation. Performances in terms of annual turnover, market share, and product range were analysed by scatter diagram plotted to show these variables against time and on comparative basis between TIC and non-TIC enterprises. Results showed an initial decline in performance for most of the incubatees in the first two years due to sluggish adjustment to withdrawal of subsidies enjoyed at the TICs. However, four of them were able to catch up with improved performance and surpass their non–TIC counterparts consistently from the third year. Analysis of year on year performance also showed average growth rate of 7% and 5 % respectively for TIC and non–TIC enterprises. The study, therefore, concludes that TICs have great role to play in nurturing new, innovative businesses but sees the need for government to address the provision of critical facilities especially electricity and utilities that constitute critical cost components for businesses. It must also address the issue of investment grants, loans including the development of technology/industrial parks that will serve to boost business survival.Keywords: entrepreneurship, incubation, innovation, makerspaces
Procedia PDF Downloads 2214110 Synthesis and Properties of Chitosan-Graft-Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification
Authors: Hafida Ferfera-Harrar, Nacera Aiouaz, Nassima Dairi
Abstract:
Super absorbents polymers received much attention and are used in many fields because of their superior characters to traditional absorbents, e.g., sponge and cotton. So, it is very important but challenging to prepare highly and fast-swelling super absorbents. A reliable, efficient and low-cost technique for removing heavy metal ions from waste water is the adsorption using bio-adsorbents obtained from biological materials, such as polysaccharides-based hydrogels super absorbents. In this study, novel multi-functional super absorbent composites type semi-interpenetrating polymer networks (Semi-IPNs) were prepared via graft polymerization of acrylamide onto chitosan backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium persulfate and N,N’ -methylenebisacrylamide as initiator and cross linker, respectively. These hydrogels were also partially hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. The formation of the grafted network was evidenced by Fourier Transform Infrared Spectroscopy (ATR-FTIR) and thermo gravimetric Analysis (TGA). The porous structures were observed by Scanning Electron Microscope (SEM). From TGA analysis, it was concluded that the incorporation of the Ge in the CTS-g-PAAm network has marginally affected its thermal stability. The effect of gelatin content on the swelling capacities of these super absorbent composites was examined in various media (distilled water, saline and pH-solutions).The water absorbency was enhanced by adding Ge in the network, where the optimum value was reached at 2 wt. % of Ge. Their hydrolysis has not only greatly optimized their absorption capacity but also improved the swelling kinetic. These materials have also showed reswelling ability. We believe that these super-absorbing materials would be very effective for the adsorption of harmful metal ions from waste water.Keywords: chitosan, gelatin, superabsorbent, water absorbency
Procedia PDF Downloads 4644109 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores
Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi
Abstract:
In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.Keywords: drug synergy, clustering, prediction, machine learning., deep learning
Procedia PDF Downloads 794108 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1184107 Monitoring System for Electronic Procurement Systems
Authors: Abdulah Fajar
Abstract:
Electronic Procurement System has been implemented at government institution in Indonesia. This system has been developed centrally at Institution of National Procurement Policy (LKPP) and implemented autonomously at either local or national government institution. The lack of competency at many institution on Information Technology Management arise several major problems. The main concern of LKPP to local administrator is assured that the system is running normally and always be able to serve the needs of its users. Monitoring system has been identified as the one of solution to prevent the problems appeared. Monitoring system is developed using Simple Network Management Protocol (SNMP) and implemented at LKPP. There are two modules; Main Dashboard and Local Agent. Main Dashboard is intended for LKPP and Local Agent is intended to implement at local autonomous e-procurement system (LPSE). There are several resources that must be monitored such as computation, memory and network traffic. Agile paradigm is applied to this project to assure user and system requirement is met. The length of project is the one of reason why agile paradigm has been chosen. The system has been successfully delivered to LKPP.Keywords: procurement system, SNMP, LKPP, LPSE
Procedia PDF Downloads 4274106 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria
Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi
Abstract:
In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network
Procedia PDF Downloads 1154105 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.Keywords: JPSO, operation, optimization, water distribution system
Procedia PDF Downloads 2454104 Social Network Roles in Organizations: Influencers, Bridges, and Soloists
Authors: Sofia Dokuka, Liz Lockhart, Alex Furman
Abstract:
Organizational hierarchy, traditionally composed of individual contributors, middle management, and executives, is enhanced by the understanding of informal social roles. These roles, identified with organizational network analysis (ONA), might have an important effect on organizational functioning. In this paper, we identify three social roles – influencers, bridges, and soloists, and provide empirical analysis based on real-world organizational networks. Influencers are employees with broad networks and whose contacts also have rich networks. Influence is calculated using PageRank, initially proposed for measuring website importance, but now applied in various network settings, including social networks. Influencers, having high PageRank, become key players in shaping opinions and behaviors within an organization. Bridges serve as links between loosely connected groups within the organization. Bridges are identified using betweenness and Burt’s constraint. Betweenness quantifies a node's control over information flows by evaluating its role in the control over the shortest paths within the network. Burt's constraint measures the extent of interconnection among an individual's contacts. A high constraint value suggests fewer structural holes and lesser control over information flows, whereas a low value suggests the contrary. Soloists are individuals with fewer than 5 stable social contacts, potentially facing challenges due to reduced social interaction and hypothetical lack of feedback and communication. We considered social roles in the analysis of real-world organizations (N=1,060). Based on data from digital traces (Slack, corporate email and calendar) we reconstructed an organizational communication network and identified influencers, bridges and soloists. We also collected employee engagement data through an online survey. Among the top-5% of influencers, 10% are members of the Executive Team. 56% of the Executive Team members are part of the top influencers group. The same proportion of top influencers (10%) is individual contributors, accounting for just 0.6% of all individual contributors in the company. The majority of influencers (80%) are at the middle management level. Out of all middle managers, 19% hold the role of influencers. However, individual contributors represent a small proportion of influencers, and having information about these individuals who hold influential roles can be crucial for management in identifying high-potential talents. Among the bridges, 4% are members of the Executive Team, 16% are individual contributors, and 80% are middle management. Predominantly middle management acts as a bridge. Bridge positions of some members of the executive team might indicate potential micromanagement on the leader's part. Recognizing the individuals serving as bridges in an organization uncovers potential communication problems. The majority of soloists are individual contributors (96%), and 4% of soloists are from middle management. These managers might face communication difficulties. We found an association between being an influencer and attitude toward a company's direction. There is a statistically significant 20% higher perception that the company is headed in the right direction among influencers compared to non-influencers (p < 0.05, Mann-Whitney test). Taken together, we demonstrate that considering social roles in the company might indicate both positive and negative aspects of organizational functioning that should be considered in data-driven decision-making.Keywords: organizational network analysis, social roles, influencer, bridge, soloist
Procedia PDF Downloads 1044103 Paraplegic Dimensions of Asymmetric Warfare: A Strategic Analysis for Resilience Policy Plan
Authors: Sehrish Qayyum
Abstract:
In this age of constant technology, asymmetrical warfare could not be won. Attuned psychometric study confirms that screaming sometimes is more productive than active retaliation against strong adversaries. Asymmetric warfare is a game of nerves and thoughts with least vigorous participation for large anticipated losses. It creates the condition of paraplegia with partial but permanent immobility, which effects the core warfare operations, being screams rather than active retaliation. When one’s own power is doubted, it gives power to one’s own doubt to ruin all planning either done with superlative cost-benefit analysis. Strategically calculated estimation of asymmetric warfare since the early WWI to WWII, WWII-to Cold War, and then to the current era in three chronological periods exposits that courage makes nations win the battle of warriors to battle of comrades. Asymmetric warfare has been most difficult to fight and survive due to unexpectedness and being lethal despite preparations. Thoughts before action may be the best-assumed strategy to mix Regional Security Complex Theory and OODA loop to develop the Paraplegic Resilience Policy Plan (PRPP) to win asymmetric warfare. PRPP may serve to control and halt the ongoing wave of terrorism, guerilla warfare, and insurgencies, etc. PRPP, along with a strategic work plan, is based on psychometric analysis to deal with any possible war condition and tactic to save millions of innocent lives such that lost in Christchurch New Zealand in 2019, November 2015 Paris attacks, and Berlin market attacks in 2016, etc. Getting tangled into self-imposed epistemic dilemmas results in regret that becomes the only option of performance. It is a descriptive psychometric analysis of war conditions with generic application of probability tests to find the best possible options and conditions to develop PRPP for any adverse condition possible so far. Innovation in technology begets innovation in planning and action-plan to serve as a rheostat approach to deal with asymmetric warfare.Keywords: asymmetric warfare, psychometric analysis, PRPP, security
Procedia PDF Downloads 1364102 A Bio-Inspired Approach for Self-Managing Wireless Sensor and Actor Networks
Authors: Lyamine Guezouli, Kamel Barka, Zineb Seghir
Abstract:
Wireless sensor and actor networks (WSANs) present a research challenge for different practice areas. Researchers are trying to optimize the use of such networks through their research work. This optimization is done on certain criteria, such as improving energy efficiency, exploiting node heterogeneity, self-adaptability and self-configuration. In this article, we present our proposal for BIFSA (Biologically-Inspired Framework for Wireless Sensor and Actor networks). Indeed, BIFSA is a middleware that addresses the key issues of wireless sensor and actor networks. BIFSA consists of two types of agents: sensor agents (SA) that operate at the sensor level to collect and transport data to actors and actor agents (AA) that operate at the actor level to transport data to base stations. Once the sensor agent arrives at the actor, it becomes an actor agent, which can exploit the resources of the actors and vice versa. BIFSA allows agents to evolve their genetic structures and adapt to the current network conditions. The simulation results show that BIFSA allows the agents to make better use of all the resources available in each type of node, which improves the performance of the network.Keywords: wireless sensor and actor networks, self-management, genetic algorithm, agent.
Procedia PDF Downloads 894101 Path Planning for Multiple Unmanned Aerial Vehicles Based on Adaptive Probabilistic Sampling Algorithm
Authors: Long Cheng, Tong He, Iraj Mantegh, Wen-Fang Xie
Abstract:
Path planning is essential for UAVs (Unmanned Aerial Vehicle) with autonomous navigation in unknown environments. In this paper, an adaptive probabilistic sampling algorithm is proposed for the GPS-denied environment, which can be utilized for autonomous navigation system of multiple UAVs in a dynamically-changing structured environment. This method can be used for Unmanned Aircraft Systems Traffic Management (UTM) solutions and in autonomous urban aerial mobility, where a number of platforms are expected to share the airspace. A path network is initially built off line based on available environment map, and on-board sensors systems on the flying UAVs are used for continuous situational awareness and to inform the changes in the path network. Simulation results based on MATLAB and Gazebo in different scenarios and algorithms performance measurement show the high efficiency and accuracy of the proposed technique in unknown environments.Keywords: path planning, adaptive probabilistic sampling, obstacle avoidance, multiple unmanned aerial vehicles, unknown environments
Procedia PDF Downloads 1564100 Psychological Capital and Intention for Self-Employment among Students in HEIs: A Multi-group Analysis Approach
Authors: Ugur Choban, Aruzhan Zhaksylyk, Assylbek Nurgabdeshov
Abstract:
In recent years, there has been an increasing understanding of the value of encouraging entrepreneurial attitudes in university students. This is motivated by the belief that stimulating entrepreneurship not only promotes economic growth but also fosters innovation. This study looks at the complex link and addresses critical gaps between psychological capital and entrepreneurial intention among university students, with a specific emphasis on how contextual factors like academic support and past business experience impact this dynamic. Using a quantitative research method, data were gathered from a broad sample of 300 university students drawn from several faculties. The study used a questionnaire that included the Psychological Capital Questionnaire (PCQ) to assess psychological capital and a validated scale for entrepreneurial intention, as well as binary measures of academic support and prior entrepreneurial experience. Statistical investigations, including multigroup analyses performed with SmartPLS software, provided interesting insights into the effect of contextual factors on the relationship between psychological capital and entrepreneurial intention. The findings highlight that psychological capital had a strong favorable influence on university students' entrepreneurial inclinations. Furthermore, the study found that academic support enhances the influence of psychological capital on entrepreneurial intentions, emphasizing the significance of institutional backing in fostering entrepreneurial mindsets. Furthermore, students with prior entrepreneurial experience had a stronger propensity for entrepreneurship, showing a synergistic link between psychological capital and entrepreneurial background. These findings have both theoretical and practical implications. By explaining the mechanisms by which psychological capital promotes entrepreneurial intentions, the study contributes to the establishment of focused entrepreneurship education programs and support activities that are suited to student requirements. Policymakers may use these findings to create policies that encourage student entrepreneurship, ultimately encouraging economic development and innovation.Keywords: academic support, entrepreneurial intentions, higher education institutions, psychological capital, prior entrepreneurial experience
Procedia PDF Downloads 564099 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 574098 Highway Capacity and Level of Service
Authors: Kidist Mesfin Nguse
Abstract:
Ethiopia is the second most densely populated nation in Africa, and about 121 million people as the 2022 Ethiopia population live report recorded. In recent years, the Ethiopian government (GOE) has been gradually growing its road network. With 138,127 kilometers (85,825 miles) of all-weather roads as of the end of 2018–19, Ethiopia possessed just 39% of the nation's necessary road network and lacked a well-organized system. The Ethiopian urban population report recorded that about 21% of the population lives in urban areas, and the high population, coupled with growth in various infrastructures, has led to the migration of the workforce from rural areas to cities across the country. In main roads, the heterogeneous traffic flow with various operational features makes it more unfavorable, causing frequent congestion in the stretch of road. The Level of Service (LOS), a qualitative measure of traffic, is categorized based on the operating conditions in the traffic stream. Determining the capacity and LOS for this city is very crucial as this affects the planning and design of traffic systems and their operation, and the allocation of route selection for infrastructure building projects to provide for a considerably good level of service.Keywords: capacity, level of service, traffic volume, free flow speed
Procedia PDF Downloads 514097 Intellectual Property Rights and Health Rights: A Feasible Reform Proposal to Facilitate Access to Drugs in Developing Countries
Authors: M. G. Cattaneo
Abstract:
The non-effectiveness of certain codified human rights is particularly apparent with reference to the lack of access to essential drugs in developing countries, which represents a breach of the human right to receive adequate health assistance. This paper underlines the conflict and the legal contradictions between human rights, namely health rights, international Intellectual Property Rights, in particular patent law, as well as international trade law. The paper discusses the crucial links between R&D costs for innovation, patents and new medical drugs, with the goal of reformulating the hierarchies of priorities and of interests at stake in the international intellectual property (IP) law system. Different from what happens today, International patent law should be a legal instrument apt at rebalancing an axiological asymmetry between the (conflicting) needs at stake The core argument in the paper is the proposal of an alternative pathway, namely a feasible proposal for a patent law reform. IP laws tend to balance the benefits deriving from innovation with the costs of the provided monopoly, but since developing countries and industrialized countries are in completely different political and economic situations, it is necessary to (re)modulate such exchange according to the different needs. Based on this critical analysis, the paper puts forward a proposal, called Trading Time for Space (TTS), whereby a longer time for patent exclusive life in western countries (Time) is offered to the patent holder company, in exchange for the latter selling the medical drug at cost price in developing countries (Space). Accordingly, pharmaceutical companies should sell drugs in developing countries at the cost price, or alternatively grant a free license for the sale in such countries, without any royalties or fees. However, such social service shall be duly compensated. Therefore, the consideration for such a service shall be an extension of the temporal duration of the patent’s exclusive in the country of origin that will compensate the reduced profits caused by the supply at the price cost in developing countries.Keywords: global health, global justice, patent law reform, access to drugs
Procedia PDF Downloads 2464096 Introduction of a Multimodal Intervention for People with Autism: 'ReAttach'
Authors: P. Weerkamp Bartholomeus
Abstract:
Autism treatment evaluation is crucial for monitoring the development of an intervention at an early stage. ‘ReAttach’ is a new intervention based on the principles of attachment and social cognitive training. Practical research suggests promising results on a variety of developmental areas. Five years after the first ReAttach sessions these findings can be extended with qualitative research by means of follow-up interviews. The potential impact of this treatment on daily life functioning and well-being of autistic persons becomes clear.Keywords: autism, innovation, treatment, social cognitive training
Procedia PDF Downloads 2914095 Development of One-Axis Didactic Solar Tracker for Photovoltaic Panels
Authors: L. J. de Bessa Neto, M. R. B. Guerra Vale, F. K. O. M. Varella Guerra
Abstract:
In recent years, solar energy has established itself as one of the main sources of renewable energy, gaining a large space in electricity generation around the world. However, due to the low performance of photovoltaic panels, technologies need to be sought to maximize the production of electricity. In this regard, the present study aims to develop a prototype of solar tracker for didactics applications, controlled with the Arduino® platform, that enables the movement of photovoltaic plates in relation to the sun positions throughout the day through an electromechanical system, optimizing, thus, the efficiency of solar photovoltaic generation and improvements for the photovoltaic effect. The solar tracking technology developed in this work was presented of the shape oral and practical in two middle schools in the municipality of Mossoró/RN, being one of the public network and other of the private network, always keeping the average age of the students, in the case, around 16 years, contemplating an average of 60 students in each of the visits. Thus, it is concluded that the present study contributed substantially to the dissemination of knowledge concerning the photovoltaic solar generation, as well as the study of solar trackers, thus arousing the interest and curiosity of the students regarding the thematic approached.Keywords: alternative energy, solar tracker, energy efficiency, photovoltaic panels
Procedia PDF Downloads 1474094 Bandwidth Efficient Cluster Based Collision Avoidance Multicasting Protocol in VANETs
Authors: Navneet Kaur, Amarpreet Singh
Abstract:
In Vehicular Adhoc Networks, Data Dissemination is a challenging task. There are number of techniques, types and protocols available for disseminating the data but in order to preserve limited bandwidth and to disseminate maximum data over networks makes it more challenging. There are broadcasting, multicasting and geocasting based protocols. Multicasting based protocols are found to be best for conserving the bandwidth. One such protocol named BEAM exists that improves the performance of Vehicular Adhoc Networks by reducing the number of in-network message transactions and thereby efficiently utilizing the bandwidth during an emergency situation. But this protocol may result in multicar chain collision as there was no V2V communication. So, this paper proposes a new protocol named Enhanced Bandwidth Efficient Cluster Based Multicasting Protocol (EBECM) that will overcome the limitations of existing BEAM protocol. And Simulation results will show the improved performance of EBECM in terms of Routing overhead, throughput and PDR when compared with BEAM protocol.Keywords: BEAM, data dissemination, emergency situation, vehicular adhoc network
Procedia PDF Downloads 3484093 Cost and Benefits of Collocation in the Use of Biogas to Reduce Vulnerabilities and Risks
Authors: Janaina Camile Pasqual Lofhagen, David Savarese, Veronika Vazhnik
Abstract:
The urgency of the climate crisis requires both innovation and practicality. The energy transition framework allows industry to deliver resilient cities, enhance adaptability to change, pursue energy objectives such as growth or efficiencies, and increase renewable energy. This paper investigates a real-world application perspective for the use of biogas in Brazil and the U.S.. It will examine interventions to provide a foundation of infrastructure, as well as the tangible benefits for policy-makers crafting law and providing incentives.Keywords: resilience, vulnerability, risks, biogas, sustainability.
Procedia PDF Downloads 1054092 Order Optimization of a Telecommunication Distribution Center through Service Lead Time
Authors: Tamás Hartványi, Ferenc Tóth
Abstract:
European telecommunication distribution center performance is measured by service lead time and quality. Operation model is CTO (customized to order) namely, a high mix customization of telecommunication network equipment and parts. CTO operation contains material receiving, warehousing, network and server assembly to order and configure based on customer specifications. Variety of the product and orders does not support mass production structure. One of the success factors to satisfy customer is to have a proper aggregated planning method for the operation in order to have optimized human resources and highly efficient asset utilization. Research will investigate several methods and find proper way to have an order book simulation where practical optimization problem may contain thousands of variables and the simulation running times of developed algorithms were taken into account with high importance. There are two operation research models that were developed, customer demand is given in orders, no change over time, customer demands are given for product types, and changeover time is constant.Keywords: CTO, aggregated planning, demand simulation, changeover time
Procedia PDF Downloads 2674091 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data
Authors: Huinan Zhang, Wenjie Jiang
Abstract:
Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.Keywords: Artificial intelligence, deep learning, data mining, remote sensing
Procedia PDF Downloads 634090 Calycosin Ameliorates Osteoarthritis by Regulating the Imbalance Between Chondrocyte Synthesis and Catabolism
Authors: Hong Su, Qiuju Yan, Wei Du, En Hu, Zhaoyu Yang, Wei Zhang, Yusheng Li, Tao Tang, Wang yang, Shushan Zhao
Abstract:
Osteoarthritis (OA) is a severe chronic inflammatory disease. As the main active component of Astragalus mongholicus Bunge, a classic traditional ethnic herb, calycosin exhibits anti-inflammatory action and its mechanism of exact targets for OA have yet to be determined. In this study, we established an anterior cruciate ligament transection (ACLT) mouse model. Mice were randomized to sham, OA, and calycosin groups. Cartilage synthesis markers type II collagen (Col-2) and SRY-Box Transcription Factor 9 (Sox-9) increased significantly after calycosin gavage. While cartilage matrix degradation index cyclooxygenase-2 (COX-2), phosphor-epidermal growth factor receptor (p-EGFR), and matrix metalloproteinase-9 (MMP9) expression were decreased. With the help of network pharmacology and molecular docking, these results were confirmed in chondrocyte ATDC5 cells. Our results indicated that the calycosin treatment significantly improved cartilage damage, this was probably attributed to reversing the imbalance between chondrocyte synthesis and catabolism.Keywords: calycosin, osteoarthritis, network pharmacology, molecular docking, inflammatory, cyclooxygenase 2
Procedia PDF Downloads 1024089 Monitoring Cellular Networks Performance Using Crowd Sourced IoT System: My Operator Coverage (MOC)
Authors: Bassem Boshra Thabet, Mohammed Ibrahim Elsabagh, Mohammad Adly Talaat
Abstract:
The number of cellular mobile phone users has increased enormously worldwide over the last two decades. Consequently, the monitoring of the performance of the Mobile Network Operators (MNOs) in terms of network coverage and broadband signal strength has become vital for both of the MNOs and regulators. This monitoring helps telecommunications operators and regulators keeping the market playing fair and most beneficial for users. However, the adopted methodologies to facilitate this continuous monitoring process are still problematic regarding cost, effort, and reliability. This paper introduces My Operator Coverage (MOC) system that is using Internet of Things (IoT) concepts and tools to monitor the MNOs performance using a crowd-sourced real-time methodology. MOC produces robust and reliable geographical maps for the user-perceived quality of the MNOs performance. MOC is also meant to enrich the telecommunications regulators with concrete, and up-to-date information that allows for adequate mobile market management strategies as well as appropriate decision making.Keywords: mobile performance monitoring, crowd-sourced applications, mobile broadband performance, cellular networks monitoring
Procedia PDF Downloads 3964088 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 196