Search results for: elasto-plastic model
14616 Kinetics of Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds
Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto
Abstract:
Sulfur-oxidizing bacteria were isolated and then grown on salak fruit seeds forming a biofilm on the surface. Their performances in sulfide removal were experimentally observed. In doing so, the salak fruit seeds containing biofilm were then used as packing material in a cylinder. Biogas obtained from biological treatment, which contains 27.95 ppm of hydrogen sulfide was flown through the packed bed. The hydrogen sulfide from the biogas was absorbed in the biofilm and then degraded by the microbes in the biofilm. The hydrogen sulfide concentrations at a various axial position and various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. Since the biofilm is very thin, the sulfide concentration in the Biofilm at a certain axial position is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The values of the parameters were also obtained by curve-fitting. The accuracy of the model proposed was tested by comparing the calculation results using the model with the experimental data obtained. It turned out that the model proposed can describe the removal of sulfide liquid using bio-filter in the packed bed. The biofilter could remove 89,83 % of the hydrogen sulfide in the feed at 2.5 hr of operation and biogas flow rate of 30 L/hr.Keywords: sulfur-oxidizing bacteria, salak fruit seeds, biofilm, packing material, biogas
Procedia PDF Downloads 22314615 3D CFD Model of Hydrodynamics in Lowland Dam Reservoir in Poland
Authors: Aleksandra Zieminska-Stolarska, Ireneusz Zbicinski
Abstract:
Introduction: The objective of the present work was to develop and validate a 3D CFD numerical model for simulating flow through 17 kilometers long dam reservoir of a complex bathymetry. In contrast to flowing waters, dam reservoirs were not emphasized in the early years of water quality modeling, as this issue has never been the major focus of urban development. Starting in the 1970s, however, it was recognized that natural and man-made lakes are equal, if not more important than estuaries and rivers from a recreational standpoint. The Sulejow Reservoir (Central Poland) was selected as the study area as representative of many lowland dam reservoirs and due availability of a large database of the ecological, hydrological and morphological parameters of the lake. Method: 3D, 2-phase and 1-phase CFD models were analysed to determine hydrodynamics in the Sulejow Reservoir. Development of 3D, 2-phase CFD model of flow requires a construction of mesh with millions of elements and overcome serious convergence problems. As 1-phase CFD model of flow in relation to 2-phase CFD model excludes from the simulations the dynamics of waves only, which should not change significantly water flow pattern for the case of lowland, dam reservoirs. In 1-phase CFD model, the phases (water-air) are separated by a plate which allows calculations of one phase (water) flow only. As the wind affects velocity of flow, to take into account the effect of the wind on hydrodynamics in 1-phase CFD model, the plate must move with speed and direction equal to the speed and direction of the upper water layer. To determine the velocity at which the plate will move on the water surface and interacts with the underlying layers of water and apply this value in 1-phase CFD model, the 2D, 2-phase model was elaborated. Result: Model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA). Excellent agreement (an average error less than 10%) between computed and measured velocity profiles was found. As a result of work, the following main conclusions can be presented: •The results indicate that the flow field in the Sulejow Reservoir is transient in nature, with swirl flows in the lower part of the lake. Recirculating zones, with the size of even half kilometer, may increase water retention time in this region •The results of simulations confirm the pronounced effect of the wind on the development of the water circulation zones in the reservoir which might affect the accumulation of nutrients in the epilimnion layer and result e.g. in the algae bloom. Conclusion: The resulting model is accurate and the methodology develop in the frame of this work can be applied to all types of storage reservoir configurations, characteristics, and hydrodynamics conditions. Large recirculating zones in the lake which increase water retention time and might affect the accumulation of nutrients were detected. Accurate CFD model of hydrodynamics in large water body could help in the development of forecast of water quality, especially in terms of eutrophication and water management of the big water bodies.Keywords: CFD, mathematical modelling, dam reservoirs, hydrodynamics
Procedia PDF Downloads 40114614 Optimizing Microgrid Operations: A Framework of Adaptive Model Predictive Control
Authors: Ruben Lopez-Rodriguez
Abstract:
In a microgrid, diverse energy sources (both renewable and non-renewable) are combined with energy storage units to form a localized power system. Microgrids function as independent entities, capable of meeting the energy needs of specific areas or communities. This paper introduces a Model Predictive Control (MPC) approach tailored for grid-connected microgrids, aiming to optimize their operation. The formulation employs Mixed-Integer Programming (MIP) to find optimal trajectories. This entails the fulfillment of continuous and binary constraints, all while accounting for commutations between various operating conditions such as storage unit charge/discharge, import/export from/towards the main grid, as well as asset connection/disconnection. To validate the proposed approach, a microgrid case study is conducted, and the simulation results are compared with those obtained using a rule-based strategy.Keywords: microgrids, mixed logical dynamical systems, mixed-integer optimization, model predictive control
Procedia PDF Downloads 5814613 The Role of Academic Leaders at Jerash University in Crises Management 'Virus Corona as a Model'
Authors: Khaled M. Hama, Mohammed Al Magableh, Zaid Al Kuri, Ahmad Qayam
Abstract:
The study aimed to identify the role of academic leaders at Jerash University in crisis management from the faculty members' point of view, ‘the emerging Corona pandemic as a model’, as well as to identify the differences in the role of academic leaders at Jerash University in crisis management at the significance level (0.05 ≤ α) according to the study variables Gender Academic rank, years of experience, and identifying proposals that contribute to developing the performance of academic leaders at Jerash University in crisis management, ‘the Corona pandemic as a model’. The study was applied to a randomly selected sample of (72) faculty members at Jerash University, The researcher designed a tool for the study, which is the questionnaire, and it included two parts: the first part related to the personal data of the study sample members, and the second part was divided into five areas and (34) paragraphs to reveal the role of academic leaders at Jerash University in crisis management - the Corona pandemic as a model, it was confirmed From the validity and reliability of the tool, the study used the descriptive analytical method The study reached the following results: that the role of academic leaders at Jerash University in crisis management from the point of view of faculty members, ‘the emerging corona pandemic as a model’, came to a high degree, and there were no statistically significant differences at the level of statistical significance (α = 0.05) between the computational circles for the estimates of individuals The study sample for the role of academic leaders at Jerash University in crisis management is attributed to the study variables (gender, academic rank, and years of experience)Keywords: academic leaders, crisis management, corona pandemic, Jerash University
Procedia PDF Downloads 5714612 The Attitudes of Pre-Service Teachers towards Analytical Thinking Skill Development Based on Miller’s Model
Authors: Thassanant Unnanantn, Suttipong Boonphadung
Abstract:
This research study aimed to survey and analyze the attitudes of pre-service teachers’ the analytical thinking development based on Miller’s Model. The informants of this study were 22 third year teacher students majoring in Thai. The course where the instruction was conducted was English for Academic Purposes in Thai Language 2. The instrument of this research was an open-ended questionnaire with two dimensions of questions: academic and satisfaction dimensions. The investigation revealed the positive attitudes. In the academic dimension, the majority of 12 (54.54%), the highest percentage, reflected that the method of teaching analytical thinking and language simultaneously was their new knowledge and the similar percentage also belonged to text cohesion in writing. For the satisfaction, the highest frequency count was from 17 of them (77.27%) and this majority favored the openness or friendliness of the teacher.Keywords: analytical thinking development, Miller’s Model, attitudes, pre-service teachers
Procedia PDF Downloads 31014611 Effect of Assumptions of Normal Shock Location on the Design of Supersonic Ejectors for Refrigeration
Authors: Payam Haghparast, Mikhail V. Sorin, Hakim Nesreddine
Abstract:
The complex oblique shock phenomenon can be simply assumed as a normal shock at the constant area section to simulate a sharp pressure increase and velocity decrease in 1-D thermodynamic models. The assumed normal shock location is one of the greatest sources of error in ejector thermodynamic models. Most researchers consider an arbitrary location without justifying it. Our study compares the effect of normal shock place on ejector dimensions in 1-D models. To this aim, two different ejector experimental test benches, a constant area-mixing ejector (CAM) and a constant pressure-mixing (CPM) are considered, with different known geometries, operating conditions and working fluids (R245fa, R141b). In the first step, in order to evaluate the real value of the efficiencies in the different ejector parts and critical back pressure, a CFD model was built and validated by experimental data for two types of ejectors. These reference data are then used as input to the 1D model to calculate the lengths and the diameters of the ejectors. Afterwards, the design output geometry calculated by the 1D model is compared directly with the corresponding experimental geometry. It was found that there is a good agreement between the ejector dimensions obtained by the 1D model, for both CAM and CPM, with experimental ejector data. Furthermore, it is shown that normal shock place affects only the constant area length as it is proven that the inlet normal shock assumption results in more accurate length. Taking into account previous 1D models, the results suggest the use of the assumed normal shock location at the inlet of the constant area duct to design the supersonic ejectors.Keywords: 1D model, constant area-mixing, constant pressure-mixing, normal shock location, ejector dimensions
Procedia PDF Downloads 19514610 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model
Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino
Abstract:
The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.Keywords: base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model
Procedia PDF Downloads 28114609 Agile Software Effort Estimation Using Regression Techniques
Authors: Mikiyas Adugna
Abstract:
Effort estimation is among the activities carried out in software development processes. An accurate model of estimation leads to project success. The method of agile effort estimation is a complex task because of the dynamic nature of software development. Researchers are still conducting studies on agile effort estimation to enhance prediction accuracy. Due to these reasons, we investigated and proposed a model on LASSO and Elastic Net regression to enhance estimation accuracy. The proposed model has major components: preprocessing, train-test split, training with default parameters, and cross-validation. During the preprocessing phase, the entire dataset is normalized. After normalization, a train-test split is performed on the dataset, setting training at 80% and testing set to 20%. We chose two different phases for training the two algorithms (Elastic Net and LASSO) regression following the train-test-split. In the first phase, the two algorithms are trained using their default parameters and evaluated on the testing data. In the second phase, the grid search technique (the grid is used to search for tuning and select optimum parameters) and 5-fold cross-validation to get the final trained model. Finally, the final trained model is evaluated using the testing set. The experimental work is applied to the agile story point dataset of 21 software projects collected from six firms. The results show that both Elastic Net and LASSO regression outperformed the compared ones. Compared to the proposed algorithms, LASSO regression achieved better predictive performance and has acquired PRED (8%) and PRED (25%) results of 100.0, MMRE of 0.0491, MMER of 0.0551, MdMRE of 0.0593, MdMER of 0.063, and MSE of 0.0007. The result implies LASSO regression algorithm trained model is the most acceptable, and higher estimation performance exists in the literature.Keywords: agile software development, effort estimation, elastic net regression, LASSO
Procedia PDF Downloads 7314608 Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells
Authors: Hossein Bazmara, Kaamran Raahemifar, Mostafa Sefidgar, Madjid Soltani
Abstract:
Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity.Keywords: angiogenesis, endothelial cells, multi-scale model, cellular Pott's model, signaling cascade
Procedia PDF Downloads 42714607 Dynamic Response Analyses for Human-Induced Lateral Vibration on Congested Pedestrian Bridges
Authors: M. Yoneda
Abstract:
In this paper, a lateral walking design force per person is proposed and compared with Imperial College test results. Numerical simulations considering the proposed walking design force which is incorporated into the neural-oscillator model are carried out placing much emphasis on the synchronization (the lock-in phenomenon) for a pedestrian bridge model with the span length of 50 m. Numerical analyses are also conducted for an existing pedestrian suspension bridge. As compared with full scale measurements for this suspension bridge, it is confirmed that the analytical method based on the neural-oscillator model might be one of the useful ways to explain the synchronization (the lock-in phenomenon) of pedestrians being on the bridge.Keywords: pedestrian bridge, human-induced lateral vibration, neural-oscillator, full scale measurement, dynamic response analysis
Procedia PDF Downloads 20114606 Retaining Users in a Commercially-Supported Social Network
Authors: Sasiphan Nitayaprapha
Abstract:
A commercially-supported social network has become an emerging channel for an organization to communicate with and provide services to customers. The success of the commercially-supported social network depends on the ability of the organization to keep the customers in participating in the network. Drawing from the theories of information adoption, information systems continuance, and web usability, the author develops a model to explore how a commercially-supported social network can encourage customers to continue participating and using the information in the network. The theoretical model will be proved through an online survey of customers using the commercially-supported social networking sites of several high technology companies operating in the same sector. The result will be compared with previous studies to learn about the explanatory power of the research model, and to identify the main factors determining users’ intention to continue using a commercially-supported social network. Theoretical and practical implications, and limitations are discussed.Keywords: social network, information adoption, information systems continuance, web usability, user satisfaction
Procedia PDF Downloads 31714605 Revolving Ferrofluid Flow in Porous Medium with Rotating Disk
Authors: Paras Ram, Vikas Kumar
Abstract:
The transmission of Malaria with seasonal were studied through the use of mathematical models. The data from the annual number of Malaria cases reported to the Division of Epidemiology, Ministry of Public Health, Thailand during the period 1997-2011 were analyzed. The transmission of Malaria with seasonal was studied by formulating a mathematical model which had been modified to describe different situations encountered in the transmission of Malaria. In our model, the population was separated into two groups: the human and vector groups, and then constructed a system of nonlinear differential equations. Each human group was divided into susceptible, infectious in hot season, infectious in rainy season, infectious in cool season and recovered classes. The vector population was separated into two classes only: susceptible and infectious vectors. The analysis of the models was given by the standard dynamical modeling.Keywords: ferrofluid, magnetic field, porous medium, rotating disk, Neuringer-Rosensweig Model
Procedia PDF Downloads 42314604 Evaluation of a Staffing to Workload Tool in a Multispecialty Clinic Setting
Authors: Kristin Thooft
Abstract:
— Increasing pressure to manage healthcare costs has resulted in shifting care towards ambulatory settings and is driving a focus on cost transparency. There are few nurse staffing to workload models developed for ambulatory settings, less for multi-specialty clinics. Of the existing models, few have been evaluated against outcomes to understand any impact. This evaluation took place after the AWARD model for nurse staffing to workload was implemented in a multi-specialty clinic at a regional healthcare system in the Midwest. The multi-specialty clinic houses 26 medical and surgical specialty practices. The AWARD model was implemented in two specialty practices in October 2020. Donabedian’s Structure-Process-Outcome (SPO) model was used to evaluate outcomes based on changes to the structure and processes of care provided. The AWARD model defined and quantified the processes, recommended changes in the structure of day-to-day nurse staffing. Cost of care per patient visit, total visits, a total nurse performed visits used as structural and process measures, influencing the outcomes of cost of care and access to care. Independent t-tests were used to compare the difference in variables pre-and post-implementation. The SPO model was useful as an evaluation tool, providing a simple framework that is understood by a diverse care team. No statistically significant changes in the cost of care, total visits, or nurse visits were observed, but there were differences. Cost of care increased and access to care decreased. Two weeks into the post-implementation period, the multi-specialty clinic paused all non-critical patient visits due to a second surge of the COVID-19 pandemic. Clinic nursing staff was re-allocated to support the inpatient areas. This negatively impacted the ability of the Nurse Manager to utilize the AWARD model to plan daily staffing fully. The SPO framework could be used for the ongoing assessment of nurse staffing performance. Additional variables could be measured, giving a complete picture of the impact of nurse staffing. Going forward, there must be a continued focus on the outcomes of care and the value of nursingKeywords: ambulatory, clinic, evaluation, outcomes, staffing, staffing model, staffing to workload
Procedia PDF Downloads 17514603 JaCoText: A Pretrained Model for Java Code-Text Generation
Authors: Jessica Lopez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri
Abstract:
Pretrained transformer-based models have shown high performance in natural language generation tasks. However, a new wave of interest has surged: automatic programming language code generation. This task consists of translating natural language instructions to a source code. Despite the fact that well-known pre-trained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformer neural network. It aims to generate java source code from natural language text. JaCoText leverages the advantages of both natural language and code generation models. More specifically, we study some findings from state of the art and use them to (1) initialize our model from powerful pre-trained models, (2) explore additional pretraining on our java dataset, (3) lead experiments combining the unimodal and bimodal data in training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.Keywords: java code generation, natural language processing, sequence-to-sequence models, transformer neural networks
Procedia PDF Downloads 28814602 Impact of the Xanthan Gum on Rheological Properties of Ceramic Slip
Authors: Souad Hassene Daouadji, Larbi Hammadi, Abdelkrim Hazzab
Abstract:
The slips intended for the manufacture of ceramics must have rheological properties well-defined in order to bring together the qualities required for the casting step (good fluidity for feeding the molds easily settles while generating a regular settling of the dough and for the dehydration phase of the dough in the mold a setting time relatively short is required to have a sufficient refinement which allows demolding both easy and fast). Many additives haveadded in slip of ceramic in order to improve their rheological properties. In this study, we investigated the impact of xanthan gumon rheological properties of ceramic Slip. The modified Cross model is used to fit the stationary flow curves of ceramic slip at different concentration of xanthan added. The thixotropic behavior studied of mixture ceramic slip-xanthan gumat constant temperature is analyzed by using a structural kinetic model (SKM) in order to account for time dependent effect.Keywords: ceramic slip, xanthan gum, modified cross model, thixotropy, viscosity
Procedia PDF Downloads 19514601 Mathematical Modelling of Spatial Distribution of Covid-19 Outbreak Using Diffusion Equation
Authors: Kayode Oshinubi, Brice Kammegne, Jacques Demongeot
Abstract:
The use of mathematical tools like Partial Differential Equations and Ordinary Differential Equations have become very important to predict the evolution of a viral disease in a population in order to take preventive and curative measures. In December 2019, a novel variety of Coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China causing a severe and potentially fatal respiratory syndrome, i.e., COVID-19. Since then, it has become a pandemic declared by World Health Organization (WHO) on March 11, 2020 which has spread around the globe. A reaction-diffusion system is a mathematical model that describes the evolution of a phenomenon subjected to two processes: a reaction process in which different substances are transformed, and a diffusion process that causes a distribution in space. This article provides a mathematical study of the Susceptible, Exposed, Infected, Recovered, and Vaccinated population model of the COVID-19 pandemic by the bias of reaction-diffusion equations. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined using the Lyapunov function are considered and the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. Also, adequate conditions for the existence and uniqueness of the solution of the model have been proved. We showed the spatial distribution of the model compartments when the basic reproduction rate $\mathcal{R}_0 < 1$ and $\mathcal{R}_0 > 1$ and sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. We demonstrate the model's effectiveness by performing numerical simulations. We investigate the impact of vaccination and the significance of spatial distribution parameters in the spread of COVID-19. The findings indicate that reducing contact with an infected person and increasing the proportion of susceptible people who receive high-efficacy vaccination will lessen the burden of COVID-19 in the population. To the public health policymakers, we offered a better understanding of the COVID-19 management.Keywords: COVID-19, SEIRV epidemic model, reaction-diffusion equation, basic reproduction number, vaccination, spatial distribution
Procedia PDF Downloads 12414600 Modeling of a Stewart Platform for Analyzing One Directional Dynamics for Spacecraft Docking Operations
Authors: Leonardo Herrera, Shield B. Lin, Stephen J. Montgomery-Smith, Ziraguen O. Williams
Abstract:
A one-directional dynamic model of a Stewart Platform was developed to assist NASA in analyzing the dynamic response in spacecraft docking operations. A simplified mechanical drawing was created, capturing the physical structure's main features. A simplified schematic diagram was developed into a lumped mass model from the mechanical drawing. Three differential equations were derived according to the schematic diagram. A Simulink diagram was created using MATLAB to represent the three equations. System parameters, including spring constants and masses, are derived in detail from the physical system. The model can be used for further analysis via computer simulation in predicting dynamic response in its main docking direction, i.e., up-and-down motion.Keywords: stewart platform, docking operation, spacecraft, spring constant
Procedia PDF Downloads 20014599 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach
Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton
Abstract:
Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.Keywords: competition, growth, model, thinning
Procedia PDF Downloads 12814598 Developing a Process and Cost Model for Xanthan Biosynthesis from Bioethanol Production Waste Effluents
Authors: Bojana Ž. Bajić, Damjan G. Vučurović, Siniša N. Dodić, Jovana A. Grahovac, Jelena M. Dodić
Abstract:
Biosynthesis of xanthan, a microbial polysaccharide produced by Xanthomonas campestris, is characterized by the possibility of using non-specific carbohydrate substrates, which means different waste effluents can be used as a basis for the production media. Potential raw material sources for xanthan production come from industries with large amounts of waste effluents that are rich in compounds necessary for microorganism growth and multiplication. Taking into account the amount of waste effluents generated by the bioethanol industry and the fact that it contains a high inorganic and organic load it is clear that they represent a potential environmental pollutants if not properly treated. For this reason, it is necessary to develop new technologies which use wastes and wastewaters of one industry as raw materials for another industry. The result is not only a new product, but also reduction of pollution and environmental protection. Biotechnological production of xanthan, which consists of using biocatalysts to convert the bioethanol waste effluents into a high-value product, presents a possibility for sustainable development. This research uses scientific software developed for the modeling of biotechnological processes in order to design a xanthan production plant from bioethanol production waste effluents as raw material. The model was developed using SuperPro Designer® by using input data such as the composition of raw materials and products, defining unit operations, utility consumptions, etc., while obtaining capital and operating costs and the revenues from products to create a baseline production plant model. Results from this baseline model can help in the development of novel biopolymer production technologies. Additionally, a detailed economic analysis showed that this process for converting waste effluents into a high value product is economically viable. Therefore, the proposed model represents a useful tool for scaling up the process from the laboratory or pilot plant to a working industrial scale plant.Keywords: biotechnology, process model, xanthan, waste effluents
Procedia PDF Downloads 35114597 A Concept for Design of Road Super-Elevation Based on Horizontal Radius, Vertical Gradient and Accident Rate
Authors: U. Chattaraj, D. Meena
Abstract:
Growth of traffic brings various negative effects, such as road accidents. To avoid such problems, a model is developed for the purpose of highway safety. In such areas, fuzzy logic is the most well-known simulation in the larger field. A model is accomplished for hilly and steep terrain based on Fuzzy Inference System (FIS), for which output is super elevation and input data is horizontal radius, vertical gradient, accident rate (AR). This result shows that the system can be efficaciously applied as for highway safety tool distinguishing hazards components correlated to the characteristics of the highway and has a great influence to the making of decision for accident precaution in transportation models. From this model, a positive relationship between geometric elements, accident rate, and super elevation is also identified.Keywords: accident rate, fuzzy inference system, fuzzy logic, gradient, radius, super elevation
Procedia PDF Downloads 21914596 Understanding Surface Failures in Thick Asphalt Pavement: A 3-D Finite Element Model Analysis
Authors: Hana Gebremariam Liliso
Abstract:
This study investigates the factors contributing to the deterioration of thick asphalt pavements, such as rutting and cracking. We focus on the combined influence of traffic loads and pavement structure. This study uses a three-dimensional finite element model with a Mohr-Coulomb failure criterion to analyze the stress levels near the pavement's surface under realistic conditions. Our model considers various factors, including tire-pavement contact stresses, asphalt properties, moving loads, and dynamic analysis. This research suggests that cracking tends to occur between dual tires. Some key discoveries include the risk of cracking increases as temperatures rise; surface cracking at high temperatures is associated with distortional deformation; using a uniform contact stress distribution underestimates the risk of failure compared to realistic three-dimensional tire contact stress, particularly at high temperatures; the risk of failure is higher near the surface when there is a negative temperature gradient in the asphalt layer; and debonding beneath the surface layer leads to increased shear stress and premature failure around the interface.Keywords: asphalt pavement, surface failure, 3d finite element model, multiaxial stress states, Mohr-Coulomb failure criterion
Procedia PDF Downloads 6014595 A New Tactical Optimization Model for Bioenergy Supply Chain
Authors: Birome Holo Ba, Christian Prins, Caroline Prodhon
Abstract:
Optimization is an important aspect of logistics management. It can reduce significantly logistics costs and also be a good tool for decision support. In this paper, we address a planning problem specific to biomass supply chain. We propose a new mixed integer linear programming (MILP) model dealing with different feed stock production operations such as harvesting, packing, storage, pre-processing and transportation, with the objective of minimizing the total logistic cost of the system on a regional basis. It determines the optimal number of harvesting machine, the fleet size of trucks for transportation and the amount of each type of biomass harvested, stored and pre-processed in each period to satisfy demands of refineries in each period. We illustrate the effectiveness of the proposal model with a numerical example, a case study in Aube (France department), which gives preliminary and interesting, results on a small test case.Keywords: biomass logistics, supply chain, modelling, optimization, bioenergy, biofuels
Procedia PDF Downloads 51714594 Configuring Systems to Be Viable in a Crisis: The Role of Intuitive Decision-Making
Authors: Ayham Fattoum, Simos Chari, Duncan Shaw
Abstract:
Volatile, uncertain, complex, and ambiguous (VUCA) conditions threaten systems viability with emerging and novel events requiring immediate and localized responses. Such responsiveness is only possible through devolved freedom and emancipated decision-making. The Viable System Model (VSM) recognizes the need and suggests maximizing autonomy to localize decision-making and minimize residual complexity. However, exercising delegated autonomy in VUCA requires confidence and knowledge to use intuition and guidance to maintain systemic coherence. This paper explores the role of intuition as an enabler of emancipated decision-making and autonomy under VUCA. Intuition allows decision-makers to use their knowledge and experience to respond rapidly to novel events. This paper offers three contributions to VSM. First, it designs a system model that illustrates the role of intuitive decision-making in managing complexity and maintaining viability. Second, it takes a black-box approach to theory development in VSM to model the role of autonomy and intuition. Third, the study uses a multi-stage discovery-oriented approach (DOA) to develop theory, with each stage combining literature, data analysis, and model/theory development and identifying further questions for the subsequent stage. We synthesize literature (e.g., VSM, complexity management) with seven months of field-based insights (interviews, workshops, and observation of a live disaster exercise) to develop a framework of intuitive complexity management framework and VSM models. The results have practical implications for enhancing the resilience of organizations and communities.Keywords: Intuition, complexity management, decision-making, viable system model
Procedia PDF Downloads 7114593 Climate Change Effects in a Mediterranean Island and Streamflow Changes for a Small Basin Using Euro-Cordex Regional Climate Simulations Combined with the SWAT Model
Authors: Pier Andrea Marras, Daniela Lima, Pedro Matos Soares, Rita Maria Cardoso, Daniela Medas, Elisabetta Dore, Giovanni De Giudici
Abstract:
Climate change effects on the hydrologic cycle are the main concern for the evaluation of water management strategies. Climate models project scenarios of precipitation changes in the future, considering greenhouse emissions. In this study, the EURO-CORDEX (European Coordinated Regional Downscaling Experiment) climate models were first evaluated in a Mediterranean island (Sardinia) against observed precipitation for a historical reference period (1976-2005). A weighted multi-model ensemble (ENS) was built, weighting the single models based on their ability to reproduce observed rainfall. Future projections (2071-2100) were carried out using the 8.5 RCP emissions scenario to evaluate changes in precipitations. ENS was then used as climate forcing for the SWAT model (Soil and Water Assessment Tool), with the aim to assess the consequences of such projected changes on streamflow and runoff of two small catchments located in the South-West Sardinia. Results showed that a decrease of mean rainfall values, up to -25 % at yearly scale, is expected for the future, along with an increase of extreme precipitation events. Particularly in the eastern and southern areas, extreme events are projected to increase by 30%. Such changes reflect on the hydrologic cycle with a decrease of mean streamflow and runoff, except in spring, when runoff is projected to increase by 20-30%. These results stress that the Mediterranean is a hotspot for climate change, and the use of model tools can provide very useful information to adopt water and land management strategies to deal with such changes.Keywords: EURO-CORDEX, climate change, hydrology, SWAT model, Sardinia, multi-model ensemble
Procedia PDF Downloads 21514592 Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model
Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes
Abstract:
In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure.Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity difference
Procedia PDF Downloads 42314591 A Method for Identifying Unusual Transactions in E-commerce Through Extended Data Flow Conformance Checking
Authors: Handie Pramana Putra, Ani Dijah Rahajoe
Abstract:
The proliferation of smart devices and advancements in mobile communication technologies have permeated various facets of life with the widespread influence of e-commerce. Detecting abnormal transactions holds paramount significance in this realm due to the potential for substantial financial losses. Moreover, the fusion of data flow and control flow assumes a critical role in the exploration of process modeling and data analysis, contributing significantly to the accuracy and security of business processes. This paper introduces an alternative approach to identify abnormal transactions through a model that integrates both data and control flows. Referred to as the Extended Data Petri net (DPNE), our model encapsulates the entire process, encompassing user login to the e-commerce platform and concluding with the payment stage, including the mobile transaction process. We scrutinize the model's structure, formulate an algorithm for detecting anomalies in pertinent data, and elucidate the rationale and efficacy of the comprehensive system model. A case study validates the responsive performance of each system component, demonstrating the system's adeptness in evaluating every activity within mobile transactions. Ultimately, the results of anomaly detection are derived through a thorough and comprehensive analysis.Keywords: database, data analysis, DPNE, extended data flow, e-commerce
Procedia PDF Downloads 5814590 Taylor’s Law and Relationship between Life Expectancy at Birth and Variance in Age at Death in Period Life Table
Authors: David A. Swanson, Lucky M. Tedrow
Abstract:
Taylor’s Law is a widely observed empirical pattern that relates variances to means in sets of non-negative measurements via an approximate power function, which has found application to human mortality. This study adds to this research by showing that Taylor’s Law leads to a model that reasonably describes the relationship between life expectancy at birth (e0, which also is equal to mean age at death in a life table) and variance at age of death in seven World Bank regional life tables measured at two points in time, 1970 and 2000. Using as a benchmark a non-random sample of four Japanese female life tables covering the period from 1950 to 2004, the study finds that the simple linear model provides reasonably accurate estimates of variance in age at death in a life table from e0, where the latter range from 60.9 to 85.59 years. Employing 2017 life tables from the Human Mortality Database, the simple linear model is used to provide estimates of variance at age in death for six countries, three of which have high e0 values and three of which have lower e0 values. The paper provides a substantive interpretation of Taylor’s Law relative to e0 and concludes by arguing that reasonably accurate estimates of variance in age at death in a period life table can be calculated using this approach, which also can be used where e0 itself is estimated rather than generated through the construction of a life table, a useful feature of the model.Keywords: empirical pattern, mean age at death in a life table, mean age of a stationary population, stationary population
Procedia PDF Downloads 33114589 Discrete Crack Modeling of Side Face FRP-Strengthened Concrete Beam
Authors: Shahriar Shahbazpanahi, Mohammad Hemen Jannaty, Alaleh Kamgar
Abstract:
Shear strengthening can be carried out in concrete structures by external fibre reinforced polymer (FRP). In the present investigation, a new fracture mechanics model is developed to model side face of strengthened concrete beam by external FRP. Discrete crack is simulated by a spring element with softening behavior ahead of the crack tip to model the cohesive zone in concrete. A truss element is used, parallel to the spring element, to simulate the energy dissipation rate by the FRP. The strain energy release rate is calculated directly by using a virtual crack closure technique and then, the crack propagation criterion is presented. The results are found acceptable when compared to previous experimental results and ABAQUS software data. It is observed that the length of the fracture process zone (FPZ) increases with the application of FRP in side face at the same load in comparison with that of the control beam.Keywords: FPZ, fracture, FRP, shear
Procedia PDF Downloads 53514588 The Typology of Social Enterprise: Case Study of Community-Development Enterprise in Indonesia
Authors: Aluisius Pratono, Deddy Marciano, Suyanto Suyanto
Abstract:
The emerging model of community development social enterprise is one of the social enterprise models. However, a precise view of the community development enterprise is still lacking. Hence, this study was aimed at deepening the concept of the community development social enterprise model at the place management and development context. Multiple case studies in Indonesia context were observed to explore the typical criteria of the community development enterprise model in place-making practices. The research paradigm used interpretative approach, which involves dialectic process between the researchers and research participants. This study highlights some principles in the community-development enterprise, which cover an entrepreneurial dimension, social goals, participatory governance, and co-management. The result makes a contribution to conceptual literature occurs at the criteria of social enterprises by highlighting the typology of community development enterprise.Keywords: community development enterprise, social purposes, economic project, participatory governance
Procedia PDF Downloads 26214587 Design of a Lumbar Interspinous Process Fixation Device for Minimizing Soft Tissue Removal and Operation Time
Authors: Minhyuk Heo, Jihwan Yun, Seonghun Park
Abstract:
It has been reported that intervertebral fusion surgery, which removes most of the ligaments and muscles of the spine, increases the degenerative disease in adjacent spinal segments. Therefore, it is required to develop a lumbar interspinous process fixation device that minimizes the risks and side effects from the surgery. The objective of the current study is to design an interspinous process fixation device with simple structures in order to minimize soft tissue removal and operation time during intervertebral fusion surgery. For the design concepts of a lumbar fixation device, the principle of the ratchet was first applied on the joining parts of the device in order to shorten the operation time. The coil spring structure was selected for connecting parts between the spinous processes so that a normal range of motion in spinal segments is preserved and degenerative spinal diseases are not developed in the adjacent spinal segments. The stiffness of the spring was determined not to interrupt the motion of a lumbar spine. The designed value of the spring stiffness allows the upper part of the spring to move ~10° which is higher than the range of flexion and extension for normal lumbar spine (6°-8°), when a moment of 10Nm is applied on the upper face of L1. A finite element (FE) model composed of L1 to L5 lumbar spines was generated to verify the mechanical integrity and the dynamic stability of the designed lumbar fixation device and to further optimize the lumbar fixation device. The FE model generated above produced the same pressure value on intervertebral disc and dynamic behavior as the normal intact model reported in the literature. The consistent results from this comparison validates the accuracy in the modeling of the current FE model. Currently, we are trying to generate an abnormal model with defects in one or more components of the normal FE model above. Then, the mechanical integrity and the dynamic stability of the designed lumbar fixation device will be analyzed after being installed in the abnormal model and then the lumbar fixation device will be further optimized.Keywords: lumbar interspinous process fixation device, finite element method, lumbar spine, kinematics
Procedia PDF Downloads 229