Search results for: steel honeycomb sandwich panel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2719

Search results for: steel honeycomb sandwich panel

499 Grain Growth Behavior of High Carbon Microalloyed Steels Containing Very Low Amounts of Niobium

Authors: Huseyin Zengin, Muhammet Emre Turan, Yunus Turen, Hayrettin Ahlatci, Yavuz Sun

Abstract:

This study aimed for understanding the effects of dilute Nb additions on the austenite microstructure of microalloyed steels at five different reheating temperatures from 950 °C to 1300 °C. Four microalloyed high-carbon steels having 0.8 %wt C were examined in which three of them had varying Nb concentrations from 0.005 wt% to 0.02 wt% and one of them had no Nb concentration. The quantitative metallographic techniques were used to measure the average prior austenite grain size in order to compare the grain growth pinning effects of Nb precipitates as a function of reheating temperature. Due to the higher stability of the precipitates with increasing Nb concentrations, the grain coarsening temperature that resulted in inefficient grain growth impediment and a bimodal grain distribution in the microstructure, showed an increase with increasing Nb concentration. The respective grain coarsening temperatures (T_GC) in an ascending order for the steels having 0.005 wt% Nb, 0.01 wt% Nb and 0.02 wt% Nb were 950 °C, 1050 °C and 1150 °C. According to these observed grain coarsening temperatures, an approximation was made considering the complete dissolution temperature (T_DISS) of second phase particles as T_GC=T_DISS-300. On the other hand, the plain carbon steel did not show abnormal grain growth behaviour due to the absence of second phase particles. It was also observed that the higher the Nb concentration, the smaller the average prior austenite grain size although the small increments in Nb concenration did not change the average grain size considerably.

Keywords: microalloyed steels, prior austenite grains, second phase particles, grain coarsening temperature

Procedia PDF Downloads 253
498 Learning at Workplace: Competences and Contexts in Sensory Evaluation

Authors: Ulriikka Savela-Huovinen, Hanni Muukkonen, Auli Toom

Abstract:

The development of workplace as a learning environment has been emphasized in research field of workplace learning. The prior literature on sensory performance emphasized the individual’s competences as assessor, while the competences in the collaborative interactional and knowledge creation practices as workplace learning method are not often mentioned. In the present study aims to find out what kinds of competences and contexts are central when assessor conducts food sensory evaluation in authentic professional context. The aim was to answer the following questions: first, what kinds of competences does sensory evaluation require according to assessors? And second, what kinds of contexts for sensory evaluation do assessors report? Altogether thirteen assessors from three Finnish food companies were interviewed by using semi-structural thematic interviews to map practices and development intentions as well as to explicate already established practices. The qualitative data were analyzed by following the principles of abductive and inductive content analysis. Analysis phases were combined and their results were considered together as a cross-analysis. When evaluated independently required competences were perception, knowledge of specific domains and methods and cognitive skills e.g. memory. Altogether, 42% of analysis units described individual evaluation contexts, 53% of analysis units described collaborative interactional contexts, and 5% of analysis units described collaborative knowledge creation contexts. Related to collaboration, analysis reviewed learning, sharing and reviewing both external and in-house consumer feedback, developing methods to moderate small-panel evaluation and developing product vocabulary collectively between the assessors. Knowledge creation contexts individualized from daily practices especially in cases product defects were sought and discussed. The study findings contribute to the explanation that sensory assessors learn extensively from one another in the collaborative interactional and knowledge creation context. Assessors learning and abilities to work collaboratively in the interactional and knowledge creation contexts need to be ensured in the development of the expertise.

Keywords: assessor, collaboration, competences, contexts, learning and practices, sensory evaluation

Procedia PDF Downloads 226
497 Environmental and Socioeconomic Determinants of Climate Change Resilience in Rural Nigeria: Empirical Evidence towards Resilience Building

Authors: Ignatius Madu

Abstract:

The study aims at assessing the environmental and socioeconomic determinants of climate change resilience in rural Nigeria. This is necessary because researches and development efforts on building climate change resilience of rural areas in developing countries are usually made without the knowledge of the impacts of the inherent rural characteristics that determine resilient capacities of the households. This has, in many cases, led to costly mistakes, delayed responses, inaccurate outcomes, and other difficulties. Consequently, this assessment becomes crucial not only to policymakers and people living in risk-prone environments in rural areas but also to fill the research gap. To achieve the aim, secondary data were obtained from the Annual Abstract of Statistics 2017, LSMS-Integrated Surveys on Agriculture and General Household Survey Panel 2015/2016, and National Agriculture Sample Survey (NASS), 2010/2011.Resilience was calculated by weighting and adding the adaptive, absorptive and anticipatory measures of households variables aggregated at state levels and then regressed against rural environmental and socioeconomic characteristics influencing it. From the regression, the coefficients of the variables were used to compute the impacts of the variables using the Stochastic Regression of Impacts on Population, Affluence and Technology (STIRPAT) Model. The results showed that the northern States are generally low in resilient indices and are impacted less by the development indicators. The major determining factors are percentage of non-poor, environmental protection, road transport development, landholding, agricultural input, population density, dependency ratio (inverse), household asserts, education and maternal care. The paper concludes that any effort to a successful resilient building in rural areas of the country should first address these key factors that enhance rural development and wellbeing since it is better to take action before shocks take place.

Keywords: climate change resilience; spatial impacts; STIRPAT model; Nigeria

Procedia PDF Downloads 139
496 Financial Markets Performance: From COVID-19 Crisis to Hopes of Recovery with the Containment Polices

Authors: Engy Eissa, Dina M. Yousri

Abstract:

COVID-19 has hit massively the world economy, financial markets and even societies’ livelihood. The infectious disease caused by the most recently discovered coronavirus was claimed responsible for a shrink in the global economy by 4.4% in 2020. Shortly after the first case in Wuhan was identified, a quick surge in the number of confirmed cases in China was evident and a vast spread worldwide is recorded with cases surpassing the 500,000 cases. Irrespective of the disease’s trajectory in each country, a call for immediate action and prompt government intervention was needed. Given that there is no one-size-fits-all approach across the world, a number of containment and adoption policies were embraced. It was starting by enforcing complete lockdown like China to even stricter policies targeted containing the spread of the virus, augmenting the efficiency of health systems, and controlling the economic outcomes arising from this crisis. Hence, this paper has three folds; first, it examines the impact of containment policies taken by governments on controlling the number of cases and deaths in the given countries. Second, to assess the ramifications of COVID-19 on financial markets measured by stock returns. Third, to study the impact of containment policies measured by the government response index, the stringency index, the containment health index, and the economic support index on financial markets performance. Using a sample of daily data covering the period 31st of January 2020 to 15th of April 2021 for the 10 most hit countries in wave one by COVID-19 namely; Brazil, India, Turkey, Russia, UK, USA, France, Germany, Spain, and Italy. The aforementioned relationships were tested using Panel VAR Regression. The preliminary results showed that the number of daily deaths had an impact on the stock returns; moreover, the health containment policies and the economic support provided by the governments had a significant effect on lowering the impact of COVID-19 on stock returns.

Keywords: COVID-19, government policies, stock returns, VAR

Procedia PDF Downloads 172
495 Seismic Assessment of an Existing Dual System RC Buildings in Madinah City

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

A 15-storey RC building, studied in this paper, is representative of modern building type constructed in Madina City in Saudi Arabia before 10 years ago. These buildings are almost consisting of reinforced concrete skeleton, i. e. columns, beams and flat slab as well as shear walls in the stairs and elevator areas arranged in the way to have a resistance system for lateral loads (wind–earthquake loads). In this study, the dynamic properties of the 15-storey RC building were identified using ambient motions recorded at several spatially-distributed locations within each building. After updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (nonlinear static analysis) was carried out using SAP2000 software incorporating inelastic material properties for concrete, infill and steel. The effect of modeling the building with and without infill walls on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madina area has been investigated. The response modification factor (R) for the 15 storey RC building is evaluated from capacity and demand spectra (ATC-40). The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results are summarized and discussed.

Keywords: seismic assessment, pushover analysis, ambient vibration, modal update

Procedia PDF Downloads 381
494 Experimental Verification of Similarity Criteria for Sound Absorption of Perforated Panels

Authors: Aleksandra Majchrzak, Katarzyna Baruch, Monika Sobolewska, Bartlomiej Chojnacki, Adam Pilch

Abstract:

Scaled modeling is very common in the areas of science such as aerodynamics or fluid mechanics, since defining characteristic numbers enables to determine relations between objects under test and their models. In acoustics, scaled modeling is aimed mainly at investigation of room acoustics, sound insulation and sound absorption phenomena. Despite such a range of application, there is no method developed that would enable scaling acoustical perforated panels freely, maintaining their sound absorption coefficient in a desired frequency range. However, conducted theoretical and numerical analyses have proven that it is not physically possible to obtain given sound absorption coefficient in a desired frequency range by directly scaling only all of the physical dimensions of a perforated panel, according to a defined characteristic number. This paper is a continuation of the research mentioned above and presents practical evaluation of theoretical and numerical analyses. The measurements of sound absorption coefficient of perforated panels were performed in order to verify previous analyses and as a result find the relations between full-scale perforated panels and their models which will enable to scale them properly. The measurements were conducted in a one-to-eight model of a reverberation chamber of Technical Acoustics Laboratory, AGH. Obtained results verify theses proposed after theoretical and numerical analyses. Finding the relations between full-scale and modeled perforated panels will allow to produce measurement samples equivalent to the original ones. As a consequence, it will make the process of designing acoustical perforated panels easier and will also lower the costs of prototypes production. Having this knowledge, it will be possible to emulate in a constructed model panels used, or to be used, in a full-scale room more precisely and as a result imitate or predict the acoustics of a modeled space more accurately.

Keywords: characteristic numbers, dimensional analysis, model study, scaled modeling, sound absorption coefficient

Procedia PDF Downloads 186
493 Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model

Authors: A. M. Halahla, M. H. Baluch, M. K. Rahman, A. H. Al-Gadhib, M. N. Akhtar

Abstract:

In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint.

Keywords: reinforced concrete, exterior beam-column joints, concrete damage plasticity model, computational simulation, 3-D finite element model

Procedia PDF Downloads 367
492 Experimental Investigation on the Shear Strength Parameters of Sand-Slag Mixtures

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Utilizing waste materials in civil engineering applications has a positive influence on the environment by reducing carbon dioxide emissions and issues associated with waste disposal. Granulated blast furnace slag (GBFS) is a by-product of the iron and steel industry, with millions of tons of slag being annually produced worldwide. Slag has been widely used in structural engineering and for stabilizing clay soils; however, studies on the effect of slag on sandy soils are scarce. This article investigates the effect of slag content on shear strength parameters through direct shear tests and unconsolidated undrained triaxial tests on mixtures of Perth sand and slag. For this purpose, sand-slag mixtures, with slag contents of 2%, 4%, and 6% by weight of samples, were tested with direct shear tests under three normal stress values, namely 100 kPa, 150 kPa, and 200 kPa. Unconsolidated undrained triaxial tests were performed under a single confining pressure of 100 kPa and relative density of 80%. The internal friction angles and shear stresses of the mixtures were determined via the direct shear tests, demonstrating that shear stresses increased with increasing normal stress and the internal friction angles and cohesion increased with increasing slag. There were no significant differences in shear stresses parameters when slag content rose from 4% to 6%. The unconsolidated undrained triaxial tests demonstrated that shear strength increased with increasing slag content.

Keywords: direct shear, shear strength, slag, UU test

Procedia PDF Downloads 466
491 Prevalence and Predictors of Metabolic Syndrome among Diabetic Clinic Attendees in Sokoto, Nigeria

Authors: Kehinde Joseph Awosan, Balarabe Adami Isah, Edzu Usman Yunusa, Sarafadeen Adeniyi Arisegi, Izuchukwu Obasi, Oluchi Solomon-Anucha

Abstract:

Background: Metabolic syndrome (MetS) is prevalent in patients with diabetes mellitus and a significant risk for major cardiovascular events. Identifying its burden and peculiarities is crucial to preventing complications among those at risk. Aim: This study was conducted to determine the prevalence and predictors of metabolic syndrome among diabetes clinic attendees in Sokoto, Nigeria. Materials and Methods: A cross-sectional study was conducted among 365 patients with type 2 diabetes attending the diabetes clinic of Specialist Hospital, Sokoto, Nigeria. A structured questionnaire was used to obtain data on the respondents’ socio-demographic variables, treatment history, and lifestyle. Blood pressure and anthropometric measurements (including weight, height, and waist circumference) were done for the patients. Likewise, biochemical assessment (including fasting plasma glucose, high-density lipoprotein cholesterol (HDL-c), and triglyceride (TG) was done. Metabolic syndrome was defined according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III). Data were analyzed using the IBM Statistical Package for Social Sciences (SPSS) version 25. Results: The ages of the patients ranged from 30 to 78 (mean = 50.9 ±11.7) years. The overall prevalence of MetS was 57.3%, with a higher prevalence in females (68.1%) than males (43.0%). The most common components of MetS observed were hypertension (69.2%), and elevated fasting plasma glucose (65.7%); while the predictors of MetS were age > 50 years (OR 6.960, 95% CI: 3.836-12.628, p < 0.001), female sex (OR 2.300, 95% CI: 1.355-3.903, p = 0.002), physical activity (OR 0.214, 95% CI: 0.126-0.363, p < 0.001), and overweight/obesity (OR 3.356, 95% CI: 1.838-6.127, p < 0.001). Conclusion: Metabolic syndrome is prevalent among patients with type 2 diabetes in Sokoto, Nigeria, and the predictors were age > 50 years, female sex, physical activity, and overweight/obesity. Diabetes care providers should screen their patients for MetS to prevent adverse cardiovascular events.

Keywords: prevalence, predictors, metabolic syndrome, diabetes

Procedia PDF Downloads 127
490 Determination of Non-CO2 Greenhouse Gas Emission in Electronics Industry

Authors: Bong Jae Lee, Jeong Il Lee, Hyo Su Kim

Abstract:

Both developed and developing countries have adopted the decision to join the Paris agreement to reduce greenhouse gas (GHG) emissions at the Conference of the Parties (COP) 21 meeting in Paris. As a result, the developed and developing countries have to submit the Intended Nationally Determined Contributions (INDC) by 2020, and each country will be assessed for their performance in reducing GHG. After that, they shall propose a reduction target which is higher than the previous target every five years. Therefore, an accurate method for calculating greenhouse gas emissions is essential to be presented as a rational for implementing GHG reduction measures based on the reduction targets. Non-CO2 GHGs (CF4, NF3, N2O, SF6 and so on) are being widely used in fabrication process of semiconductor manufacturing, and etching/deposition process of display manufacturing process. The Global Warming Potential (GWP) value of Non-CO2 is much higher than CO2, which means it will have greater effect on a global warming than CO2. Therefore, GHG calculation methods of the electronics industry are provided by Intergovernmental Panel on climate change (IPCC) and U.S. Environmental Protection Agency (EPA), and it will be discussed at ISO/TC 146 meeting. As discussed earlier, being precise and accurate in calculating Non-CO2 GHG is becoming more important. Thus this study aims to discuss the implications of the calculating methods through comparing the methods of IPCC and EPA. As a conclusion, after analyzing the methods of IPCC & EPA, the method of EPA is more detailed and it also provides the calculation for N2O. In case of the default emission factor (by IPCC & EPA), IPCC provides more conservative results compared to that of EPA; The factor of IPCC was developed for calculating a national GHG emission, while the factor of EPA was specifically developed for the U.S. which means it must have been developed to address the environmental issue of the US. The semiconductor factory ‘A’ measured F gas according to the EPA Destruction and Removal Efficiency (DRE) protocol and estimated their own DRE, and it was observed that their emission factor shows higher DRE compared to default DRE factor of IPCC and EPA Therefore, each country can improve their GHG emission calculation by developing its own emission factor (if possible) at the time of reporting Nationally Determined Contributions (NDC). Acknowledgements: This work was supported by the Korea Evaluation Institute of Industrial Technology (No. 10053589).

Keywords: non-CO2 GHG, GHG emission, electronics industry, measuring method

Procedia PDF Downloads 277
489 Calculation of the Supersonic Air Intake with the Optimization of the Shock Wave System

Authors: Elena Vinogradova, Aleksei Pleshakov, Aleksei Yakovlev

Abstract:

During the flight of a supersonic aircraft under various conditions (altitude, Mach, etc.), it becomes necessary to coordinate the operating modes of the air intake and engine. On the supersonic aircraft, it’s been done by changing various control factors (the angle of rotation of the wedge panels and etc.). This paper investigates the possibility of using modern optimization methods to determine the optimal position of the supersonic air intake wedge panels in order to maximize the total pressure recovery coefficient. Modern software allows us to conduct auto-optimization, which determines the optimal position of the control elements of the investigated product to achieve its maximum efficiency. In this work, the flow in the supersonic aircraft inlet has investigated and optimized the operation of the flaps of the supersonic inlet in an aircraft in a 2-D setting. This work has done using ANSYS CFX software. The supersonic aircraft inlet is a flat adjustable external compression inlet. The braking surface is made in the form of a three-stage wedge. The IOSO NM software package was chosen for optimization. Change in the position of the panels of the input device is carried out by changing the angle between the first and second steps of the three-stage wedge. The position of the rest of the panels is changed automatically. Within the framework of the presented work, the position of the moving air intake panel was optimized under fixed flight conditions of the aircraft under a certain engine operating mode. As a result of the numerical modeling, the distribution of total pressure losses was obtained for various cases of the engine operation, depending on the incoming flow velocity and the flight altitude of the aircraft. The results make it possible to obtain the maximum total pressure recovery coefficient under given conditions. Also, the initial geometry was set with a certain angle between the first and second wedge panels. Having performed all the calculations, as well as the subsequent optimization of the aircraft input device, it can be concluded that the initial angle was set sufficiently close to the optimal angle.

Keywords: optimal angle, optimization, supersonic air intake, total pressure recovery coefficient

Procedia PDF Downloads 227
488 High Pressure Delignification Process for Nanocrystalline Cellulose Production from Agro-Waste Biomass

Authors: Sakinul Islam, Nhol Kao, Sati Bhattacharya, Rahul Gupta

Abstract:

Nanocrystalline cellulose (NCC) has been widely used for miscellaneous applications due to its superior properties over other nanomaterials. However, the major problems associated with the production of NCC are long reaction time, low production rate and inefficient process. The mass production of NCC within a short period of time is still a great challenge. The main objective of this study is to produce NCC from rice husk agro waste biomass from a high pressure delignification process (HPDP), followed by bleaching and hydrolysis processes. The HPDP has not been explored for NCC production from rice husk biomass (RHB) until now. In order to produce NCC, powder rice husk (PRH) was placed into a stainless steel reactor at 80 ˚C under 5 bars. Aqueous solution of NaOH (4M) was used for the dissolution of lignin and other amorphous impurities from PRH. After certain experimental times (1h, 3.5h and 6h), bleaching and hydrolysis were carried out on delignified samples. NaOCl (20%) and H2SO4 (4M) solutions were used for bleaching and hydrolysis processes, respectively. The NCC suspension from hydrolysis was sonicated and neutralized by buffer solution for various characterisations. Finally NCC suspension was dried and analyzed by FTIR, XRD, SEM, AFM and TEM. The chemical composition of NCC and PRH was estimated by TAPPI (Technical Association of Pulp and Paper Industry) standard methods to observe the product purity. It was found that, the 6h of the HPDP was more efficient to produce good quality NCC than that at 1h and 3.5h due to low separation of non-cellulosic components from RHB. The analyses indicated the crystallinity of NCC to be 71 %, particle size of 20-50 nm (diameter) and 100-200 nm in length.

Keywords: nanocrystalline cellulose, NCC, high pressure delignification, bleaching, hydrolysis, agro-waste biomass

Procedia PDF Downloads 250
487 Cytotoxicity of 13 South African Macrofungal Species and Mechanism/s of Action against Cancer Cell Lines

Authors: Gerhardt Boukes, Maryna Van De Venter, Sharlene Govender

Abstract:

Macrofungi have been used for the past two thousand years in Asian countries, and more recently in Western countries, for their medicinal properties. Biological activities include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer and immunomodulatory to name a few. Several biologically active compounds have been identified and isolated. Macrofungal research in Africa is poorly documented and to the best of our knowledge non-existent. South Africa has a rich macrofungal biodiversity, which includes endemic and exotic macrofungal species. Ethanolic extracts of 13 macrofungal species, including mushrooms, bracket fungi and puffballs, were prepared and screened for cytotoxicity against a panel of seven cell lines, including A549 (human lung adenocarcinoma), HeLa (human cervical adenocarcinoma), HT-29 (human colorectal adenocarcinoma), MCF7 (human breast adenocarcinoma), MIA PaCa-2 (human pancreatic ductal adenocarcinoma), PC-3 (human prostate adenocarcinoma) and Vero (African green monkey kidney epithelial) cells using MTT. Cell lines were chosen according to the most prevalent cancer types affecting males and females in South Africa and globally, and the mutations they contain. Preliminary results have shown that three of the macrofungal genera, i.e. Fomitopsis, Gymnopilus and Pycnoporus, have shown cytotoxic activity, ranging between IC50 ~20 and 200 µg/mL. The molecular mechanism of action contributing to cell death investigated and being investigated include apoptosis (i.e. DNA cell cycle arrest, caspase-3 activation and mitochondrial membrane potential), autophagy (i.e. acridine orange and LC3B staining) and ER stress (i.e. thioflavin T staining and caspase-12) in the presence of melphalan, chloroquine and thapsigargin/tuncamycin as positive controls, respectively. The genus, Pycnoporus, has shown the best cytotoxicity of the three macrofungal genera. Future work will focus on the identification and isolation of novel active compounds and elucidating the mechanism/s of action.

Keywords: cancer, cytotoxicity, macrofungi, mechanism/s of action

Procedia PDF Downloads 230
486 Design and Analysis of a Lightweight Fire-Resistant Door

Authors: Zainab Fadil, Mouath Alawadhi, Abdullah Alhusainan, Fahad Alqadiri, Abdulaziz Alqadiri

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire-resistance doors. Fire-rated doors specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 71
485 Non-Linear Dynamic Analyses of Grouted Pile-Sleeve Connection

Authors: Mogens Saberi

Abstract:

The focus of this article is to present the experience gained from the design of a grouted pile-sleeve connection and to present simple design expressions which can be used in the preliminary design phase of such connections. The grout pile-sleeve connection serves as a connection between an offshore jacket foundation and pre-installed piles located in the seabed. The jacket foundation supports a wind turbine generator resulting in significant dynamic loads on the connection. The connection is designed with shear keys in order to optimize the overall design but little experience is currently available in the use of shear keys in such connections. It is found that the consequence of introducing shear keys in the design is a very complex stress distribution which requires special attention due to significant fatigue loads. An optimal geometrical shape of the shear keys is introduced in order to avoid large stress concentration factors and a relatively easy fabrication. The connection is analysed in ANSYS Mechanical where the grout is modelled by a non-linear material model which allows for cracking of the grout material and captures the elastic-plastic behaviour of the grout material. Special types of finite elements are used in the interface between the pile sleeve and the grout material to model the slip surface between the grout material and the steel. Based on the performed finite element modelling simple design expressions are introduced.

Keywords: fatigue design, non-linear finite element modelling, structural dynamics, simple design expressions

Procedia PDF Downloads 370
484 Characterization of Antibiotic Resistance in Cultivable Enterobacteriaceae Isolates from Different Ecological Niches in the Eastern Cape, South Africa

Authors: Martins A. Adefisoye, Mpaka Lindelwa, Fadare Folake, Anthony I. Okoh

Abstract:

Evolution and rapid dissemination of antibiotic resistance from one ecosystem to another has been responsible for wide-scale epidemic and endemic spreads of multi-drug resistance pathogens. This study assessed the prevalence of Enterobacteriaceae in different environmental samples, including river water, hospital effluents, abattoir wastewater, animal rectal swabs and faecal droppings, soil, and vegetables, using standard microbiological procedure. The identity of the isolates were confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrophotometry (MALDI-TOF) while the isolates were profiled for resistance against a panel of 16 antibiotics using disc diffusion (DD) test, and the occurrence of resistance genes (ARG) was determined by polymerase chain reactions (PCR). Enterobacteriaceae counts in the samples range as follows: river water 4.0 × 101 – 2.0 × 104 cfu/100 ml, hospital effluents 1.5 × 103 – 3.0 × 107 cfu/100 ml, municipal wastewater 2.3 × 103 – 9.2 × 104 cfu/100 ml, faecal droppings 3.0 × 105 – 9.5 × 106 cfu/g, animal rectal swabs 3.0 × 102 – 2.9 × 107 cfu/ml, soil 0 – 1.2 × 105 cfu/g and vegetables 0 – 2.2 × 107 cfu/g. Of the 700 randomly selected presumptive isolates subjected to MALDI-TOF analysis, 129 (18.4%), 68 (9.7%), 67 (9.5%), 41 (5.9%) were E. coli, Klebsiella spp., Enterobacter spp., and Citrobacter spp. respectively while the remaining isolates belong to other genera not targeted in the study. The DD test shows resistance ranging between 91.6% (175/191) for cefuroxime and (15.2%, 29/191) for imipenem The predominant multiple antibiotic resistance phenotypes (MARP), (GM-AUG-AP-CTX-CXM-CIP-NOR-NI-C-NA-TS-T-DXT) occurred in 9 Klebsiella isolates. The multiple antibiotic resistance indices (MARI) the isolates (range 0.17–1.0) generally showed >95% had MARI above the 0.2 thresholds, suggesting that most of the isolates originate from high-risk environments with high antibiotic use and high selective pressure for the emergence of resistance. The associated ARG in the isolates include: bla TEM 61.9 (65), bla SHV 1.9 (2), bla OXA 8.6 (9), CTX-M-2 8.6 (9), CTX-M-9 6.7 (7), sul 2 26.7 (28), tet A 16.2 (17), tet M 17.1 (18), aadA 59.1 (62), strA 34.3 (36), aac(3)A 19.1 (20), (aa2)A 7.6 (8), and aph(3)-1A 10.5 (11). The results underscore the need for preventative measures to curb the proliferation of antibiotic-resistant bacteria including Enterobacteriaceae to protect public health.

Keywords: enterobacteriaceae, antibiotic-resistance, MALDI-TOF, resistance genes, MARP, MARI, public health

Procedia PDF Downloads 138
483 Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece

Authors: Chrysanthos Maraveas, Argiris Plesias, Garyfalia G. Triantafyllou, Konstantinos Petronikolos

Abstract:

The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required.

Keywords: earthquake resistance, pushover analysis, reinforced concrete, retrofit, strengthening

Procedia PDF Downloads 284
482 Axial, Bending Interaction Diagrams of Reinforced Concrete Columns Exposed to Chloride Attack

Authors: Rita Greco, Giuseppe Carlo Marano

Abstract:

Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standard impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete columns load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate the residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of RC columns.

Keywords: pitting corrosion, strength deterioration, diffusion coefficient, surface chloride concentration, concrete structures, marine environment

Procedia PDF Downloads 305
481 An Analysis of the Performances of Various Buoys as the Floats of Wave Energy Converters

Authors: İlkay Özer Erselcan, Abdi Kükner, Gökhan Ceylan

Abstract:

The power generated by eight point absorber type wave energy converters each having a different buoy are calculated in order to investigate the performances of buoys in this study. The calculations are carried out by modeling three different sea states observed in two different locations in the Black Sea. The floats analyzed in this study have two basic geometries and four different draft/radius (d/r) ratios. The buoys possess the shapes of a semi-ellipsoid and a semi-elliptic paraboloid. Additionally, the draft/radius ratios range from 0.25 to 1 by an increment of 0.25. The radiation forces acting on the buoys due to the oscillatory motions of these bodies are evaluated by employing a 3D panel method along with a distribution of 3D pulsating sources in frequency domain. On the other hand, the wave forces acting on the buoys which are taken as the sum of Froude-Krylov forces and diffraction forces are calculated by using linear wave theory. Furthermore, the wave energy converters are assumed to be taut-moored to the seabed so that the secondary body which houses a power take-off system oscillates with much smaller amplitudes compared to the buoy. As a result, it is assumed that there is not any significant contribution to the power generation from the motions of the housing body and the only contribution to power generation comes from the buoy. The power take-off systems of the wave energy converters are high pressure oil hydraulic systems which are identical in terms of their characteristic parameters. The results show that the power generated by wave energy converters which have semi-ellipsoid floats is higher than that of those which have semi elliptic paraboloid floats in both locations and in all sea states. It is also determined that the power generated by the wave energy converters follow an unsteady pattern such that they do not decrease or increase with changing draft/radius ratios of the floats. Although the highest power level is obtained with a semi-ellipsoid float which has a draft/radius ratio equal to 1, other floats of which the draft/radius ratio is 0.25 delivered higher power that the floats with a draft/radius ratio equal to 1 in some cases.

Keywords: Black Sea, buoys, hydraulic power take-off system, wave energy converters

Procedia PDF Downloads 338
480 Simulation Analysis of a Full-Scale Five-Story Building with Vibration Control Dampers

Authors: Naohiro Nakamura

Abstract:

Analysis methods to accurately estimate the behavior of buildings when earthquakes occur is very important for improving the seismic safety of such buildings. Recently, the use of damping devices has increased significantly and there is a particular need to appropriately evaluate the behavior of buildings with such devices during earthquakes in the design stage. At present, however, the accuracy of the analysis evaluations is not sufficient. One reason is that the accuracy of current analysis methods has not been appropriately verified because there is very limited data on the behavior of actual buildings during earthquakes. Many types of shaking table test of large structures are performed at the '3-Dimensional Full-Scale Earthquake Testing Facility' (nicknamed 'E-Defense') operated by the National Research Institute of Earth Science and Disaster Prevention (NIED). In this study, simulations using 3- dimensional analysis models were conducted on shaking table test of a 5-story steel-frame structure with dampers. The results of the analysis correspond favorably to the test results announced afterward by the committee. However, the suitability of the parameters and models used in the analysis and the influence they had on the responses remain unclear. Hence, we conducted additional analysis and studies on these models and parameters. In this paper, outlines of the test are shown and the utilized analysis model is explained. Next, the analysis results are compared with the test results. Then, the additional analyses, concerning with the hysteresis curve of the dampers and the beam-end stiffness of the frame, are investigated.

Keywords: three-dimensional analysis, E-defense, full-scale experimen, vibration control damper

Procedia PDF Downloads 175
479 Solitary Fibrous Tumor Presumed to Be a Peripheral Nerve Sheath Tumor Involving Right Branchial Plexus

Authors: Daniela Proca, Yuan Rong, Salvatore Luceno, Jalil Nasibli

Abstract:

Introduction: Solitary Fibrous Tumors (SFT) have many histologic mimickers and the only way to diagnose it, particularly in an unusual location, such as peripheral nerve trunks, is to use a comprehensive immunohistochemical staining panel. Monoclonal STAT6 immunostain is highly sensitive and specific for SFTs and particularly useful in the diagnosis of difficult SFT cases. Methods: We describe a solitary fibrous tumor (SFT) involving the right branchial plexus in a 66 yo female with 4-year history of slowly growing chest wall mass with recent dysesthesias in fingers 4th and 5th. MRI showed a well-circumscribed heterogenous mass measuring 5.4 x 3.8 x 4.0 cm and encircling peripheral nerves of the branchial plexus; no involvement of the bone or muscle was noted. A biopsy showed a bland spindled and epithelioid proliferation with no significant mitotic activity, no necrosis, and no atypia; peripheral nerve fascicles were encircled by the lesion. The main clinical and pathologic differential diagnosis included peripheral nerve sheath tumor, particularly schwannoma; HE microscopy didn’t show the classic Antoni A and B areas but showed focal subtle nuclear palisading, as well as prominent vessels with hyalinization. Immunohistochemical stains showed focal, weak cytoplasmic S100 positivity in the lesion; CD 34 and Vimentin were strongly and diffusely positive; the neoplastic cells were negative with AE1/AE3, EMA, CD31, SMA, Desmin, Calretinin, HMB-45, Melan A, PAX-8, NSE. The immunohistochemical and histologic pattern was not typical of peripheral nerve sheath tumor. On additional stains, the tumor was positive with STAT-6 and bcl-2 and focally positive with CD99. Given this profile, the final diagnosis was that of a solitary fibrous tumor. Results: NA Conclusion: Very few SFTs involving peripheral nerves and mimicking a peripheral nerve sheath tumor are described in the literature. Although histologically benign on this biopsy, long-term follow-up is required because of the risk of recurrence of these tumors and their uncertain biological behavior.

Keywords: solitary fibrous tumor, pathology, diagnosis, immunohistochemistry

Procedia PDF Downloads 182
478 Non-Invasive Techniques for Management of Carious Primary Dentition Using Silver Diamine Fluoride and Moringa Extract as a Modification of the Hall Technique

Authors: Rasha F. Sharaf

Abstract:

Treatment of dental caries in young children is considered a great challenge for all dentists, especially with uncooperative children. Recently non-invasive techniques have been highlighted as they alleviate the need for local anesthesia and other painful procedures during management of carious teeth and, at the same time, increase the success rate of the treatment done. Silver Diamine Fluoride (SDF) is one of the most effective cariostatic materials that arrest the progression of carious lesions and aid in remineralizing the demineralized tooth structure. Both fluoride and silver ions proved to have an antibacterial action and aid in the precipitation of an insoluble layer that prevents further decay. At the same time, Moringa proved to have an effective antibacterial action against different types of bacteria, therefore, it can be used as a non-invasive technique for the management of caries in children. One of the important theories for the control of caries is by depriving the cariogenic bacteria from nutrients causing their starvation and death, which can be achieved by applying stainless steel crown on primary molars with carious lesions which are not involving the pulp, and this technique is known as Hall technique. The success rate of the Hall technique can be increased by arresting the carious lesion using either SDF or Moringa and gaining the benefit of their antibacterial action. Multiple clinical cases with 1 year follow up will be presented, comparing different treatment options, and using various materials and techniques for non-invasive and non-painful management of carious primary teeth.

Keywords: SDF, hall technique, carious primary teeth, moringa extract

Procedia PDF Downloads 85
477 The Effectiveness of Energy-related Tax in Curbing Transport-related Carbon Emissions: The Role of Green Finance and Technology in OECD Economies

Authors: Hassan Taimoor, Piotr Krajewski, Piotr Gabrielzcak

Abstract:

Being responsible for the largest source of energy-related emissions, the transportation sector is driven by more than half of global oil demand and total energy consumption, making it a crucial factor in tackling climate change and environmental degradation. The present study empirically tests the effectives of the energy-related tax (TXEN) in curbing transport-related carbon emissions (CO2TRANSP) in Organization for Economic Cooperation and Development (OECD) economies over the period of 1990-2020. Moreover, Green Finance (GF), Technology (TECH), and Gross domestic product (GDP) have also been added as explanatory factors which might affect CO2TRANSP emissions. The study employs the Method of Moment Quantile Regression (MMQR), an advance econometric technique to observe the variations along each quantile. Based on the results of the preliminary test, we confirm the presence of cross-sectional dependence and slope heterogeneity. Whereas the result of the panel unit root test report mixed order of variables’ integration. The findings reveal that rise in income level activates CO2TRANSP, confirming the first stage of Environmental Kuznet Hypothesis. Surprisingly, the present TXEN policies of OECD member states are not mature enough to tackle the CO2TRANSP emissions. However, the findings confirm that GF and TECH are solely responsible for the reduction in the CO2TRANSP. The outcomes of Bootstrap Quantile Regression (BSQR) further validate and support the earlier findings of MMQR. Based on the findings of this study, it is revealed that the current TXEN policies are too moderate, and an incremental and progressive rise in TXEN may help in a transition toward a cleaner and sustainable transportation sector in the study region.

Keywords: transport-related CO2 emissions, energy-related tax, green finance, technological development, oecd member states

Procedia PDF Downloads 64
476 Structural Performance Evaluation of Concrete Beams Reinforced with Recycled and Virgin Plastic Fibres

Authors: Vighnesh Daas, David B. Tann, Mahmood Datoo

Abstract:

The incorporation of recycled plastic fibres in concrete as reinforcement is a potential sustainable alternative for replacement of ordinary steel bars. It provides a scope for waste reduction and re-use of plastics in the construction industry on a large scale. Structural use of fibre reinforced concrete is limited to short span members and low reliability classes. In this study, recycled carpet fibres made of 95% polypropylene with length of 45mm were used for experimental investigations. The performance of recycled polypropylene fibres under structural loading has been compared with commercially available virgin fibres at low volume fractions of less than 1%. A series of 100 mm cubes and 125x200x2000 mm beams were used to conduct strength tests in bending and compression to measure the influence of type and volume of fibres on the structural behaviour of fibre reinforced concrete beams. The workability of the concrete mix decreased as a function of fibre content and resulted in a modification of the mix design. The beams failed in a pseudo-ductile manner with an enhanced bending capacity. The specimens showed significant improvement in the post-cracking behaviour and load carrying ability as compared to conventional reinforced concrete members. This was associated to the binding properties of the fibres in the concrete matrix. With the inclusion of fibres at low volumes of 0-0.5%, there was reduction in crack sizes and deflection. This study indicates that the inclusion of recycled polypropylene fibres at low volumes augments the structural behaviour of concrete as compared to conventional reinforced concrete as well as virgin fibre reinforced concrete.

Keywords: fibre reinforced concrete, polypropylene, recycled, strength

Procedia PDF Downloads 232
475 Control of Base Isolated Benchmark using Combined Control Strategy with Fuzzy Algorithm Subjected to Near-Field Earthquakes

Authors: Hashem Shariatmadar, Mozhgansadat Momtazdargahi

Abstract:

The purpose of control structure against earthquake is to dissipate earthquake input energy to the structure and reduce the plastic deformation of structural members. There are different methods for control structure against earthquake to reduce the structure response that they are active, semi-active, inactive and hybrid. In this paper two different combined control systems are used first system comprises base isolator and multi tuned mass dampers (BI & MTMD) and another combination is hybrid base isolator and multi tuned mass dampers (HBI & MTMD) for controlling an eight story isolated benchmark steel structure. Active control force of hybrid isolator is estimated by fuzzy logic algorithms. The influences of the combined systems on the responses of the benchmark structure under the two near-field earthquake (Newhall & Elcentro) are evaluated by nonlinear dynamic time history analysis. Applications of combined control systems consisting of passive or active systems installed in parallel to base-isolation bearings have the capability of reducing response quantities of base-isolated (relative and absolute displacement) structures significantly. Therefore in design and control of irregular isolated structures using the proposed control systems, structural demands (relative and absolute displacement and etc.) in each direction must be considered separately.

Keywords: base-isolated benchmark structure, multi-tuned mass dampers, hybrid isolators, near-field earthquake, fuzzy algorithm

Procedia PDF Downloads 286
474 Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System

Authors: Meysam Naeimi, Zili Li, Roumen Petrov, Rolf Dollevoet, Jilt Sietsma, Jun Wu

Abstract:

The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined finite element-fatigue prediction approach. The influences of loading conditions on fatigue crack initiation have been studied. Furthermore, the effects of some artificial defects (squat-shape) on fatigue lives are examined. To simulate the vehicle-track interaction by means of the test rig, a three-dimensional finite element (FE) model is built up. The nonlinear material behaviour of the rail steel is modelled in the contact interface. The results of FE simulations are combined with the critical plane concept to determine the material points with the greatest possibility of fatigue failure. Based on the stress-strain responses, by employing of previously postulated criteria for fatigue crack initiation (plastic shakedown and ratchetting), fatigue life analysis is carried out. The results are reported for various loading conditions and different defect sizes. Afterward, the cyclic mechanism of the test rig is evaluated from the operational viewpoint. The results of fatigue life predictions are compared with the expected number of cycles of the test rig by its cyclic nature. Finally, the estimative duration of the experiments until fatigue crack initiation is roughly determined.

Keywords: fatigue, test rig, crack initiation, life, rail, squats

Procedia PDF Downloads 501
473 Developing the Principal Change Leadership Non-Technical Competencies Scale: An Exploratory Factor Analysis

Authors: Tai Mei Kin, Omar Abdull Kareem

Abstract:

In light of globalization, educational reform has become a top priority for many countries. However, the task of leading change effectively requires a multidimensional set of competencies. Over the past two decades, technical competencies of principal change leadership have been extensively analysed and discussed. Comparatively, little research has been conducted in Malaysian education context on non-technical competencies or popularly known as emotional intelligence, which is equally crucial for the success of change. This article provides a validation of the Principal Change Leadership Non-Technical Competencies (PCLnTC) Scale, a tool that practitioners can easily use to assess school principals’ level of change leadership non-technical competencies that facilitate change and maximize change effectiveness. The overall coherence of the PCLnTC model was constructed by incorporating three theories: a)the change leadership theory whereby leading change is the fundamental role of a leader; b)competency theory in which leadership can be taught and learned; and c)the concept of emotional intelligence whereby it can be developed, fostered and taught. An exploratory factor analysis (EFA) was used to determine the underlying factor structure of PCLnTC model. Before conducting EFA, five important pilot test approaches were conducted to ensure the validity and reliability of the instrument: a)reviewed by academic colleagues; b)verification and comments from panel; c)evaluation on questionnaire format, syntax, design, and completion time; d)evaluation of item clarity; and e)assessment of internal consistency reliability. A total of 335 teachers from 12 High Performing Secondary School in Malaysia completed the survey. The PCLnTCS with six points Liker-type scale were subjected to Principal Components Analysis. The analysis yielded a three-factor solution namely, a)Interpersonal Sensitivity; b)Flexibility; and c)Motivation, explaining a total 74.326 per cent of the variance. Based on the results, implications for instrument revisions are discussed and specifications for future confirmatory factor analysis are delineated.

Keywords: exploratory factor analysis, principal change leadership non-technical competencies (PCLnTC), interpersonal sensitivity, flexibility, motivation

Procedia PDF Downloads 411
472 Label Survey in Romania: A Study on How Consumers Use Food Labeling

Authors: Gabriela Iordachescu, Mariana Cretu Stuparu, Mirela Praisler, Camelia Busila, Doina Voinescu, Camelia Vizireanu

Abstract:

The aim of the study was to evaluate the consumers’ degree of confidence in food labeling, how they use and understand the label and respectively food labeling elements. The label is a bridge between producers, suppliers, and consumers. It has to offer enough information in terms of public health and food safety, statement of ingredients, nutritional information, warnings and advisory statements, producing date and shelf-life, instructions for storage and preparation (if required). The survey was conducted on 500 consumers group in Romania, aged 15+, males and females, from urban and rural areas and with different graduation levels. The questionnaire was distributed face to face and online. It had single or multiple choices questions and label images for the efficiency and best understanding of the question. The law 1169/2011 applied to food products from 13 of December 2016 improved and adapted the requirements for labeling in a clear manner. The questions were divided on following topics: interest and general trust in labeling, use and understanding of label elements, understanding of the ingredient list and safety information, nutrition information, advisory statements, serving sizes, best before/use by meanings, intelligent labeling, and demographic data. Three choice selection exercises were also included. In this case, the consumers had to choose between two similar products and evaluate which label element is most important in product choice. The data were analysed using MINITAB 17 and PCA analysis. Most of the respondents trust the food label, taking into account some elements especially when they buy the first time the product. They usually check the sugar content and type of sugar, saturated fat and use the mandatory label elements and nutrition information panel. Also, the consumers pay attention to advisory statements, especially if one of the items is relevant to them or the family. Intelligent labeling is a challenging option. In addition, the paper underlines that the consumer is more careful and selective with the food consumption and the label is the main helper for these.

Keywords: consumers, food safety information, labeling, labeling nutritional information

Procedia PDF Downloads 202
471 Moderating Effects of Family Ownership on the Relationship between Corporate Governance Mechanisms and Financial Performance of Publicly Listed Companies in Nigeria

Authors: Ndagi Salihu

Abstract:

Corporate governance mechanisms are the control measures for ensuring that all the interests groups are equally represented and management are working towards wealth creation in the interest of all. Therefore, there are many empirical studies during the last three decades on corporate governance and firm performance. However, little is known about the effects of family ownership on the relationship between corporate governance and firm performance, especially in the developing economy like Nigeria. This limit our understanding of the unique governance dynamics of family ownership with regards firm performance. This study examined the impact of family ownership on the relationship between governance mechanisms and financial performance of publicly listed companies in Nigeria. The study adopted quantitative research methodology using correlational ex-post factor design and secondary data from annual reports and accounts of a sample of 23 listed companies for a period of 5 years (2014-2018). The explanatory variables are the board size, board composition, board financial expertise, and board audit committee attributes. Financial performance is proxy by Return on Assets (ROA) and Return on Equity (ROE). Multiple panel regression technique of data analysis was employed in the analysis, and the study found that family ownership has a significant positive effect on the relationships between corporate governance mechanisms and financial performance of publicly listed firms in Nigeria. This finding is the same for both the ROA and ROE. However, the findings indicate that board size, board financial expertise, and board audit committee attributes have a significant positive impact on the ROA and ROE of the sample firms after the moderation. Moreover, board composition has significant positive effect on financial performance of the sample listed firms in terms of ROA and ROE. The study concludes that the use of family ownership in the control of firms in Nigeria could improve performance by reducing the opportunistic actions managers as well as agency problems. The study recommends that publicly listed companies in Nigeria should allow significant family ownership of equities and participation in management.

Keywords: profitability, board characteristics, agency theory, stakeholders

Procedia PDF Downloads 124
470 Corrosion Behvaior of CS1018 in Various CO2 Capture Solvents

Authors: Aida Rafat, Ramazan Kahraman, Mert Atilhan

Abstract:

The aggressive corrosion behavior of conventional amine solvents is one of main barriers against large scale commerizaliation of amine absorption process for carbon capture application. Novel CO2 absorbents that exhibit minimal corrosivity against operation conditions are essential to lower corrosion damage and control and ensure more robustness in the capture plant. This work investigated corrosion behavior of carbon steel CS1018 in various CO2 absrobent solvents. The tested solvents included the classical amines MEA, DEA and MDEA, piperazine activated solvents MEA/PZ, MDEA/PZ and MEA/MDEA/PZ as well as mixtures of MEA and Room Temperature Ionic Liquids RTIL, namely MEA/[C4MIM][BF4] and MEA/[C4MIM][Otf]. Electrochemical polarization technique was used to determine the system corrosiveness in terms of corrosion rate and polarization behavior. The process parameters of interest were CO2 loading and solution temperature. Electrochemical resulted showed corrosivity order of classical amines at 40°C is MDEA> MEA > DEA wherase at 80°C corrosivity ranking changes to MEA > DEA > MDEA. Corrosivity rankings were mainly governed by CO2 absorption capacity at the test temperature. Corrosivity ranking for activated amines at 80°C was MEA/PZ > MDEA/PZ > MEA/MDEA/PZ. Piperazine addition seemed to have a dual advanatge in terms of enhancing CO2 absorption capacity as well as nullifying corrosion. For MEA/RTIL mixtures, the preliminary results showed that the partial repalcement of aqueous phase in MEA solution by the more stable nonvolatile RTIL solvents reduced corrosion rates considerably.

Keywords: corrosion, amines, CO2 capture, piperazine, ionic liquids

Procedia PDF Downloads 449