Search results for: digital transformation artificial intelligence
4482 Differences in Parental Acceptance, Rejection, and Attachment and Associations with Adolescent Emotional Intelligence and Life Satisfaction
Authors: Diana Coyl-Shepherd, Lisa Newland
Abstract:
Research and theory suggest that parenting and parent-child attachment influence emotional development and well-being. Studies indicate that adolescents often describe differences in relationships with each parent and may form different types of attachment to mothers and fathers. During adolescence and young adulthood, romantic partners may also become attachment figures, influencing well being, and providing a relational context for emotion skill development. Mothers, however, tend to be remain the primary attachment figure; fathers and romantic partners are more likely to be secondary attachment figures. The following hypotheses were tested: 1) participants would rate mothers as more accepting and less rejecting than fathers, 2) participants would rate secure attachment to mothers higher and insecure attachment lower compared to father and romantic partner, 3) parental rejection and insecure attachment would be negatively related to life satisfaction and emotional intelligence, and 4) secure attachment and parental acceptance would be positively related life satisfaction and emotional intelligence. After IRB and informed consent, one hundred fifty adolescents and young adults (ages 11-28, M = 19.64; 71% female) completed an online survey. Measures included parental acceptance, rejection, attachment (i.e., secure, dismissing, and preoccupied), emotional intelligence (i.e., seeking and providing comfort, use, and understanding of self emotions, expressing warmth, understanding and responding to others’ emotional needs), and well-being (i.e., self-confidence and life satisfaction). As hypothesized, compared to fathers’, mothers’ acceptance was significantly higher t (190) = 3.98, p = .000 and rejection significantly lower t (190) = - 4.40, p = .000. Group differences in secure attachment were significant, f (2, 389) = 40.24, p = .000; post-hoc analyses revealed significant differences between mothers and fathers and between mothers and romantic partners; mothers had the highest mean score. Group differences in preoccupied attachment were significant, f (2, 388) = 13.37, p = .000; post-hoc analyses revealed significant differences between mothers and romantic partners, and between fathers and romantic partners; mothers have the lowest mean score. However, group differences in dismissing attachment were not significant, f (2, 389) = 1.21, p = .30; scores for mothers and romantic partners were similar; father means score was highest. For hypotheses 3 and 4 significant negative correlations were found between life satisfaction and dismissing parent, and romantic attachment, preoccupied father and romantic attachment, and mother and father rejection variables; secure attachment variables and parental acceptance were positively correlated with life satisfaction. Self-confidence was correlated only with mother acceptance. For emotional intelligence, seeking and providing comfort were negatively correlated with parent dismissing and mother rejection; secure mother and romantic attachment and mother acceptance were positively correlated with these variables. Use and understanding of self-emotions were negatively correlated with parent and partner dismissing attachment, and parent rejection; romantic secure attachment and parent acceptance were positively correlated. Expressing warmth was negatively correlated with dismissing attachment variables, romantic preoccupied attachment, and parent rejection; whereas attachment secure variables were positively associated. Understanding and responding to others’ emotional needs were correlated with parent dismissing and preoccupied attachment variables and mother rejection; only secure father attachment was positively correlated.Keywords: adolescent emotional intelligence, life satisfaction, parent and romantic attachment, parental rejection and acceptance
Procedia PDF Downloads 1934481 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 114480 A Case Study on the Impact of Technology Readiness in a Department of Clinical Nurses
Authors: Julie Delany
Abstract:
To thrive in today’s digital climate, it is vital that organisations adopt new technology and prepare for rising digital trends. This proves more difficult in government where, traditionally, people lack change readiness. While individuals may have a desire to work smarter, this does not necessarily mean embracing technology. This paper discusses the rollout of an application into a small department of highly experienced nurses. The goal was to both streamline the department's workflow and provide a platform for gathering essential business metrics. The biggest challenges were adoption and motivating the nurses to change their routines and learn new computer skills. Two-thirds struggled with the change, and as a result, some jeopardised the validity of the business metrics. In conclusion, there are lessons learned and recommendations for similar projects.Keywords: change ready, information technology, end-user, iterative method, rollout plan, data analytics
Procedia PDF Downloads 1474479 The Effects of Techno-Economic Paradigm on Social Evolution
Authors: Derya Güler Aydin, Bahar Araz Takay
Abstract:
Two different forms of competition theories can be distinguished: Those theories that emphasize the equilibrating forces created by competition, and those emphasizing the disequilibrating forces. This difference can be attributed, among other things, to the differences regarding the functioning of the market economy; that is to say, the basic problem here is whether competition should be understood as a static state or a dynamic process. This study aims to analyze the dynamic competition theories by K. Marx and J. A. Schumpeter and neo- Schumperians all of which focus on the dynamic role played by competition through creating disequilibria, endogenous structural change and social transformation as a distinguishing characteristic of the market system. With this aim, in the first section, after examining the static, neoclassical competition theory, both Marx‟s theory, which is based on profit rate differentials, and Schumpeter‟s theory, which is based on the notion of “creative destruction”, will be discussed. In the second section, the long-term fluctuations, based on creative gales of destruction, the concept will be examined under the framework of techno-economic paradigm. It is argued that the dynamic, even disequilibrium tendencies created by the competition process should be regarded in both understanding the working of capitalism and social transformation of the system.Keywords: competition, techno-enomic paradigm, Schumpeter, social evolution
Procedia PDF Downloads 2364478 Transformation of Bangladesh Society: The Role of Religion
Authors: Abdul Wohab
Abstract:
Context: The role of religion in the transformation of Bangladesh society has been significant since 1975. There has been a rise in religious presence, particularly Islam, in both private and public spheres supported by the state apparatuses. In 2009, a 'secular' political party came into power for the second time since independence and initiated the modernization of religious education systems. This research focuses on the transformation observed among the educated middle class who now prefer their children to attend modern, English medium madrasas that offer both religion-based and secular education. Research Aim: This research aims to investigate two main questions: a) what motivates the educated middle class to send their children to madrasa education? b) To what extent can it be argued that Bangladeshi society is transforming from its secular nature to being more religious?Methodology: The research applies a combination of primary and secondary methods. Case studies serve as the primary method, allowing for an in-depth exploration of the motivations of the educated middle class. The secondary method involves analyzing published news articles, op-eds, and websites related to madrasa education, as well as studying the reading syllabus of Aliya and Qwami madrasas in Bangladesh. Findings: Preliminary findings indicate that the educated middle class chooses madrasa education for reasons such as remembering and praying for their departed relatives, keeping their children away from substance abuse, fostering moral and ethical values, and instilling respect for seniors and relatives. The research also reveals that religious education is believed to help children remain morally correct according to the Quran and Hadith. Additionally, the establishment of madrasas in Bangladesh is attributed to economic factors, with demand and supply mechanisms playing a significant role. Furthermore, the findings suggest that government-run primary education institutions in rural areas face more challenges in enrollment compared to religious educational institutions like madrasas. Theoretical Importance: This research contributes to the understanding of societal transformation and the role of religion in this process. By examining the case of Bangladesh, it provides insights into how religion influences education choices and societal values. Data Collection and Analysis Procedures: Data for this research is collected through case studies, including interviews and observations of educated middle-class families who send their children to madrasas. In addition, analysis is conducted on relevant published materials such as news articles, op-eds, and websites. The reading syllabus of Aliya and Qwami madrasas is also analyzed to gain a comprehensive understanding of the education system. Questions Addressed: The research addresses two questions: a) what motivates the educated middle class to choose madrasa education for their children? b) To what extent can it be argued that Bangladeshi society is transforming from its secular nature to being more religious?Conclusion: The preliminary findings of this research highlight the motivations of the educated middle class in opting for madrasa education, including the desire to maintain religious traditions, promote moral values, and provide a strong foundation for their children. It also suggests that Bangladeshi society is experiencing a transformation towards a more religious orientation. This research contributes to the understanding of societal changes and the role of religion within Bangladesh, shedding light on the complex dynamics between religion and education.Keywords: madrasa education, transformation, Bangladesh, religion and society, education
Procedia PDF Downloads 674477 Influence of Post Weld Heat Treatment on Mechanical and Metallurgical Properties of TIG Welded Aluminium Alloy Joints
Authors: Gurmeet Singh Cheema, Navjotinder Singh, Gurjinder Singh, Amardeep Singh
Abstract:
Aluminium and its alloys play have excellent corrosion resistant properties, ease of fabrication and high specific strength to weight ratio. In this investigation an attempt has been made to study the effect of different post weld heat treatment methods on the mechanical and metallurgical properties of TIG welded joints of the commercial aluminium alloy. Three different methods of post weld heat treatments are, solution heat treatment, artificial aged and combination of solution heat treatment and artificial aging are given to TIG welded aluminium joints. Mechanical and metallurgical properties of as welded and post weld treated joints of the aluminium alloys was examined.Keywords: aluminium alloys, TIG welding, post weld heat treatment
Procedia PDF Downloads 5814476 On the Equalization of Nonminimum Phase Electroacoustic Systems Using Digital Inverse Filters
Authors: Avelino Marques, Diamantino Freitas
Abstract:
Some important electroacoustic systems, like loudspeaker systems, exhibit a nonminimum phase behavior that poses considerable effort when applying advanced digital signal processing techniques, such as linear equalization. In this paper, the position and the number of zeros and poles of the inverse filter, FIR type or IIR type, designed using time domain techniques, are studied, compared and related to the nonminimum phase zeros of system to be equalized. Conclusions about the impact of the position of the system non-minimum phase zeros, on the length/order of the inverse filter and on the delay of the equalized system are outlined as a guide to previously decide which type of filter will be more adequate.Keywords: loudspeaker systems, nonminimum phase system, FIR and IIR filter, delay
Procedia PDF Downloads 834475 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring
Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau
Abstract:
The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems
Procedia PDF Downloads 2044474 Perovskite Solar Cells Penetration on Electric Grids Based on the Power Hardware in the Loop Methodology
Authors: Alaa A. Zaky, Bandar Alfaifi, Saleh Alyahya, Alkistis Kontou, Panos Kotsampopoulos
Abstract:
In this work, we present for the first time the grid-integration of 3rd generation perovskite solar cells (PSCs) based on nanotechnology in fabrication. The effect of this penetration is analyzed in normal, fault and islanding cases of operation under different irradiation conditions using the power hardware in the loop (PHIL) methodology. The PHL method allows the PSCs connection to the electric grid which is simulated in the real-time digital simulator (RTDS), for laboratory validation of the PSCs behavior under conditions very close to real.Keywords: perovskite solar cells, power hardware in the loop, real-time digital simulator, smart grid
Procedia PDF Downloads 354473 Artificial Intelligence Assisted Sentiment Analysis of Hotel Reviews Using Topic Modeling
Authors: Sushma Ghogale
Abstract:
With a surge in user-generated content or feedback or reviews on the internet, it has become possible and important to know consumers' opinions about products and services. This data is important for both potential customers and businesses providing the services. Data from social media is attracting significant attention and has become the most prominent channel of expressing an unregulated opinion. Prospective customers look for reviews from experienced customers before deciding to buy a product or service. Several websites provide a platform for users to post their feedback for the provider and potential customers. However, the biggest challenge in analyzing such data is in extracting latent features and providing term-level analysis of the data. This paper proposes an approach to use topic modeling to classify the reviews into topics and conduct sentiment analysis to mine the opinions. This approach can analyse and classify latent topics mentioned by reviewers on business sites or review sites, or social media using topic modeling to identify the importance of each topic. It is followed by sentiment analysis to assess the satisfaction level of each topic. This approach provides a classification of hotel reviews using multiple machine learning techniques and comparing different classifiers to mine the opinions of user reviews through sentiment analysis. This experiment concludes that Multinomial Naïve Bayes classifier produces higher accuracy than other classifiers.Keywords: latent Dirichlet allocation, topic modeling, text classification, sentiment analysis
Procedia PDF Downloads 1034472 Bridge Health Monitoring: A Review
Authors: Mohammad Bakhshandeh
Abstract:
Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis
Procedia PDF Downloads 954471 E-Payments, COVID-19 Restrictions, and Currency in Circulation: Thailand and Turkey
Authors: Zeliha Sayar
Abstract:
Central banks all over the world appear to be focusing first and foremost on retail central bank digital currency CBDC), i.e., digital cash/money. This approach is predicated on the belief that the use of cash has decreased, owing primarily to technological advancements and pandemic restrictions, and that a suitable foundation for the transition to a cashless society has been revealed. This study aims to contribute to the debate over whether digital money/CBDC can be a substitute or supplement to physical cash by examining the potential effects on cash demand. For this reason, this paper compares two emerging countries, Turkey, and Thailand, to demystify the impact of e-payment and COVID-19 restrictions on cash demand by employing fully modified ordinary least squares (FMOLS), dynamic ordinary least squares (DOLS), and the canonical cointegrating regression (CCR). The currency in circulation in two emerging countries, Turkey and Thailand, was examined in order to estimate the elasticity of different types of retail payments. The results demonstrate that real internet and mobile, cart, contactless payment, and e-money are long-term determinants of real cash demand in these two developing countries. Furthermore, with the exception of contactless payments in Turkey, there is a positive relationship between the currency in circulation and the various types of retail payments. According to findings, COVID-19 restrictions encourage the demand for cash, resulting in cash hoarding.Keywords: CCR, DOLS, e-money, FMOLS, real cash
Procedia PDF Downloads 1124470 Analysis of Various Copy Move Image Forgery Techniques for Better Detection Accuracy
Authors: Grishma D. Solanki, Karshan Kandoriya
Abstract:
In modern era of information age, digitalization has revolutionized like never before. Powerful computers, advanced photo editing software packages and high resolution capturing devices have made manipulation of digital images incredibly easy. As per as image forensics concerns, one of the most actively researched area are detection of copy move forgeries. Higher computational complexity is one of the major component of existing techniques to detect such tampering. Moreover, copy move forgery is usually performed in three steps. First, copying of a region in an image then pasting the same one in the same respective image and finally doing some post-processing like rotation, scaling, shift, noise, etc. Consequently, pseudo Zernike moment is used as a features extraction method for matching image blocks and as a primary factor on which performance of detection algorithms depends.Keywords: copy-move image forgery, digital forensics, image forensics, image forgery
Procedia PDF Downloads 2924469 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions
Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly
Abstract:
Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability
Procedia PDF Downloads 954468 A Comparative Soft Computing Approach to Supplier Performance Prediction Using GEP and ANN Models: An Automotive Case Study
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In multi-echelon supply chain networks, optimal supplier selection significantly depends on the accuracy of suppliers’ performance prediction. Different methods of multi criteria decision making such as ANN, GA, Fuzzy, AHP, etc have been previously used to predict the supplier performance but the “black-box” characteristic of these methods is yet a major concern to be resolved. Therefore, the primary objective in this paper is to implement an artificial intelligence-based gene expression programming (GEP) model to compare the prediction accuracy with that of ANN. A full factorial design with %95 confidence interval is initially applied to determine the appropriate set of criteria for supplier performance evaluation. A test-train approach is then utilized for the ANN and GEP exclusively. The training results are used to find the optimal network architecture and the testing data will determine the prediction accuracy of each method based on measures of root mean square error (RMSE) and correlation coefficient (R2). The results of a case study conducted in Supplying Automotive Parts Co. (SAPCO) with more than 100 local and foreign supply chain members revealed that, in comparison with ANN, gene expression programming has a significant preference in predicting supplier performance by referring to the respective RMSE and R-squared values. Moreover, using GEP, a mathematical function was also derived to solve the issue of ANN black-box structure in modeling the performance prediction.Keywords: Supplier Performance Prediction, ANN, GEP, Automotive, SAPCO
Procedia PDF Downloads 4224467 Physics of Black Holes. A Closed Cycle of Transformation of Matter in the Universe
Authors: Igor V. Kuzminov
Abstract:
The proposed article is a development of the topics of gravity, the inverse temperature dependence of gravity, the action of the inverse temperature dependence of gravity, and the second law of thermodynamics, dark matter, the identity of gravity, inertial forces, and centrifugal forces. All interaction schemes are built on the basis of Newton's laws of classical mechanics and Rutherford's planetary model of the structure of the atom. The basis of all constructions is the gyroscopic effect of rotation of all particles of the atomic structure. In this case, interatomic and intermolecular bonds are accepted as the static part of the gyroscope, and the rotation of an electron in an atom is accepted as the dynamic part. The structure of the planet Earth is accepted as a model of the structure of the Black Hole. Namely, gravitational and thermodynamic phenomena in the structure of the planet Earth are accepted as a model. Based on this model, assumptions are made about the processes inside the Black Hole. Moreover, a version is put forward, a scheme of a closed cycle of transformation of matter in the Universe.Keywords: black hole, gravity, inverse temperature dependence of gravitational forces, second law of thermodynamics, gyroscopic effect, dark matter
Procedia PDF Downloads 344466 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms
Authors: Selim M. Khan
Abstract:
Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America
Procedia PDF Downloads 994465 Assessing Soft Skills In Accounting Programmes: Insights From South African University Lecturers
Authors: Dolly Nyaguthii Wanjau
Abstract:
This study contributes to our understanding of how lecturers assess soft skills in accounting programmes, with the intention of producing graduates that are better prepared for the world of work. Insights were obtained through semi-structured interviews with twelve South African universities that offer chartered accountant training and accredited by SAICA. It was found that the lecturers assessed soft skills using traditional methods of assessments such as tests, assignments, and examinations. However, there were missed opportunities to embrace ICT tools in the assessment process, and this could be attributed to a lack of resources within the participating universities. Given the increasing use of digital tools for business activities, it is important that ICT tools be embraced as an inseparable part of soft skills because employers are increasingly looking for accounting graduates with digital skills.Keywords: accounting, assessment, ICT skills, SAICA, soft skills
Procedia PDF Downloads 1354464 Understanding Awareness, Agency and Autonomy of Mothers and Potential of Digital Technology in Expanding Maternal Health Information Access: A Survey of Mothers in Urban India
Authors: Sumiti Saharan, Pallav Patankar, Lily W. Lee
Abstract:
Understanding the health-seeking behaviors and attitudes of women towards maternal health in the context of gender roles and family dynamics is tremendously crucial for designing effective and impactful interventions aimed at improving maternal and child health outcomes. Further, as the digital world becomes more accessible and affordable, it is imperative to scope the potential of digital technology in enabling access to maternal health information in different socio-economic groups (SEGs). In the summer of 2017, we conducted a study with 500 women across different SEGs in urban India who were pregnant or had had a delivery in the last year. The study was undertaken to assess their maternal health information seeking behavior with a particular focus on probing their use of digital technology for health-related information. The study also measured women's decision-making autonomy in the context of maternal health, awareness of their rights to quality and respectful maternal healthcare, and agency to voice their rights. We probed the impact of key variables including education, age, and socioeconomic status on all outcome variables. In terms of health-seeking behaviors, we found that women heavily relied on medical professionals and/or their mothers and mothers-in-law for all maternal health advice. Digital adoption was found to be high across all SEGs, with around 70% of women from all populations using the internet several times a week. On the other hand, use of the internet for both accessing maternal health information and choosing maternity hospitals were both significantly dependent on SEG. The key reasons reported for not using the internet for health purposes were lack of awareness and lack of trust on content accuracy. Decisions around health practices and type of delivery were found to be jointly made by women and other family members. Almost all women reported their husbands to play a key role in all maternal health decisions and for decisions with a clear financial implication like choice of hospital for delivery, husbands were reported to be the sole decision maker by a majority of women. The agency of women was also found to be low in interactions with maternal healthcare providers with a third of respondents not comfortable with voicing their opinions and preferences to their doctors. Interestingly, we find that this relatively low agency was prominent in both lower middle class and middle-class SEGs. Recognition of the sociocultural determinants of behavior is the first step in developing actionable strategies for improving maternal health outcomes. Our study quantifies the agency and autonomy of women in urban India and the variables that impact them. Our findings emphasize the value of gender normative approaches that factor in the key role husbands play in guiding maternal health decisions. They also highlight the power of digital approaches for catalyzing access to maternal health information. These insights into the attitude and behaviors of mothers in context of their sociocultural environments—and their relationship with digital technology—can help pave the way towards designing effective, scalable maternal and child health programs in developing nations like India.Keywords: access to healthcare information, behavior, digital health, maternal health
Procedia PDF Downloads 1414463 Research on the Strategy of Old City Reconstruction under Market Orientation: Taking Mutoulong Community in Shenzhen as an Example
Authors: Ziwei Huang
Abstract:
In order to promote Inventory development in Shenzhen, the market-oriented real estate development mode has occupied a dominant position in the urban renewal activities of Shenzhen. This research is based on the theory of role relationship and urban regime, taking the Mutoulong community as the research object. Carries on the case depth analysis found that: Under the situation of absence and dislocation of the government's role, land property rights disputes and lack of communication platforms is the main reason for the problems of nail households and market failures, and the long-term delay in the progress of old city reconstruction. Through the analysis of the cause of the transformation problem and the upper planning and interest coordination mechanism, the optimization strategy of the old city transformation is finally proposed as follows: the establishment of interest coordination platform, the risk assessment of the government's intervention in the preliminary construction of the land, the adaptive construction of laws and regulations, and the re-examination of the interest relationship between the government and the market.Keywords: Shenzhen city, Mutoulong community, urban regeneration, urban regime theory, role relationship theory
Procedia PDF Downloads 1014462 Challenges to Safe and Effective Prescription Writing in the Environment Where Digital Prescribing is Absent
Authors: Prashant Neupane, Asmi Pandey, Mumna Ehsan, Katie Davies, Richard Lowsby
Abstract:
Introduction/Background & aims: Safe and effective prescribing in hospitals, directly and indirectly, impacts the health of the patients. Even though digital prescribing in the National Health Service (NHS), UK has been used in lots of tertiary centers along with district general hospitals, a significant number of NHS trusts are still using paper prescribing. We came across lots of irregularities in our daily clinical practice when we are doing paper prescribing. The main aim of the study was to assess how safely and effectively are we prescribing at our hospital where there is no access to digital prescribing. Method/Summary of work: We conducted a prospective audit in the critical care department at Mid Cheshire Hopsitals NHS Foundation Trust in which 20 prescription charts from different patients were randomly selected over a period of 1 month. We assessed 16 multiple categories from each prescription chart and compared them to the standard trust guidelines on prescription. Results/Discussion: We collected data from 20 different prescription charts. 16 categories were evaluated within each prescription chart. The results showed there was an urgent need for improvement in 8 different sections. In 85% of the prescription chart, all the prescribers who prescribed the medications were not identified. Name, GMC number and signature were absent in the required prescriber identification section of the prescription chart. In 70% of prescription charts, either indication or review date of the antimicrobials was absent. Units of medication were not documented correctly in 65% and the allergic status of the patient was absent in 30% of the charts. The start date of medications was missing and alternations of the medications were not done properly in 35%of charts. The patient's name was not recorded in all desired sections of the chart in 50% of cases and cancellations of the medication were not done properly in 45% of the prescription charts. Conclusion(s): From the audit and data analysis, we assessed the areas in which we needed improvement in prescription writing in the Critical care department. However, during the meetings and conversations with the experts from the pharmacy department, we realized this audit is just a representation of the specialized department of the hospital where access to prescribing is limited to a certain number of prescribers. But if we consider bigger departments of the hospital where patient turnover is much more, the results could be much worse. The findings were discussed in the Critical care MDT meeting where suggestions regarding digital/electronic prescribing were discussed. A poster and presentation regarding safe and effective prescribing were done, awareness poster was prepared and attached alongside every bedside in critical care where it is visible to prescribers. We consider this as a temporary measure to improve the quality of prescribing, however, we strongly believe digital prescribing will help to a greater extent to control weak areas which are seen in paper prescribing.Keywords: safe prescribing, NHS, digital prescribing, prescription chart
Procedia PDF Downloads 1244461 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations
Authors: Ramon Santana
Abstract:
The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.Keywords: fingerprint, template protection, bio-cryptography, minutiae protection
Procedia PDF Downloads 1734460 A Unified Approach for Digital Forensics Analysis
Authors: Ali Alshumrani, Nathan Clarke, Bogdan Ghite, Stavros Shiaeles
Abstract:
Digital forensics has become an essential tool in the investigation of cyber and computer-assisted crime. Arguably, given the prevalence of technology and the subsequent digital footprints that exist, it could have a significant role across almost all crimes. However, the variety of technology platforms (such as computers, mobiles, Closed-Circuit Television (CCTV), Internet of Things (IoT), databases, drones, cloud computing services), heterogeneity and volume of data, forensic tool capability, and the investigative cost make investigations both technically challenging and prohibitively expensive. Forensic tools also tend to be siloed into specific technologies, e.g., File System Forensic Analysis Tools (FS-FAT) and Network Forensic Analysis Tools (N-FAT), and a good deal of data sources has little to no specialist forensic tools. Increasingly it also becomes essential to compare and correlate evidence across data sources and to do so in an efficient and effective manner enabling an investigator to answer high-level questions of the data in a timely manner without having to trawl through data and perform the correlation manually. This paper proposes a Unified Forensic Analysis Tool (U-FAT), which aims to establish a common language for electronic information and permit multi-source forensic analysis. Core to this approach is the identification and development of forensic analyses that automate complex data correlations, enabling investigators to investigate cases more efficiently. The paper presents a systematic analysis of major crime categories and identifies what forensic analyses could be used. For example, in a child abduction, an investigation team might have evidence from a range of sources including computing devices (mobile phone, PC), CCTV (potentially a large number), ISP records, and mobile network cell tower data, in addition to third party databases such as the National Sex Offender registry and tax records, with the desire to auto-correlate and across sources and visualize in a cognitively effective manner. U-FAT provides a holistic, flexible, and extensible approach to providing digital forensics in technology, application, and data-agnostic manner, providing powerful and automated forensic analysis.Keywords: digital forensics, evidence correlation, heterogeneous data, forensics tool
Procedia PDF Downloads 2014459 A Digital Filter for Symmetrical Components Identification
Authors: Khaled M. El-Naggar
Abstract:
This paper presents a fast and efficient technique for monitoring and supervising power system disturbances generated due to dynamic performance of power systems or faults. Monitoring power system quantities involve monitoring fundamental voltage, current magnitudes, and their frequencies as well as their negative and zero sequence components under different operating conditions. The proposed technique is based on simulated annealing optimization technique (SA). The method uses digital set of measurements for the voltage or current waveforms at power system bus to perform the estimation process digitally. The algorithm is tested using different simulated data to monitor the symmetrical components of power system waveforms. Different study cases are considered in this work. Effects of number of samples, sampling frequency and the sample window size are studied. Results are reported and discussed.Keywords: estimation, faults, measurement, symmetrical components
Procedia PDF Downloads 4714458 Video on Demand (VOD) Industry in Iran: Study of Reasons of Increasing Film and Series Platforms
Authors: Narges Hamidipour
Abstract:
VOD, which stands for "video on demand", is one kind of watching movies and series on web platforms that, by using them, individuals can access lots of video content by paying abonnement. The first platform in Iran was funded in 2014, and in the last 10 years, it has become the main part of the movie and series industry. There are 374 VOD platforms in Iran, but just three of them are in the mainstream. However, in these years, they have been developed and famed in different ways. This article focuses on the reasons for this development in the past years. For the framework, "digital economy", "media industries," and "political economy" have been used with the interview method. In this research, some experts in SATRA (regulatory organization of inclusive audio and video media in Iran), owners or managers of VODs and some others who directly have been in the system conveyed their opinions. By the way, some documents and analysis statistics are invoked to reach complete results.Keywords: digital economy, political economy, VOD, interview, iran
Procedia PDF Downloads 694457 Attracting the North Holidaymaker to Ireland Using Social Media Channels: An Irish Marketing Strategy
Authors: Colm Barcoe, Garvan Whelan
Abstract:
In tourism, engagement has been found to boost awareness of a destination and subsequently increase visits. Customer engagement in this industry is now facilitated by social media. This phenomenon is not very well researched in relation to Ireland and the North American tourism market. The objective of this paper is to present research findings on two related topics; the first is an investigation into the effectiveness of social media channels as components of a digital marketing campaign when promoting Ireland as a brand in North America. Secondly, this study reveals how Irish marketers have embraced social media platforms and channels with an innovative strategy that has successfully attracted growing numbers of US and Canadian holidaymakers to Ireland. A range of methodological approaches was applied in order to achieve the study’s objective. The methods used were both quantitative and qualitative, and the data was obtained from both Irish marketers and North American holidaymakers. Surveys of these holidaymakers in the pre, during and post-trip phases revealed their attitudes towards social media and Ireland as a destination. Semi-structured interviews with those responsible for implementing relationship marketing strategies for this segment provide insight into the effectiveness of social media when used to capitalise on the cultural link between Ireland and North America. Further analysis involved using Nvivo 11+ software to investigate the activities of the Irish destination marketer (DMO) and the engagement of the US and Canadian audiences through a detailed study of social media platform content. The findings from this investigation will extend an under-researched body of literature pertaining to Ireland as a destination and the successful digital marketing campaigns that have achieved exponential growth in this sector over the past five years. The empirical evidence presented also illustrates how the innovative use of social media has assisted the DMO to engage with the North American holidaymaker as part of an effective digital marketing strategy.Keywords: channels, digital, engagement, marketing, strategies
Procedia PDF Downloads 1594456 Anomaly Detection in Financial Markets Using Tucker Decomposition
Authors: Salma Krafessi
Abstract:
The financial markets have a multifaceted, intricate environment, and enormous volumes of data are produced every day. To find investment possibilities, possible fraudulent activity, and market oddities, accurate anomaly identification in this data is essential. Conventional methods for detecting anomalies frequently fail to capture the complex organization of financial data. In order to improve the identification of abnormalities in financial time series data, this study presents Tucker Decomposition as a reliable multi-way analysis approach. We start by gathering closing prices for the S&P 500 index across a number of decades. The information is converted to a three-dimensional tensor format, which contains internal characteristics and temporal sequences in a sliding window structure. The tensor is then broken down using Tucker Decomposition into a core tensor and matching factor matrices, allowing latent patterns and relationships in the data to be captured. A possible sign of abnormalities is the reconstruction error from Tucker's Decomposition. We are able to identify large deviations that indicate unusual behavior by setting a statistical threshold. A thorough examination that contrasts the Tucker-based method with traditional anomaly detection approaches validates our methodology. The outcomes demonstrate the superiority of Tucker's Decomposition in identifying intricate and subtle abnormalities that are otherwise missed. This work opens the door for more research into multi-way data analysis approaches across a range of disciplines and emphasizes the value of tensor-based methods in financial analysis.Keywords: tucker decomposition, financial markets, financial engineering, artificial intelligence, decomposition models
Procedia PDF Downloads 734455 Rethinking Agile: The Mentorship-Driven Agile Process Human-Centric Approach to Software Development
Authors: Lillie Beiting, Nell Watson
Abstract:
This paper introduces the Mentorship-Driven Agile Process (MDAP), an approach to software development that addresses the limitations of traditional agile methodologies. MDAP reimagines software development with a focus on human capital, efficient knowledge transfer, and developer empowerment while strategically integrating artificial intelligence to enhance productivity and quality. The framework is built around small, cross-functional "Skill Cells" that combine traditionally separate roles such as development, code review, QA, and DevOps. This structure facilitates rapid skill transfer, enhances code quality, and improves system understanding. MDAP leverages modern tools and practices, including managed software environments, advanced monitoring systems, and AI-assisted processes, to streamline development cycles and reduce overhead. The paper outlines the structure, operational dynamics, and key practices of MDAP, including its unique approach to ceremonies, code review, and DevOps. It also discusses the benefits, prerequisites for success, and potential challenges of implementing MDAP, as well as the ethical considerations of AI integration. By fostering a more collaborative and fulfilling work environment augmented by AI, MDAP aims to create better software, happier teams, and more successful companies, potentially reshaping the landscape of software development.Keywords: agile software development, mentorship, skill cells, DevOps, AI in software development, organizational psychology
Procedia PDF Downloads 74454 Python Implementation for S1000D Applicability Depended Processing Model - SALERNO
Authors: Theresia El Khoury, Georges Badr, Amir Hajjam El Hassani, Stéphane N’Guyen Van Ky
Abstract:
The widespread adoption of machine learning and artificial intelligence across different domains can be attributed to the digitization of data over several decades, resulting in vast amounts of data, types, and structures. Thus, data processing and preparation turn out to be a crucial stage. However, applying these techniques to S1000D standard-based data poses a challenge due to its complexity and the need to preserve logical information. This paper describes SALERNO, an S1000d AppLicability dEpended pRocessiNg mOdel. This python-based model analyzes and converts the XML S1000D-based files into an easier data format that can be used in machine learning techniques while preserving the different logic and relationships in files. The model parses the files in the given folder, filters them, and extracts the required information to be saved in appropriate data frames and Excel sheets. Its main idea is to group the extracted information by applicability. In addition, it extracts the full text by replacing internal and external references while maintaining the relationships between files, as well as the necessary requirements. The resulting files can then be saved in databases and used in different models. Documents in both English and French languages were tested, and special characters were decoded. Updates on the technical manuals were taken into consideration as well. The model was tested on different versions of the S1000D, and the results demonstrated its ability to effectively handle the applicability, requirements, references, and relationships across all files and on different levels.Keywords: aeronautics, big data, data processing, machine learning, S1000D
Procedia PDF Downloads 1654453 Exploring Digital Media’s Impact on Sports Sponsorship: A Global Perspective
Authors: Sylvia Chan-Olmsted, Lisa-Charlotte Wolter
Abstract:
With the continuous proliferation of media platforms, there have been tremendous changes in media consumption behaviors. From the perspective of sports sponsorship, while there is now a multitude of platforms to create brand associations, the changing media landscape and shift of message control also mean that sports sponsors will have to take into account the nature of and consumer responses toward these emerging digital media to devise effective marketing strategies. Utilizing the personal interview methodology, this study is qualitative and exploratory in nature. A total of 18 experts from European and American academics, sports marketing industry, and sports leagues/teams were interviewed to address three main research questions: 1) What are the major changes in digital technologies that are relevant to sports sponsorship; 2) How have digital media influenced the channels and platforms of sports sponsorship; and 3) How have these technologies affected the goals, strategies, and measurement of sports sponsorship. The study found that sports sponsorship has moved from consumer engagement, engagement measurement, and consequences of engagement on brand behaviors to micro-targeting one on one, engagement by context, time, and space, and activation and leveraging based on tracking and databases. From the perspective of platforms and channels, the use of mobile devices is prominent during sports content consumption. Increasing multiscreen media consumption means that sports sponsors need to optimize their investment decisions in leagues, teams, or game-related content sources, as they need to go where the fans are most engaged in. The study observed an imbalanced strategic leveraging of technology and digital infrastructure. While sports leagues have had less emphasis on brand value management via technology, sports sponsors have been much more active in utilizing technologies like mobile/LBS tools, big data/user info, real-time marketing and programmatic, and social media activation. Regardless of the new media/platforms, the study found that integration and contextualization are the two essential means of improving sports sponsorship effectiveness through technology. That is, how sponsors effectively integrate social media/mobile/second screen into their existing legacy media sponsorship plan so technology works for the experience/message instead of distracting fans. Additionally, technological advancement and attention economy amplify the importance of consumer data gathering, but sports consumer data does not mean loyalty or engagement. This study also affirms the benefit of digital media as they offer viral and pre-event activations through storytelling way before the actual event, which is critical for leveraging brand association before and after. That is, sponsors now have multiple opportunities and platforms to tell stories about their brands for longer time period. In summary, digital media facilitate fan experience, access to the brand message, multiplatform/channel presentations, storytelling, and content sharing. Nevertheless, rather than focusing on technology and media, today’s sponsors need to define what they want to focus on in terms of content themes that connect with their brands and then identify the channels/platforms. The big challenge for sponsors is to play to the venues/media’s specificity and its fit with the target audience and not uniformly deliver the same message in the same format on different platforms/channels.Keywords: digital media, mobile media, social media, technology, sports sponsorship
Procedia PDF Downloads 298