Search results for: I/O ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4598

Search results for: I/O ratio

2378 Influence of Scrap Tyre Steel Fiber on Mechanical Properties of High Performance Concrete

Authors: Isyaka Abdulkadir, Egbe Ngu-Ntui Ogork

Abstract:

This research aims to investigate the use of Scrap Tyre Steel Fibers (STSF) for the production of fiber reinforced high performance concrete. The Scrap Tyre Steel Fibers (STSF) were obtained from dealers that extracted the fibers by burning the scrap tyres and were characterized. The effect of STSF was investigated on grade 50 concrete of 1:1.28:1.92 with water cement ratio of 0.39 at additions of STSF of 0, 0.5, 1.0, 1.5, 2.0 and 2.5% by volume of concrete. The fresh concrete was tested for slump while the hardened concrete was tested for compressive and splitting tensile strengths, respectively at curing ages of 3, 7, 28 and 56 days in accordance with standard procedure. The results indicate that slump decreased with increase in STSF, while compressive and splitting tensile strengths increased with increase in STSF up to 1.5% and reduction in strength with increase in STSF above 1.5%. 1.5% STSF was considered as the optimum dosage with a 28 days increase in compressive strength and splitting tensile strength of 12.3% and 43.8% respectively, of control.

Keywords: compressive strength, high performance concrete, scrap tyre steel fiber, splitting tensile strength

Procedia PDF Downloads 221
2377 Numerical and Experimental Investigation of Pulse Combustion for Fabric Drying

Authors: Dan Zhao, Y. W. Sheng

Abstract:

The present work considers a convection-driven T-shaped pulse combustion system. Both experimental and numerical investigations are conducted to study the mechanism of pulse combustion and its potential application in fabric drying. To gain insight on flame-acoustic dynamic interaction and pulsating flow characteristics, 3D numerical simulation of the pulse combustion process of a premixed turbulent flame in a Rijke-type combustor is performed. Two parameters are examined: (1) fuel-air ratio, (2) inlet flow velocity. Their effects on triggering pulsating flow and Nusselt number are studied. As each of the parameters is varied, Nusselt number characterizing the heat transfer rate and the heat-driven pulsating flow signature is found to change. The main nonlinearity is identified in the heat fluxes. To validate our numerical findings, a cylindrical T-shaped Rijke-type combustor made of quartz-glass with a Bunsen burner is designed and tested.

Keywords: pulse combustion, fabric drying, heat transfer, combustion oscillations, pressure oscillations

Procedia PDF Downloads 243
2376 Laboratory Evaluation of Rutting and Fatigue Damage Resistance of Asphalt Mixtures Modified with Carbon Nano Tubes

Authors: Ali Zain Ul Abadeen, Arshad Hussain

Abstract:

Roads are considered as the national capital, and huge developmental budget is spent on its construction, maintenance, and rehabilitation. Due to proliferating traffic volume, heavier loads and challenging environmental factors, the need for high-performance asphalt pavement is increased. In this research, the asphalt mixture was modified with carbon nanotubes ranging from 0.2% to 2% of binder to study the effect of CNT modification on rutting potential and fatigue life of asphalt mixtures. During this study, the conventional and modified asphalt mixture was subjected to a uni-axial dynamic creep test and dry Hamburg wheel tracking test to study rutting resistance. Fatigue behavior of asphalt mixture was studied using a four-point bending test apparatus. The plateau value of asphalt mixture was taken as a measure of fatigue performance according to the ratio of dissipated energy approach. Results of these experiments showed that CNT modified asphalt mixtures had reduced rut depth and increased rutting and fatigue resistance at higher percentages of carbon nanotubes.

Keywords: carbon nanotubes, fatigue, four point bending test, modified asphalt, rutting

Procedia PDF Downloads 151
2375 Reactive Sputter Deposition of Titanium Nitride on Silicon Using a Magnetized Sheet Plasma Source

Authors: Janella Salamania, Marcedon Fernandez, Matthew Villanueva Henry Ramos

Abstract:

Titanium nitrite (TiN) a popular functional and decorative coating because of its golden yellow color, high hardness and superior wear resistance. It is also being studied as a diffusion barrier in integrated circuits due to its known chemical stability and low resistivity. While there have been numerous deposition methods done for TiN, most required the heating of substrates at high temperatures. In this work, TiN films are deposited on silicon (111) and (100) substrates without substrate heating using a patented magnetized sheet plasma source. Films were successfully deposited without substrate heating at various target bias, while maintaining a constant 25% N2 to Ar ratio, and deposition of time of 30 minutes. The resulting films exhibited a golden yellow color which is characteristic of TiN. X-ray diffraction patterns show the formation of TiN predominantly oriented in the (111) direction regardless of substrate used. EDX data also confirms the 1:1 stoichiometry of titanium an nitrogen. Ellipsometry measurements estimate the thickness to range from 28 nm to 33 nm. SEM images were also taken to observe the morphology of the film.

Keywords: coatings, nitrides, coatings, reactive magnetron sputtering, thin films

Procedia PDF Downloads 344
2374 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks

Authors: Min Kyung An

Abstract:

In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.

Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks

Procedia PDF Downloads 225
2373 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement

Authors: Shibo Wei, Ting Jiang

Abstract:

Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).

Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR

Procedia PDF Downloads 206
2372 High-Speed LIF-OH Imaging of H2-Air Turbulent Premixed Flames

Authors: Ahmed A. Al-Harbi

Abstract:

This paper presents a comparative study of effects of the repeated solid obstacles on the propagation of H2-Air premixed flames. Pressure, speed of the flame front as well as structure of reaction zones are studied for hydrogen. Two equivalence ratios are examined for different configurations of three baffle plates and two obstacles with a square cross-section having blockage ratios of either 0.24 or 0.5. Hydrogen fuel mixtures with two equivalence ratios of 0.7 and 0.8 are studied and this is limited by the excessive overpressures. The results show that the peak pressure and its rate of change can be increased by increasing the blockage ratio or by decreasing the space between successive baffles. As illustrated by the high speed images of LIF-OH, the degree of wrinkling and contortion in the flame front increase as the blockages increase. The images also show how the flame front relaminarises with increasing distances between obstacles, which accounts for the pressure decrease with increasing separation. It is also found that more than one obstacle is needed to achieve a turbulent flame structure with intense corrugations.

Keywords: premixed propagating flames, flame-obstacle interaction, turbulent premixed flames, overpressure, transient flames

Procedia PDF Downloads 381
2371 Modelling and Optimization of Laser Cutting Operations

Authors: Hany Mohamed Abdu, Mohamed Hassan Gadallah, El-Giushi Mokhtar, Yehia Mahmoud Ismail

Abstract:

Laser beam cutting is one nontraditional machining process. This paper optimizes the parameters of Laser beam cutting machining parameters of Stainless steel (316L) by considering the effect of input parameters viz. power, oxygen pressure, frequency and cutting speed. Statistical design of experiments are carried in three different levels and process responses such as 'Average kerf taper (Ta)' and 'Surface Roughness (Ra)' are measured accordingly. A quadratic mathematical model (RSM) for each of the responses is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27 OA) are employed to search for an optimal parametric combination to achieve desired yield of the process. RSM models are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) using MATLAB environment. Optimum solutions are compared with Taguchi Methodology results.

Keywords: optimization, laser cutting, robust design, kerf width, Taguchi method, RSM and DOE

Procedia PDF Downloads 625
2370 Study of Electrical Properties of An-Fl Based Organic Semiconducting Thin Film

Authors: A.G. S. Aldajani, N. Smida, M. G. Althobaiti, B. Zaidi

Abstract:

In order to exploit the good electrical properties of anthracene and the excellent properties of fluorescein, new hybrid material has been synthesized (An-Fl). Current-voltage measurements were done on a new single-layer ITO/An-FL/Al device of typically 100 nm thickness. Atypical diode behavior is observed with a turn-on voltage of 4.4 V, a dynamic resistance of 74.07 KΩ and a rectification ratio of 2.02 due to unbalanced transport. Results show also that the current-voltage characteristics present three different regimes of the power-law (J~Vᵐ) for which the conduction mechanism is well described with space-charge-limited current conduction mechanism (SCLC) with a charge carrier mobility of 2.38.10⁻⁵cm2V⁻¹S⁻¹. Moreover, the electrical transport properties of this device have been carried out using a dependent frequency study in the range (50 Hz–1.4 MHz) for different applied biases (from 0 to 6 V). At lower frequency, the σdc values increase with bias voltage rising, supporting that the mobile ion can hop successfully to its nearest vacant site. From σac and impedance measurements, the equivalent electrical circuit is evidenced, where the conductivity process is coherent with an exponential trap distribution caused by structural defects and/or chemical impurities.

Keywords: semiconducting polymer, conductivity, SCLC, impedance spectroscopy

Procedia PDF Downloads 184
2369 Finite Element Analysis of Dental Implant for Prosthesis

Authors: Mayur Chaudhari, Ashutosh Gaikwad, Shubham Kavathale, Aditya Mule, Dilip Panchal, Puja Verma

Abstract:

The purpose of this investigation was to locate restorative bio-materials for the manufacture of implants and crowns. A three-dimensional (3D) finite element analysis (FEA) was carried out to evaluate the stress distribution in the implant and abutment with several types of bio-materials and various prosthetic crowns. While the dental implant, abutment, and screw were subjected to a vertical impact force, the effects of mechanical characteristics such as Young's modulus and Poisson's ratio were evaluated and contrasted. Crowns are made from zirconia, cobalt, ceramic, acrylic resin, and porcelain materials. Implants are made from materials such as titanium, zirconia, PEEK, and CFR-PEEK. SolidWorks was used to create the 3D geometry, and Ansys Software was used to analyze it. The results show that using CFR-PEEK implants and an acrylic resin crown resulted in less bone stress than using alternative materials. In order to reduce the amount of stress on the bone and possibly prevent implant failure, the study's findings support the use of a CFR PEEK implant, abutment, and crown in bruxism patients.

Keywords: biomaterials, implant, crown, abutment

Procedia PDF Downloads 66
2368 The Effects of Sous Vide Technology Combined with Different Herbals on Sensorial and Physical Quality of Fish Species Caught in the Northern Aegean Sea and Marmara Sea

Authors: Zafer Ceylan, Gülgün F.Unal Şengör, Onur Gönülal

Abstract:

In this study, sous vide technology were treated with different herbs into different fish species which were caught from northern Aegean and Marmara Sea. Before samples were packaged under vacuum, herbs had been cut and added at the same ratio into the package. Samples were sliced, the weight of each sample was about 150 g, and packaged under vacuum. During the storage period at 4ºC, taste, odor, texture properties of fish samples treated with sous vide were evaluated by trained panelists. Meanwhile, the effect of different herbs on pH values of the samples was investigated. These results were correlated with sensorial results. Furthermore, the effects of different herbs on L, a, b values of fish samples treated with sous vide were evaluated by color measurement. All sensorial results indicated that the values of samples treated with herbs were higher than that of the control group. Color measurement results and pH values were found parallel with sensorial results.

Keywords: Sous vide, fish, herbs, consumer preferences, pH, color measurement

Procedia PDF Downloads 497
2367 Experimental Investigation of Air Gap Membrane Distillation System with Heat Recovery

Authors: Yasser Elhenaw, A. Farag, Mohamed El-Ghandour, M. Shatat, G. H. Moustafa

Abstract:

This study investigates the performance of two spiral-wound Air Gap Membrane Distillation (AGMD) units. These units are connected in two different configurations in order to be tested and compared experimentally. In AGMD, the coolant water is used to condensate water vapor leaving membrane via condensing plate. The rejected cooling water has a relativity high temperature which can be used, depending on operation parameters, to increase the thermal efficiency and water productivity. In the first configuration, the seawater feed flows parallel and equally through both units then rejected. The coolant water is divided into the two units, and the heat source is divided into the two heat exchangers. In the second one, only the feed of the first unit is heated while the cooling rejected from the unit is used in heating the feed to the second. The performance of the system, estimated by the water productivity as well as the Gain Output Ratio (GOR), is measured for the two configurations at different feed flow rates, temperatures and salinities. The results show that at steady state condition, the heat recovery configurations lead to an increase in water productivity by 25%.

Keywords: membrane distillation, heat transfer, heat recovery, desalination

Procedia PDF Downloads 270
2366 Co-Liquefaction of Cellulosic Biomass and Waste Plastics

Authors: Katsumi Hirano, Yusuke Kakuta, Koji Yoshida, Shozo Itagaki, Masahiko Kajioka, Toshihiko Okada

Abstract:

A conversion technology of cellulosic biomass and waste plastics to liquid fuel at low pressure and low temperature has been investigated. This study aims at the production of the liquefied fuel (CPLF) of substituting diesel oil by mixing cellulosic biomass and waste plastics in the presence of solvent. Co-liquefaction of cellulosic biomass (Japan cedar) and polypropylene (PP) using wood tar or mineral oil as solvent at 673K with an autoclave was carried out. It was confirmed that the co-liquefaction gave CPLF in a high yield among the cases of wood or of polypropylene Which was ascribed the acceleration of decomposition of plastics by radicals derived from the decomposition of wood. The co-liquefaction was also conducted by a small twin screw extruder. It was found that CPLF was obtained in the co-liquefaction, And the acceleration of decomposition of plastics in the presence of cellulosic biomass. The engine test of CPLF showed that the engine performances, Compression ignition and combustion characteristics were almost similar to those of diesel fuel at any mixing ratio of CPLF and any load, Therefore, CPLF could be practically used as alternative fuel for diesel engines.

Keywords: Cellulosic Biomass, Co-liquefaction, Solvent, Waste Plastics

Procedia PDF Downloads 377
2365 Joule Self-Heating Effects and Controlling Oxygen Vacancy in La₀.₈Ba₀.₂MnO₃ Ultrathin Films with Nano-Sized Labyrinth Morphology

Authors: Guankai Lin, Wei Tong, Hong Zhu

Abstract:

The electric current induced Joule heating effects have been investigated in La₀.₈Ba₀.₂MnO₃ ultrathin films deposited on LaAlO₃(001) single crystal substrate with smaller lattice constant by using the sol-gel method. By applying moderate bias currents (~ 10 mA), it is found that Joule self-heating simply gives rise to a temperature deviation between the thermostat and the test sample, but the intrinsic ρ(T) relationship measured at a low current (0.1 mA) changes little. However, it is noteworthy that the low-temperature transport behavior degrades from metallic to insulating state after applying higher bias currents ( > 31 mA) in a vacuum. Furthermore, metallic transport can be recovered by placing the degraded film in air. The results clearly suggest that the oxygen vacancy in the La₀.₈Ba₀.₂MnO₃ films is controllable in different atmospheres, particularly with the aid of the Joule self-heating. According to the SEM images, we attribute the controlled oxygen vacancy to the nano-sized labyrinth pattern of the films, where the large surface-to-volume ratio plays a curial role.

Keywords: controlling oxygen vacancy, joule self-heating, manganite, sol-gel method

Procedia PDF Downloads 157
2364 The Dependence of the Liquid Application on the Coverage of the Sprayed Objects in Terms of the Characteristics of the Sprayed Object during Spraying

Authors: Beata Cieniawska, Deta Łuczycka, Katarzyna Dereń

Abstract:

When assessing the quality of the spraying procedure, three indicators are used: uneven distribution of precipitation of liquid sprayed, degree of coverage of sprayed surfaces, and deposition of liquid spraying However, there is a lack of information on the relationship between the quality parameters of the procedure. Therefore, the research was carried out at the Institute of Agricultural Engineering of Wrocław University of Environmental and Life Sciences. The aim of the study was to determine the relationship between the degree of coverage of sprayed surfaces and the deposition of liquid in the aspect of the parametric characteristics of the protected plant using selected single and double stream nozzles. Experiments were conducted under laboratory conditions. The carrier of nozzles acted as an independent self-propelled sprayer used for spraying, whereas the parametric characteristics of plants were determined using artificial plants as the ratio of the vertical projection surface and the horizontal projection surface. The results and their analysis showed a strong and very strong correlation between the analyzed parameters in terms of the characteristics of the sprayed object.

Keywords: degree of coverage, deposition of liquid, nozzle, spraying

Procedia PDF Downloads 340
2363 Synthesis and Study of Structural, Morphological, and Electrochemical Properties of Ceria co-doped for SOFC Applications

Authors: Fatima Melit, Nedjemeddine Bounar

Abstract:

Polycrystalline samples of Ce1-xMxO2-δ (x=0.1, 0.15, 0.2)(M=Gd, Y) were prepared by solid-state chemical reaction from mixtures of pre-dried oxides powders of CeO2, Gd2O3 and Y2O3 in the appropriate stoichiometric ratio to explore their use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs). Their crystal structures and ionic conductivities were characterised by X-ray powder diffraction (XRD) and AC complex impedance spectroscopy (EIS). The XRD analyses confirm that all the resulting synthesised co-doped cerium oxide powders are single-phase and crystallise in the cubic structure system with the space group Fm3m. On the one hand, the lattice parameter (a ) of the phases increases with increasing Gd content; on the other hand, with increasing Y-substitution rate, the latter decreases. The results of complex impedance conductivity measurements have shown that doping has a remarkable effect on conductivity. The co-doped cerium phases showed significant ionic conductivity values, making these materials excellent candidates for solid oxide electrolytes at intermediate temperatures.

Keywords: electrolyte, Ceria, X-ray diffraction, EIS, SEM, SOFC

Procedia PDF Downloads 150
2362 Viscoelastic Separation and Concentration of Candida Using a Low Aspect Ratio Microchannel

Authors: Seonggil Kim, Jeonghun Nam, Chae Seung Lim

Abstract:

Rapid diagnosis of fungal infections is critical for rapid antifungal therapy. However, it is difficult to detect extremely low concentration fungi in blood sample. To address the limitation, separation and concentration of fungi in blood sample are required to enhance the sensitivity of PCR analysis. In this study, we demonstrated a sheathless separation and concentration of fungi, candida cells using a viscoelastic fluid. To validate the performance of the device, microparticle mixture (2 and 13 μm) was used, and those particles were successfully separated based on the size difference at high flow rate of 100 μl/min. For the final application, successful separation of the Candida cells from the white blood cells (WBCs) was achieved. Based on the viscoelastic lateral migration toward the equilibrium position, Candida cells were separated and concentrated by center focusing, while WBCs were removed by patterning into two streams between the channel center and the sidewalls. By flow cytometric analysis, the separation efficiency and the purity were evaluated as ~99% and ~ 97%, respectively. From the results, the device can be the powerful tool for detecting extremely rare disease-related cells.

Keywords: candida cells, concentration, separation, viscoelastic fluid

Procedia PDF Downloads 198
2361 N-Heptane as Model Molecule for Cracking Catalyst Evaluation to Improve the Yield of Ethylene and Propylene

Authors: Tony K. Joseph, Balasubramanian Vathilingam, Stephane Morin

Abstract:

Currently, the refiners around the world are more focused on improving the yield of light olefins (propylene and ethylene) as both of them are very prominent raw materials to produce wide spectrum of polymeric materials such as polyethylene and polypropylene. Henceforth, it is desirable to increase the yield of light olefins via selective cracking of heavy oil fractions. In this study, zeolite grown on SiC was used as the catalyst to do model cracking reaction of n-heptane. The catalytic cracking of n-heptane was performed in a fixed bed reactor (12 mm i.d.) at three different temperatures (425, 450 and 475 °C) and at atmospheric pressure. A carrier gas (N₂) was mixed with n-heptane with ratio of 90:10 (N₂:n-heptane), and the gaseous mixture was introduced into the fixed bed reactor. Various flow rate of reactants was tested to increase the yield of ethylene and propylene. For the comparison purpose, commercial zeolite was also tested in addition to Zeolite on SiC. The products were analyzed using an Agilent gas chromatograph (GC-9860) equipped with flame ionization detector (FID). The GC is connected online with the reactor and all the cracking tests were successfully reproduced. The entire catalytic evaluation results will be presented during the conference.

Keywords: cracking, catalyst, evaluation, ethylene, heptane, propylene

Procedia PDF Downloads 142
2360 Wireless Transmission of Big Data Using Novel Secure Algorithm

Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha

Abstract:

This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.

Keywords: big data, two-hop transmission, physical layer wireless security, cooperative jamming, energy balance

Procedia PDF Downloads 494
2359 By-Product Alcohol: Fusel Oil as an Alternative Fuel in Spark Ignition Engine

Authors: Omar Awad, R. Mamat, F. Yusop, M. M. Noor, I. M. Yusri

Abstract:

Fusel oil is a by-product obtained through the fermentation of some agricultural products. The fusel oil properties are closer to other alternative combustible types and the limited number of studies on the use of fusel oil as an alcohol derivative in SI engines constitutes to the base of this study. This paper experimentally examined the impacts of a by-product of alcohol, which is fusel oil by blending it with gasoline, on engine performance, combustion characteristics, and emissions in a 4-cylinder SI engine. The test was achieved at different engine speeds and a 60 % throttle valve (load). As results, brake power, BTE, and BSFC of F10 are higher at all engine speeds. Maximum engine BTE was 33.9%, at the lowest BSFC with F10. Moreover, it is worth seeing that the F10 under rich air-fuel ratio has less variation of COVIMEP compared to the F20 and gasoline. F10 represents shorter combustion duration, thereby, the engine power increased. NOx emission for F10 at 4500 rpm was lower than gasoline. The highest value of HC emission is obtained with F10 compared to gasoline and F20 with an average increase of 11% over the engine speed range. CO and CO2 emissions increased when using fusel oil blends.

Keywords: fusel oil, spark ignition engine, by-product alcohol, combustion characteristics, engine emissions, alternative fuel

Procedia PDF Downloads 476
2358 Artificial Neural Network in Predicting the Soil Response in the Discrete Element Method Simulation

Authors: Zhaofeng Li, Jun Kang Chow, Yu-Hsing Wang

Abstract:

This paper attempts to bridge the soil properties and the mechanical response of soil in the discrete element method (DEM) simulation. The artificial neural network (ANN) was therefore adopted, aiming to reproduce the stress-strain-volumetric response when soil properties are given. 31 biaxial shearing tests with varying soil parameters (e.g., initial void ratio and interparticle friction coefficient) were generated using the DEM simulations. Based on these 45 sets of training data, a three-layer neural network was established which can output the entire stress-strain-volumetric curve during the shearing process from the input soil parameters. Beyond the training data, 2 additional sets of data were generated to examine the validity of the network, and the stress-strain-volumetric curves for both cases were well reproduced using this network. Overall, the ANN was found promising in predicting the soil behavior and reducing repetitive simulation work.

Keywords: artificial neural network, discrete element method, soil properties, stress-strain-volumetric response

Procedia PDF Downloads 400
2357 Study of the Influence of Nozzle Length and Jet Angles on the Air Entrainment by Plunging Water Jets

Authors: José Luis Muñoz-Cobo González, Sergio Chiva Vicent, Khaled Harby Mohamed

Abstract:

When a vertical liquid jet plunges into a liquid surface, after passing through a surrounding gas phase, it entrains a large amount of gas bubbles into the receiving pool, and it forms a large submerged two-phase region with a considerable interfacial area. At the intersection of the plunging jet and the liquid surface, free-surface instabilities are developed, and gas entrainment may be observed. If the jet impact velocity exceeds an inception velocity that is a function of the plunging flow conditions, the gas entrainment takes place. The general goal of this work is to study the effect of nozzle parameters (length-to-diameter ratio (lN/dN), jet angle (α) with the free water surface) and the jet operating conditions (initial jet diameters dN, initial jet velocity VN, and jet length x1) on the flow characteristics such as: inception velocity of the gas entrainment Ve, bubble penetration depth Hp, gas entrainment rate, Qa, centerline jet velocity Vc, and the axial jet velocity distribution Vx below the free water surface in a plunging liquid jet system.

Keywords: inclined plunging water jets, entrainment, two phase flow, nozzle length

Procedia PDF Downloads 470
2356 Assessment of Drainage Water Quality in South Africa: Case Study of Vaal-Harts Irrigation Scheme

Authors: Josiah A. Adeyemo, Fred A. O. Otieno, Olumuyiwa I. Ojo

Abstract:

South Africa is water-stressed being a semi-arid country with limited annual rainfall supply and a lack of perennial streams. The future implications of population growth combined with the uncertainty of climate change are likely to have significant financial, human and ecological impacts on already scarce water resources. The waste water from the drainage canals of the Vaal-Harts irrigation scheme (VHS) located in Jan Kempdorp, a farming community in South Africa, were investigated for possible irrigation re-use and their effects on the immediate environment. Three major drains within the scheme were identified and sampled. Drainage water samples were analysed to determine its characteristics. The water samples analyzed had pH values in the range of 5.5 and 6.4 which is below the normal range for irrigation water and very low to moderate salinity (electrical conductivity 0.09-0.82 dS/m). The adjusted sodium adsorption ratio values in all the samples were also very low (<0.2), indicating very low sodicity hazards. The nitrate concentration in most of the samples was high, ranging from 4.8 to 53 mg/l. The reuse of the drainage water for irrigation is possible, but with further treatment. Some suggestions were offered in the safe management of drainage water in VHS.

Keywords: drainage canal, water quality, irrigation, pollutants, environment

Procedia PDF Downloads 342
2355 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications

Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken

Abstract:

High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.

Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state

Procedia PDF Downloads 338
2354 A Novel RLS Based Adaptive Filtering Method for Speech Enhancement

Authors: Pogula Rakesh, T. Kishore Kumar

Abstract:

Speech enhancement is a long standing problem with numerous applications like teleconferencing, VoIP, hearing aids, and speech recognition. The motivation behind this research work is to obtain a clean speech signal of higher quality by applying the optimal noise cancellation technique. Real-time adaptive filtering algorithms seem to be the best candidate among all categories of the speech enhancement methods. In this paper, we propose a speech enhancement method based on Recursive Least Squares (RLS) adaptive filter of speech signals. Experiments were performed on noisy data which was prepared by adding AWGN, Babble and Pink noise to clean speech samples at -5dB, 0dB, 5dB, and 10dB SNR levels. We then compare the noise cancellation performance of proposed RLS algorithm with existing NLMS algorithm in terms of Mean Squared Error (MSE), Signal to Noise ratio (SNR), and SNR loss. Based on the performance evaluation, the proposed RLS algorithm was found to be a better optimal noise cancellation technique for speech signals.

Keywords: adaptive filter, adaptive noise canceller, mean squared error, noise reduction, NLMS, RLS, SNR, SNR loss

Procedia PDF Downloads 486
2353 The Efferent of Different Levels of Recycled Soybean Oil(RSO) on Growth and Performance of Broilers

Authors: Seyed Babak Asadi

Abstract:

In this experiment the effect of recycled soybean oil (RSO) on the growth and performance carcass of broiler was investigated. The percentages of recycled soybean oil (RSO) used in this experiment were 0, 2, 4, 6 and 8. In this regard, 300 one-day-old broilers were selected randomly consisting of five treatments and three replicates(20 chickens per replicate). The chicks were kept in an accumulated manner for the first week, then divided between treatments and kept until they reached the age of 42 days. Body weight at 21 and 42, weight gain, food intake and food conversion ratio in starter (0-21 d), finisher (21-42 d) and overall were measured. At the end of the experiment (42 days-old) 2 chicks from each replicate which had the nearest weight to the average group in their group were selected, slaughtered and different parts of their carcass were weight separately. The result showed that the rate of feed intake and feed conversion coefficient have significantly increased with higher levels of recycled soybean oil. There was not a significant different between experimental groups for liver, heart, intestine and the weight of carcass. Results from this experiment showed that it is possible to use recycled soybean oil for up to 8 percent of food ration for broiler chicks without any significant effects on carcass quality.

Keywords: broiler, recycled soybean oil (RSO), growth, performance

Procedia PDF Downloads 409
2352 Spectrum Allocation in Cognitive Radio Using Monarch Butterfly Optimization

Authors: Avantika Vats, Kushal Thakur

Abstract:

This paper displays the point at issue, improvement, and utilization of a Monarch Butterfly Optimization (MBO) rather than a Genetic Algorithm (GA) in cognitive radio for the channel portion. This approach offers a satisfactory approach to get the accessible range of both the users, i.e., primary users (PUs) and secondary users (SUs). The proposed enhancement procedure depends on a nature-inspired metaheuristic algorithm. In MBO, all the monarch butterfly individuals are located in two distinct lands, viz. Southern Canada and the northern USA (land 1), and Mexico (Land 2). The positions of the monarch butterflies are modernizing in two ways. At first, the offsprings are generated (position updating) by the migration operator and can be adjusted by the migration ratio. It is trailed by tuning the positions for different butterflies by the methods for the butterfly adjusting operator. To keep the population unaltered and minimize fitness evaluations, the aggregate of the recently produced butterflies in these two ways stays equivalent to the first population. The outcomes obviously display the capacity of the MBO technique towards finding the upgraded work values on issues regarding the genetic algorithm.

Keywords: cognitive radio, channel allocation, monarch butterfly optimization, evolutionary, computation

Procedia PDF Downloads 78
2351 Impact of Stack Caches: Locality Awareness and Cost Effectiveness

Authors: Abdulrahman K. Alshegaifi, Chun-Hsi Huang

Abstract:

Treating data based on its location in memory has received much attention in recent years due to its different properties, which offer important aspects for cache utilization. Stack data and non-stack data may interfere with each other’s locality in the data cache. One of the important aspects of stack data is that it has high spatial and temporal locality. In this work, we simulate non-unified cache design that split data cache into stack and non-stack caches in order to maintain stack data and non-stack data separate in different caches. We observe that the overall hit rate of non-unified cache design is sensitive to the size of non-stack cache. Then, we investigate the appropriate size and associativity for stack cache to achieve high hit ratio especially when over 99% of accesses are directed to stack cache. The result shows that on average more than 99% of stack cache accuracy is achieved by using 2KB of capacity and 1-way associativity. Further, we analyze the improvement in hit rate when adding small, fixed, size of stack cache at level1 to unified cache architecture. The result shows that the overall hit rate of unified cache design with adding 1KB of stack cache is improved by approximately, on average, 3.9% for Rijndael benchmark. The stack cache is simulated by using SimpleScalar toolset.

Keywords: hit rate, locality of program, stack cache, stack data

Procedia PDF Downloads 306
2350 Virtual Routing Function Allocation Method for Minimizing Total Network Power Consumption

Authors: Kenichiro Hida, Shin-Ichi Kuribayashi

Abstract:

In a conventional network, most network devices, such as routers, are dedicated devices that do not have much variation in capacity. In recent years, a new concept of network functions virtualisation (NFV) has come into use. The intention is to implement a variety of network functions with software on general-purpose servers and this allows the network operator to select their capacities and locations without any constraints. This paper focuses on the allocation of NFV-based routing functions which are one of critical network functions, and presents the virtual routing function allocation algorithm that minimizes the total power consumption. In addition, this study presents the useful allocation policy of virtual routing functions, based on an evaluation with a ladder-shaped network model. This policy takes the ratio of the power consumption of a routing function to that of a circuit and traffic distribution between areas into consideration. Furthermore, the present paper shows that there are cases where the use of NFV-based routing functions makes it possible to reduce the total power consumption dramatically, in comparison to a conventional network, in which it is not economically viable to distribute small-capacity routing functions.

Keywords: NFV, resource allocation, virtual routing function, minimum power consumption

Procedia PDF Downloads 348
2349 Prevalence of Chronic Diseases and Predictors of Mortality in Home Health Care Service: Data From Saudi Arabia

Authors: Walid A. Alkeridy, Arwa Aljasser, Khalid Mohammed Alayed, Saad Alsaad, Amani S. Alqahtani, Claire Ann Lim, Sultan H. Alamri, Doaa Zainhom Mekkawy, Mohammed Al-Sofiani

Abstract:

Introduction: The history of publicly funded Home Health Care (HHC) service in Saudi Arabia dates back to 1991. The first HC program was launched to provide palliative home care services for patients with terminal cancer. Thereafter, more programs launched across Saudi Arabia most remarkably was launching the national program for HHC by the Ministry Of Health (MOH) in 2008. The national HHC MOH program is mainly providing long-term care home care services for over 40,000 Saudi citizens. The scope of the HHC service program provided by the Saudi MOH is quite diverse, ranging from basic nursing care to specialized care programs, e.g., home peritoneal dialysis, home ventilation, home infusion therapy, etc. Objectives: The primary aim of our study is to report the prevalence of chronic conditions among Saudi people receiving long-term HHC services. Secondary aims include identifying the predictors of mortality among individuals receiving long-term HHC services and studying the association between frailty and poor health outcomes among HHC users. Methods: We conducted a retrospective and cross-sectional data collection from participants receiving HHC services at King Saud University Medical City, Riyadh, Saudi Arabia. Data were collected from electronic health records (EHR), patient charts, and interviewing caregivers from the year 2019 to 2022. We assessed functional performance by Katz's activity of daily living and the Bristol Activity of Daily Living Scale (BADLS). A trained health care provider assessed frailty using the Clinical Frailty Scale (CFS). Mortality was assessed by reviewing the death certificates if patients were hospitalized through discharge status ascertainment from EHR. Results: The mean age for deceased individuals in HHC was 78.3 years. Over twenty percent of individuals receiving HHC services were readmitted to the hospital. The following variables were statistically significant between deceased and alive individuals receiving HHC services; clinical frailty scale, the total number of comorbid conditions, and functional performance based on the KATZ activity of daily living scale and the BADLS. We found that the strongest predictors for mortality were pressure ulcers which had an odds ratio of 3.75 and p-value of < 0.0001, and the clinical frailty scale, which had an odds ratio of 1.69 and p-value of 0.002, using multivariate regression analysis. In conclusion, our study found that pressure ulcers and frailty are the strongest predictors of mortality for individuals receiving home health care services. Moreover, we found a high rate of annual readmission for individuals enrolled in HHC, which requires further analysis to understand the possible contributing factors for the increased rate of hospital readmission and develop strategies to address them. Future studies should focus on designing quality improvement projects aimed at improving the quality of life for individuals receiving HHC services, especially those who have pressure ulcers at the end of life.

Keywords: homecare, Saudi, prevalence, chronic

Procedia PDF Downloads 122