Search results for: generalized autoregressive score model
16788 Research on Detection of Web Page Visual Salience Region Based on Eye Tracker and Spectral Residual Model
Authors: Xiaoying Guo, Xiangyun Wang, Chunhua Jia
Abstract:
Web page has been one of the most important way of knowing the world. Humans catch a lot of information from it everyday. Thus, understanding where human looks when they surfing the web pages is rather important. In normal scenes, the down-top features and top-down tasks significantly affect humans’ eye movement. In this paper, we investigated if the conventional visual salience algorithm can properly predict humans’ visual attractive region when they viewing the web pages. First, we obtained the eye movement data when the participants viewing the web pages using an eye tracker. By the analysis of eye movement data, we studied the influence of visual saliency and thinking way on eye-movement pattern. The analysis result showed that thinking way affect human’ eye-movement pattern much more than visual saliency. Second, we compared the results of web page visual salience region extracted by Itti model and Spectral Residual (SR) model. The results showed that Spectral Residual (SR) model performs superior than Itti model by comparison with the heat map from eye movements. Considering the influence of mind habit on humans’ visual region of interest, we introduced one of the most important cue in mind habit-fixation position to improved the SR model. The result showed that the improved SR model can better predict the human visual region of interest in web pages.Keywords: web page salience region, eye-tracker, spectral residual, visual salience
Procedia PDF Downloads 27916787 A Dynamical Study of Fractional Order Obesity Model by a Combined Legendre Wavelet Method
Authors: Hakiki Kheira, Belhamiti Omar
Abstract:
In this paper, we propose a new compartmental fractional order model for the simulation of epidemic obesity dynamics. Using the Legendre wavelet method combined with the decoupling and quasi-linearization technique, we demonstrate the validity and applicability of our model. We also present some fractional differential illustrative examples to demonstrate the applicability and efficiency of the method. The fractional derivative is described in the Caputo sense.Keywords: Caputo derivative, epidemiology, Legendre wavelet method, obesity
Procedia PDF Downloads 42416786 Detecting Covid-19 Fake News Using Deep Learning Technique
Authors: AnjalI A. Prasad
Abstract:
Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms.Keywords: BERT, CNN, LSTM, RNN
Procedia PDF Downloads 21116785 An Optimal Approach for Full-Detailed Friction Model Identification of Reaction Wheel
Authors: Ghasem Sharifi, Hamed Shahmohamadi Ousaloo, Milad Azimi, Mehran Mirshams
Abstract:
The ever-increasing use of satellites demands a search for increasingly accurate and reliable pointing systems. Reaction wheels are rotating devices used commonly for the attitude control of the spacecraft since provide a wide range of torque magnitude and high reliability. The numerical modeling of this device can significantly enhance the accuracy of the satellite control in space. Modeling the wheel rotation in the presence of the various frictions is one of the critical parts of this approach. This paper presents a Dynamic Model Control of a Reaction Wheel (DMCR) in the current control mode. In current-mode, the required current is delivered to the coils in order to achieve the desired torque. During this research, all the friction parameters as viscous and coulomb, motor coefficient, resistance and voltage constant are identified. In order to model identification of a reaction wheel, numerous varying current commands apply on the particular wheel to verify the estimated model. All the parameters of DMCR are identified by classical Levenberg-Marquardt (CLM) optimization method. The experimental results demonstrate that the developed model has an appropriate precise and can be used in the satellite control simulation.Keywords: experimental modeling, friction parameters, model identification, reaction wheel
Procedia PDF Downloads 23516784 A Graph-Based Retrieval Model for Passage Search
Authors: Junjie Zhong, Kai Hong, Lei Wang
Abstract:
Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model
Procedia PDF Downloads 16216783 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-car Model
Authors: Quy Dang Nguyen, Reza Nakhaie Jazar
Abstract:
The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.Keywords: quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation
Procedia PDF Downloads 9916782 On Reliability of a Credit Default Swap Contract during the EMU Debt Crisis
Authors: Petra Buzkova, Milos Kopa
Abstract:
Reliability of the credit default swap market had been questioned repeatedly during the EMU debt crisis. The article examines whether this development influenced sovereign EMU CDS prices in general. We regress the CDS market price on a model risk neutral CDS price obtained from an adopted reduced form valuation model in the 2009-2013 period. We look for a break point in the single-equation and multi-equation econometric models in order to show the changes in relations between CDS market and model prices. Our results differ according to the risk profile of a country. We find that in the case of riskier countries, the relationship between the market and model price changed when market participants started to question the ability of CDS contracts to protect their buyers. Specifically, it weakened after the change. In the case of less risky countries, the change happened earlier and the effect of a weakened relationship is not observed.Keywords: chow stability test, credit default swap, debt crisis, reduced form valuation model, seemingly unrelated regression
Procedia PDF Downloads 26616781 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki
Abstract:
Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control
Procedia PDF Downloads 15616780 Fight the Burnout: Phase Two of a NICU Nurse Wellness Bundle
Authors: Megan Weisbart
Abstract:
Background/Significance: The Intensive Care Unit (ICU) environment contributes to nurse burnout. Burnout costs include decreased employee compassion, missed workdays, worse patient outcomes, diminished job performance, high turnover, and higher organizational cost. Meaningful recognition, nurturing of interpersonal connections, and mindfulness-based interventions are associated with decreased burnout. The purpose of this quality improvement project was to decrease Neonatal ICU (NICU) nurse burnout using a Wellness Bundle that fosters meaningful recognition, interpersonal connections and includes mindfulness-based interventions. Methods: The Professional Quality of Life Scale Version 5 (ProQOL5) was used to measure burnout before Wellness Bundle implementation, after six months, and will be given yearly for three years. Meaningful recognition bundle items include Online submission and posting of staff shoutouts, recognition events, Nurses Week and Unit Practice Council member gifts, and an employee recognition program. Fostering of interpersonal connections bundle items include: Monthly staff games with prizes, social events, raffle fundraisers, unit blog, unit wellness basket, and a wellness resource sheet. Quick coherence techniques were implemented at staff meetings and huddles as a mindfulness-based intervention. Findings: The mean baseline burnout score of 14 NICU nurses was 20.71 (low burnout). The baseline range was 13-28, with 11 nurses experiencing low burnout, three nurses experiencing moderate burnout, and zero nurses experiencing high burnout. After six months of the Wellness Bundle Implementation, the mean burnout score of 39 NICU nurses was 22.28 (low burnout). The range was 14-31, with 22 nurses experiencing low burnout, 17 nurses experiencing moderate burnout, and zero nurses experiencing high burnout. Conclusion: A NICU Wellness Bundle that incorporated meaningful recognition, fostering of interpersonal connections, and mindfulness-based activities was implemented to improve work environments and decrease nurse burnout. Participation bias and low baseline response rate may have affected the reliability of the data and necessitate another comparative measure of burnout in one year.Keywords: burnout, NICU, nurse, wellness
Procedia PDF Downloads 9116779 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach
Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani
Abstract:
Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery
Procedia PDF Downloads 31116778 Synthesis and Characterization of Model Amines for Corrosion Applications
Authors: John Vergara, Giuseppe Palmese
Abstract:
Fundamental studies aimed at elucidating the key contributions to corrosion performance are needed to make progress toward effective and environmentally compliant corrosion control. Epoxy/amine systems are typically employed as barrier coatings for corrosion control. However, the hardening agents used for coating applications can be very complex, making fundamental studies of water and oxygen permeability challenging to carry out. Creating model building blocks for epoxy/amine coatings is the first step in carrying out these studies. We will demonstrate the synthesis and characterization of model amine building blocks from saturated fatty acids and simple amines such as diethylenetriamine (DETA) and Bis(3-aminopropyl)amine. The structure-property relationship of thermosets made from these model amines and Diglycidyl ether of bisphenol A (DGBEA) will be discussed.Keywords: building block, amine, synthesis, characterization
Procedia PDF Downloads 54616777 Estimation of Transition and Emission Probabilities
Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi
Abstract:
Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics
Procedia PDF Downloads 48516776 Copper Price Prediction Model for Various Economic Situations
Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.Keywords: copper prices, prediction model, neural network, time series forecasting
Procedia PDF Downloads 11716775 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 15816774 Numerical Simulation on Bacteria-Carrying Particles Transport and Deposition in an Open Surgical Wound
Authors: Xiuguo Zhao, He Li, Alireza Yazdani, Xiaoning Zheng, Xinxi Xu
Abstract:
Wound infected poses a serious threat to the surgery on the patient during the process of surgery. Understanding the bacteria-carrying particles (BCPs) transportation and deposition in the open surgical wound model play essential role in protecting wound against being infected. Therefore BCPs transportation and deposition in the surgical wound model were investigated using force-coupling method (FCM) based computational fluid dynamics. The BCPs deposition in the wound was strongly associated with BCPs diameter and concentration. The results showed that the rise on the BCPs deposition was increasing not only with the increase of BCPs diameters but also with the increase of the BCPs concentration. BCPs deposition morphology was impacted by the combination of size distribution, airflow patterns and model geometry. The deposition morphology exhibited the characteristic with BCPs deposition on the sidewall in wound model and no BCPs deposition on the bottom of the wound model mainly because the airflow movement in one direction from up to down and then side created by laminar system constructing airflow patterns and then made BCPs hard deposit in the bottom of the wound model due to wound geometry limit. It was also observed that inertial impact becomes a main mechanism of the BCPs deposition. This work may contribute to next study in BCPs deposition limit, as well as wound infected estimation in surgical-site infections.Keywords: BCPs deposition, computational fluid dynamics, force-coupling method (FCM), numerical simulation, open surgical wound model
Procedia PDF Downloads 29516773 Towards a Simulation Model to Ensure the Availability of Machines in Maintenance Activities
Authors: Maryam Gallab, Hafida Bouloiz, Youness Chater, Mohamed Tkiouat
Abstract:
The aim of this paper is to present a model based on multi-agent systems in order to manage the maintenance activities and to ensure the reliability and availability of machines just with the required resources (operators, tools). The interest of the simulation is to solve the complexity of the system and to find results without cost or wasting time. An implementation of the model is carried out on the AnyLogic platform to display the defined performance indicators.Keywords: maintenance, complexity, simulation, multi-agent systems, AnyLogic platform
Procedia PDF Downloads 30616772 Physical Activity Self-Efficacy among Pregnant Women with High Risk for Gestational Diabetes Mellitus: A Cross-Sectional Study
Authors: Xiao Yang, Ji Zhang, Yingli Song, Hui Huang, Jing Zhang, Yan Wang, Rongrong Han, Zhixuan Xiang, Lu Chen, Lingling Gao
Abstract:
Aim and Objectives: To examine physical activity self-efficacy, identify its predictors, and further explore the mechanism of action among the predictors in mainland Chinese pregnant women with high risk for gestational diabetes mellitus (GDM). Background: Physical activity could protect pregnant women from developing GDM. Physical activity self-efficacy was the key predictor of physical activity. Design: A cross-sectional study was conducted from October 2021 to May 2022 in Zhengzhou, China. Methods: 252 eligible pregnant women completed the Pregnancy Physical Activity Self-efficacy Scale, the Social Support for Physical Activity Scale, the Knowledge on Physical Activity Questionnaire, the 7-item Generalized Anxiety Disorder scale, the Edinburgh Postnatal Depression Scale, and a socio-demographic data sheet. Multiple linear regression was applied to explore the predictors of physical activity self-efficacy. Structural equation modeling was used to explore the mechanism of action among the predictors. Results: Chinese pregnant women with a high risk for GDM reported a moderate level of physical activity self-efficacy. The best-fit regression analysis revealed four variables explained 17.5% of the variance in physical activity self-efficacy. Social support for physical activity was the strongest predictor, followed by knowledge of the physical activity, intention to do physical activity, and anxiety symptoms. The model analysis indicated that knowledge of physical activity could release anxiety and depressive symptoms and then increase physical activity self-efficacy. Conclusion: The present study revealed a moderate level of physical activity self-efficacy. Interventions targeting pregnant women with high risk for GDM need to include the predictors of physical activity self-efficacy. Relevance to clinical practice: To facilitate pregnant women with high risk for GDM to engage in physical activity, healthcare professionals may find assess physical activity self-efficacy and intervene as soon as possible on their first antenatal visit. Physical activity intervention programs focused on self-efficacy may be conducted in further research.Keywords: physical activity, gestational diabetes, self-efficacy, predictors
Procedia PDF Downloads 10816771 Method for Improving Antidepressants Adherence in Patients with Depressive Disorder: Systemic Review and Meta-Analysis
Authors: Juntip Kanjanasilp, Ratree Sawangjit, Kanokporn Meelap, Kwanchanok Kruthakool
Abstract:
Depression is a common mental health disorder. Antidepressants are effective pharmacological treatments, but most patients have low medication adherence. This study aims to systematic review and meta-analysis what method increase the antidepressants adherence efficiently and improve clinical outcome. Systematic review of articles of randomized controlled trials obtained by a computerized literature search of The Cochrane, Library, Pubmed, Embase, PsycINFO, CINAHL, Education search, Web of Science and ThaiLIS (28 December 2017). Twenty-three studies were included and assessed the quality of research by ROB 2.0. The results reported that printing media improved in number of people who had medication adherence statistical significantly (p= 0.018), but education, phone call, and program utilization were no different (p=0.172, p=0.127, p=0.659). There was no significant difference in pharmacist’s group, health care team’s group and physician’s group (p=0.329, p=0.070, p=0.040). Times of intervention at 1 month and 6 months improved medication adherence significantly (p= 0.0001, p=0.013). There was significantly improved adherence in single intervention (p=0.027) but no different in multiple interventions (p=0.154). When we analyzed medication adherence with the mean score, no improved adherence was found, not relevant with who gives the intervention and times to intervention. However, the multiple interventions group was statistically significant improved medication adherence (p=0.040). Phone call and the physician’s group were statistically significant improved clinical outcomes in number of improved patients (0.025 and 0.020, respectively). But in the pharmacist’s group and physician’s group were not found difference in the mean score of clinical outcomes (p=0.993, p=0.120, respectively). Times to intervention and number of intervention were not significant difference than usual care. The overall intervention can increase antidepressant adherence, especially the printing media, and the appropriate timing of the intervention is at least 6 months. For effective treatment, the provider should have experience and expert in caring for patients with depressive disorders, such as a psychiatrist. Medical personnel should have knowledge in caring for these patients also.Keywords: depression, medication adherence, clinical outcomes, systematic review, meta-analysis
Procedia PDF Downloads 13816770 Automata-Based String Analysis for Detecting Malware in Android Programs
Authors: Assad Maalouf, Lunjin Lu, James Lynott
Abstract:
We design and implement a precise model of string operations using finite state machine transformers and state transformers to approximate the values string variables can take throughout the execution of the program.We use our model to analyze Android program string variables. Our experimental results show that our string analysis is very efficient at detecting the contextual effect of string operations on the string variables. Our model proved to be very useful when it came to verifying statements about the string variables of the program.Keywords: abstract interpretation, android, static analysis, string analysis
Procedia PDF Downloads 18316769 Empowering Indigenous Epistemologies in Geothermal Development
Authors: Te Kīpa Kēpa B. Morgan, Oliver W. Mcmillan, Dylan N. Taute, Tumanako N. Fa'aui
Abstract:
Epistemologies are ways of knowing. Indigenous Peoples are aware that they do not perceive and experience the world in the same way as others. So it is important when empowering Indigenous epistemologies, such as that of the New Zealand Māori, to also be able to represent a scientific understanding within the same analysis. A geothermal development assessment tool has been developed by adapting the Mauri Model Decision Making Framework. Mauri is a metric that is capable of representing the change in the life-supporting capacity of things and collections of things. The Mauri Model is a method of grouping mauri indicators as dimension averages in order to allow holistic assessment and also to conduct sensitivity analyses for the effect of worldview bias. R-shiny is the coding platform used for this Vision Mātauranga research which has created an expert decision support tool (DST) that combines a stakeholder assessment of worldview bias with an impact assessment of mauri-based indicators to determine the sustainability of proposed geothermal development. The initial intention was to develop guidelines for quantifying mātauranga Māori impacts related to geothermal resources. To do this, three typical scenarios were considered: a resource owner wishing to assess the potential for new geothermal development; another party wishing to assess the environmental and cultural impacts of the proposed development; an assessment that focuses on the holistic sustainability of the resource, including its surface features. Indicator sets and measurement thresholds were developed that are considered necessary considerations for each assessment context and these have been grouped to represent four mauri dimensions that mirror the four well-being criteria used for resource management in Aotearoa, New Zealand. Two case studies have been conducted to test the DST suitability for quantifying mātauranga Māori and other biophysical factors related to a geothermal system. This involved estimating mauri0meter values for physical features such as temperature, flow rate, frequency, colour, and developing indicators to also quantify qualitative observations about the geothermal system made by Māori. A retrospective analysis has then been conducted to verify different understandings of the geothermal system. The case studies found that the expert DST is useful for geothermal development assessment, especially where hapū (indigenous sub-tribal grouping) are conflicted regarding the benefits and disadvantages of their’ and others’ geothermal developments. These results have been supplemented with evaluations for the cumulative impacts of geothermal developments experienced by different parties using integration techniques applied to the time history curve of the expert DST worldview bias weighted plotted against the mauri0meter score. Cumulative impacts represent the change in resilience or potential of geothermal systems, which directly assists with the holistic interpretation of change from an Indigenous Peoples’ perspective.Keywords: decision support tool, holistic geothermal assessment, indigenous knowledge, mauri model decision-making framework
Procedia PDF Downloads 18716768 Calculation of Lattice Constants and Band Gaps for Generalized Quasicrystals of InGaN Alloy: A First Principle Study
Authors: Rohin Sharma, Sumantu Chaulagain
Abstract:
This paper presents calculations of total energy of InGaN alloy carried out in a disordered quasirandom structure for a triclinic super cell. This structure replicates the disorder and composition effect in the alloy. First principle calculations within the density functional theory with the local density approximation approach is employed to accurately determine total energy of the system. Lattice constants and band gaps associated with the ground states are then estimated for different concentration ratios of the alloy. We provide precise results of quasirandom structures of the alloy and their lattice constants with the total energy and band gap energy of the system for the range of seven different composition ratios and their respective lattice parameters.Keywords: DFT, ground state, LDA, quasicrystal, triclinic super cell
Procedia PDF Downloads 19316767 Reconstruction of a Genome-Scale Metabolic Model to Simulate Uncoupled Growth of Zymomonas mobilis
Authors: Maryam Saeidi, Ehsan Motamedian, Seyed Abbas Shojaosadati
Abstract:
Zymomonas mobilis is known as an example of the uncoupled growth phenomenon. This microorganism also has a unique metabolism that degrades glucose by the Entner–Doudoroff (ED) pathway. In this paper, a genome-scale metabolic model including 434 genes, 757 reactions and 691 metabolites was reconstructed to simulate uncoupled growth and study its effect on flux distribution in the central metabolism. The model properly predicted that ATPase was activated in experimental growth yields of Z. mobilis. Flux distribution obtained from model indicates that the major carbon flux passed through ED pathway that resulted in the production of ethanol. Small amounts of carbon source were entered into pentose phosphate pathway and TCA cycle to produce biomass precursors. Predicted flux distribution was in good agreement with experimental data. The model results also indicated that Z. mobilis metabolism is able to produce biomass with maximum growth yield of 123.7 g (mol glucose)-1 if ATP synthase is coupled with growth and produces 82 mmol ATP gDCW-1h-1. Coupling the growth and energy reduced ethanol secretion and changed the flux distribution to produce biomass precursors.Keywords: genome-scale metabolic model, Zymomonas mobilis, uncoupled growth, flux distribution, ATP dissipation
Procedia PDF Downloads 49016766 Developing Measurement Model of Interpersonal Skills of Youth
Authors: Mohd Yusri Ibrahim
Abstract:
Although it is known that interpersonal skills are essential for personal development, the debate however continues as to how to measure those skills, especially in youths. This study was conducted to develop a measurement model of interpersonal skills by suggesting three construct namely personal, skills and relationship; six function namely self, perception, listening, conversation, emotion and conflict management; and 30 behaviours as indicators. This cross-sectional survey by questionnaires was applied in east side of peninsula of Malaysia for 150 respondents, and analyzed by structural equation modelling (SEM) by AMOS. The suggested constructs, functions and indicators were consider accepted as measurement elements by observing on regression weight for standard loading, average variance extracted (AVE) for convergent validity, square root of AVE for discriminant validity, composite reliability (CR), and at least three fit indexes for model fitness. Finally, a measurement model of interpersonal skill for youth was successfully developed.Keywords: interpersonal communication, interpersonal skill, youth, communication skill
Procedia PDF Downloads 31816765 Knowledge of Gestational Diabetes Mellitus Among Pregnant Women in a Tertiary Hospital in Marawi City Lanao Del Sur
Authors: Al-Jazarie U. Masacal, Aniza Pala
Abstract:
Gestational diabetes mellitus (GDM) is a common pregnancy complication that can have detrimental effects on both the mother and the baby. In the Philippines, addressing GDM is not just about managing pregnancy-related conditions; it’s a strategic opportunity for preventing the rising prevalence of diabetes and improving long-term health outcomes for women and their families. Here, this study aimed to assess the current level of knowledge regarding GDM among pregnant women in a tertiary hospital in Lanao del Sur. This study also aimed to increase awareness and understanding of GDM, and recognition of the knowledge gap will help develop targeted health education and intervention strategies. After obtaining informed consent from the study subjects, a 15-item tool was used to measure GDM knowledge among pregnant patients aged at least 16 years in a tertiary hospital in Lanao del Sur. In this current study, the total number of participants was 558, where GDM knowledge was inadequate or poor among more than half of the women, 383 (68.6%), versus good or adequate knowledge status among 175 (31.3%). The mean score for adequate knowledge is 11.1 and SD +/- 1.7, while the mean score for inadequate knowledge is 3.9 +/- SD 2.6. Most participants were university or college graduates (n=260, 46.6%) and identified themselves as housewives (n=488, 87.5%). In addition, the majority of the participants have a family working in the medical field (67.90%), have a family history of diabetes (43.50%), and healthcare providers were quoted as a source of Gestational Diabetes Mellitus information by 43.5% of the women. Statistically significant associations were noted between knowledge about GDM and educational status, job type, respondents with family members working in the medical field, and family history of diabetes. Similarly, individuals who have tested their blood sugar before demonstrated higher mean knowledge scores (7.3 ± 4.1) than those who have not (5.3 ± 3.9), showing a significant association. Findings highlight the necessity of therapeutic education practices for expectant mothers. They must understand how to effectively manage their pregnancy and cultivate the proper mentality and habits for preventing GDM. Last but not least, doctors and other healthcare professionals require education and orientation because they play a significant role in raising awareness among expectant mothers.Keywords: knowledge, gestational diabetes mellitus, public health, awareness
Procedia PDF Downloads 716764 Detecting Overdispersion for Mortality AIDS in Zero-inflated Negative Binomial Death Rate (ZINBDR) Co-infection Patients in Kelantan
Authors: Mohd Asrul Affedi, Nyi Nyi Naing
Abstract:
Overdispersion is present in count data, and basically when a phenomenon happened, a Negative Binomial (NB) is commonly used to replace a standard Poisson model. Analysis of count data event, such as mortality cases basically Poisson regression model is appropriate. Hence, the model is not appropriate when existing a zero values. The zero-inflated negative binomial model is appropriate. In this article, we modelled the mortality cases as a dependent variable by age categorical. The objective of this study to determine existing overdispersion in mortality data of AIDS co-infection patients in Kelantan.Keywords: negative binomial death rate, overdispersion, zero-inflation negative binomial death rate, AIDS
Procedia PDF Downloads 46716763 Optimality Conditions and Duality for Semi-Infinite Mathematical Programming Problems with Equilibrium Constraints, Using Convexificators
Authors: Shashi Kant Mishra
Abstract:
In this paper, we consider semi-infinite mathematical programming problems with equilibrium constraints (SIMPEC). We establish necessary and sufficient optimality conditions for the SIMPEC, using convexificators. We study the Wolfe type dual problem for the SIMPEC under the ∂∗convexity assumptions. A Mond-Weir type dual problem is also formulated and studied for the SIMPEC under the ∂∗-convexity, ∂∗-pseudoconvexity and ∂∗quasiconvexity assumptions. Weak duality theorems are established to relate the SIMPEC and two dual programs in the framework of convexificators. Further, strong duality theorems are obtained under generalized standard Abadie constraint qualification (GS-ACQ).Keywords: mathematical programming problems with equilibrium constraints, optimality conditions, semi-infinite programming, convexificators
Procedia PDF Downloads 33016762 Tele-Rehabilitation for Multiple Sclerosis: A Case Study
Authors: Sharon Harel, Rachel Kizony, Yoram Feldman, Gabi Zeilig, Mordechai Shani
Abstract:
Multiple Sclerosis (MS) is a neurological disease that may cause restriction in participation in daily activities of young adults. Main symptoms include fatigue, weakness and cognitive decline. The appearance of symptoms, their severity and deterioration rate, change between patients. The challenge of health services is to provide long-term rehabilitation services to people with MS. The objective of this presentation is to describe a course of tele-rehabilitation service of a woman with MS. Methods; R is a 48 years-old woman, diagnosed with MS when she was 22. She started to suffer from weakness of her non-dominant left upper extremity about ten years after the diagnosis. She was referred to the tele-rehabilitation service by her rehabilitation team, 16 years after diagnosis. Her goals were to improve ability to use her affected upper extremity in daily activities. On admission her score in the Mini-Mental State Exam was 30/30. Her Fugl-Meyer Assessment (FMA) score of the left upper extremity was 48/60, indicating mild weakness and she had a limitation of her shoulder abduction (90 degrees). In addition, she reported little use of her arm in daily activities as shown in her responses to the Motor Activity Log (MAL) that were equal to 1.25/5 in amount and 1.37 in quality of use. R. received two 30 minutes on-line sessions per week in the tele-rehabilitation service, with the CogniMotion system. These were complemented by self-practice with the system. The CogniMotion system provides a hybrid (synchronous-asynchronous), the home-based tele-rehabilitation program to improve the motor, cognitive and functional status of people with neurological deficits. The system consists of a computer, large monitor, and the Microsoft’s Kinect 3D sensor. This equipment is located in the client’s home and connected to a clinician’s computer setup in a remote clinic via WiFi. The client sits in front of the monitor and uses his body movements to interact with games and tasks presented on the monitor. The system provides feedback in the form of ‘knowledge of results’ (e.g., the success of a game) and ‘knowledge of performance’ (e.g., alerts for compensatory movements) to enhance motor learning. The games and tasks were adapted for R. motor abilities and level of difficulty was gradually increased according to her abilities. The results of her second assessment (after 35 on-line sessions) showed improvement in her FMA score to 52 and shoulder abduction to 140 degrees. Moreover, her responses to the MAL indicated an increased amount (2.4) and quality (2.2) of use of her left upper extremity in daily activities. She reported high level of enjoyment from the treatments (5/5), specifically the combination of cognitive challenges while moving her body. In addition, she found the system easy to use as reflected by her responses to the System Usability Scale (85/100). To-date, R. continues to receive treatments in the tele-rehabilitation service. To conclude, this case report shows the potential of using tele-rehabilitation for people with MS to provide strategies to enhance the use of the upper extremity in daily activities as well as for maintaining motor function.Keywords: motor function, multiple-sclerosis, tele-rehabilitation, daily activities
Procedia PDF Downloads 18316761 A Traceability Index for Food
Authors: Hari Pulapaka
Abstract:
This paper defines and develops the notion of a traceability index for food and may be used by any consumer (restaurant, distributor, average consumer etc.). The concept is then extended to a region's food system as a way to measure how well a regional food system utilizes its own bounty or at least, is connected to its food sources. With increasing emphases on the sustainability of aspects of regional and ultimately, the global food system, it is reasonable to accept that if we know how close (in relative terms) an end-user of a set of ingredients (as they traverse through the maze of supply chains) is from the sources, we may be better equipped to evaluate the quality of the set as measured by any number of qualitative and quantitative criteria. We propose a mathematical model which may be adapted to a number of contexts and sizes. Two hypothetical cases of different scope are presented which highlight how the model works as an evaluator of steps between an end-user and the source(s) of the ingredients they consume. The variables in the model are flexible enough to be adapted to other applications beyond food systems.Keywords: food, traceability, supply chain, mathematical model
Procedia PDF Downloads 27416760 Analytics Model in a Telehealth Center Based on Cloud Computing and Local Storage
Authors: L. Ramirez, E. Guillén, J. Sánchez
Abstract:
Some of the main goals about telecare such as monitoring, treatment, telediagnostic are deployed with the integration of applications with specific appliances. In order to achieve a coherent model to integrate software, hardware, and healthcare systems, different telehealth models with Internet of Things (IoT), cloud computing, artificial intelligence, etc. have been implemented, and their advantages are still under analysis. In this paper, we propose an integrated model based on IoT architecture and cloud computing telehealth center. Analytics module is presented as a solution to control an ideal diagnostic about some diseases. Specific features are then compared with the recently deployed conventional models in telemedicine. The main advantage of this model is the availability of controlling the security and privacy about patient information and the optimization on processing and acquiring clinical parameters according to technical characteristics.Keywords: analytics, telemedicine, internet of things, cloud computing
Procedia PDF Downloads 32616759 A New Distribution and Application on the Lifetime Data
Authors: Gamze Ozel, Selen Cakmakyapan
Abstract:
We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of real life data set.Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood
Procedia PDF Downloads 504