Search results for: storm water network
10893 Real-Time Pedestrian Detection Method Based on Improved YOLOv3
Authors: Jingting Luo, Yong Wang, Ying Wang
Abstract:
Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3
Procedia PDF Downloads 14210892 The Sustainable Governance of Aquifer Injection Using Treated Coal Seam Gas Water in Queensland, Australia: Lessons for Integrated Water Resource Management
Authors: Jacqui Robertson
Abstract:
The sustainable governance of groundwater is of the utmost importance in an arid country like Australia. Groundwater has been relied on by our agricultural and pastoral communities since the State was settled by European colonialists. Nevertheless, the rapid establishment of a coal seam gas (CSG) industry in Queensland, Australia, has had extensive impacts on the pre-existing groundwater users. Managed aquifer recharge of important aquifers in Queensland, Australia, using treated coal seam gas produced water has been used to reduce the impacts of CSG development in Queensland Australia. However, the process has not been widely adopted. Negative environmental outcomes are now acknowledged as not only engineering, scientific or technical problems to be solved but also the result of governance failures. An analysis of the regulatory context for aquifer injection using treated CSG water in Queensland, Australia, using Ostrom’s Common Pool Resource (CPR) theory and a ‘heat map’ designed by the author, highlights the importance of governance arrangements. The analysis reveals the costs and benefits for relevant stakeholders of artificial recharge of groundwater resources in this context. The research also reveals missed opportunities to further active management of the aquifer and resolve existing conflicts between users. The research illustrates the importance of strategically and holistically evaluating innovations in technology that impact water resources to reveal incentives that impact resource user behaviors. The paper presents a proactive step that can be adapted to support integrated water resource management and sustainable groundwater development.Keywords: managed aquifer recharge, groundwater regulation, common-pool resources, integrated water resource management, Australia
Procedia PDF Downloads 23710891 Finite Difference Method of the Seismic Analysis of Earth Dam
Authors: Alaoua Bouaicha, Fahim Kahlouche, Abdelhamid Benouali
Abstract:
Many embankment dams have suffered failures during earthquakes due to the increase of pore water pressure under seismic loading. After analyzing of the behavior of embankment dams under severe earthquakes, major advances have been attained in the understanding of the seismic action on dams. The present study concerns numerical analysis of the seismic response of earth dams. The procedure uses a nonlinear stress-strain relation incorporated into the code FLAC2D based on the finite difference method. This analysis provides the variation of the pore water pressure and horizontal displacement.Keywords: Earthquake, Numerical Analysis, FLAC2D, Displacement, Embankment Dam, Pore Water Pressure
Procedia PDF Downloads 37910890 The Study of ZigBee Protocol Application in Wireless Networks
Authors: Ardavan Zamanpour, Somaieh Yassari
Abstract:
ZigBee protocol network was developed in industries and MIT laboratory in 1997. ZigBee is a wireless networking technology by alliance ZigBee which is designed to low board and low data rate applications. It is a Protocol which connects between electrical devises with very low energy and cost. The first version of IEEE 802.15.4 which was formed ZigBee was based on 2.4GHZ MHZ 912MHZ 868 frequency band. The name of system is often reminded random directions that bees (BEES) traversing during pollination of products. Such as alloy of the ways in which information packets are traversed within the mesh network. This paper aims to study the performance and effectiveness of this protocol in wireless networks.Keywords: ZigBee, protocol, wireless, networks
Procedia PDF Downloads 36910889 Impact of Integrated Signals for Doing Human Activity Recognition Using Deep Learning Models
Authors: Milagros Jaén-Vargas, Javier García Martínez, Karla Miriam Reyes Leiva, María Fernanda Trujillo-Guerrero, Francisco Fernandes, Sérgio Barroso Gonçalves, Miguel Tavares Silva, Daniel Simões Lopes, José Javier Serrano Olmedo
Abstract:
Human Activity Recognition (HAR) is having a growing impact in creating new applications and is responsible for emerging new technologies. Also, the use of wearable sensors is an important key to exploring the human body's behavior when performing activities. Hence, the use of these dispositive is less invasive and the person is more comfortable. In this study, a database that includes three activities is used. The activities were acquired from inertial measurement unit sensors (IMU) and motion capture systems (MOCAP). The main objective is differentiating the performance from four Deep Learning (DL) models: Deep Neural Network (DNN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and hybrid model Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), when considering acceleration, velocity and position and evaluate if integrating the IMU acceleration to obtain velocity and position represent an increment in performance when it works as input to the DL models. Moreover, compared with the same type of data provided by the MOCAP system. Despite the acceleration data is cleaned when integrating, results show a minimal increase in accuracy for the integrated signals.Keywords: HAR, IMU, MOCAP, acceleration, velocity, position, feature maps
Procedia PDF Downloads 9810888 RBF Neural Network Based Adaptive Robust Control for Bounded Position/Force Control of Bilateral Teleoperation Arms
Authors: Henni Mansour Abdelwaheb
Abstract:
This study discusses the design of a bounded position/force feedback controller developed to ensure position and force tracking for bilateral teleoperation arms operating with variable delay, and actuator saturation. Also, an adaptive robust Radial Basis Function (RBF) neural network is used to estimate the environment torque. The parameters of the environment torque are then sent from the slave site to the master site as a non-power signal to avoid passivity problems. Moreover, a nonlinear function is applied to each controller term as a smooth saturation function, providing a bounded control signal and preserving the system’s actuators. Lastly, the Lyapunov approach demonstrates the global stability of the controlled system, and numerical experiment results further confirm the validity of the presented strategy.Keywords: teleoperation manipulators system, time-varying delay, actuator saturation, adaptive robust rbf neural network approximation, uncertainties
Procedia PDF Downloads 7710887 Classification of Manufacturing Data for Efficient Processing on an Edge-Cloud Network
Authors: Onyedikachi Ulelu, Andrew P. Longstaff, Simon Fletcher, Simon Parkinson
Abstract:
The widespread interest in 'Industry 4.0' or 'digital manufacturing' has led to significant research requiring the acquisition of data from sensors, instruments, and machine signals. In-depth research then identifies methods of analysis of the massive amounts of data generated before and during manufacture to solve a particular problem. The ultimate goal is for industrial Internet of Things (IIoT) data to be processed automatically to assist with either visualisation or autonomous system decision-making. However, the collection and processing of data in an industrial environment come with a cost. Little research has been undertaken on how to specify optimally what data to capture, transmit, process, and store at various levels of an edge-cloud network. The first step in this specification is to categorise IIoT data for efficient and effective use. This paper proposes the required attributes and classification to take manufacturing digital data from various sources to determine the most suitable location for data processing on the edge-cloud network. The proposed classification framework will minimise overhead in terms of network bandwidth/cost and processing time of machine tool data via efficient decision making on which dataset should be processed at the ‘edge’ and what to send to a remote server (cloud). A fast-and-frugal heuristic method is implemented for this decision-making. The framework is tested using case studies from industrial machine tools for machine productivity and maintenance.Keywords: data classification, decision making, edge computing, industrial IoT, industry 4.0
Procedia PDF Downloads 18210886 Application of DSSAT-CSM Model for Estimating Rain-Water Productivity of Maize (Zea Mays L.) Under Changing Climate of Central Rift Valley, Ethiopia
Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke
Abstract:
Pressing demands for agricultural products and its associated pressure on water availability in the semi-arid areas demanded information for strategic decision-making in the changing climate conditions of Ethiopia. Availing such information through traditional agronomic research methods is not sufficient unless supported through the application of decision-support tools. The CERES (Crop Environmental Resource Synthesis) model in DSSAT-CSM was evaluated for estimating yield and water productivity of maize under two soil types (Andosol and Luvisol) of the Central Rift Valley of Ethiopia. A six-year data (2010 – 2017) obtained from national fertilizer determination experiments were used for model evaluation. Pertinent statistical indices were employed to evaluate model performance. Following model evaluation, yield and rain-water productivity of maize was assessed for the baseline (1981-2010) and future climate (2050’s and 2080’s) scenario. The model performed well in predicting phenology, growth, and yield of maize for the different seasons and phosphorous rates. A good agreement between simulated and observed grain yield was indicated by low values of the RMSE (0.15 - 0.37 Mg/ha) and other indices for the two soil types. The evaluated model predicted a decline in the potential (23.8 to 26.7% at Melkassa and from 21.7 to 26.1% at Ziway under RCP4.5 and RCP8.5 climate change scenarios, respectively) and water-limited yield (15 to 18.3% at Melkassa and by 6.5 to 10.5% at Ziway) in the mid-century due to climate change. Consequently, a decline in water productivity was projected in the future periods that necessitate availing options to improve water productivity in the region. In conclusion, the DSSAT-CERES-maize model can be used to simulate maize (Melkassa-2) phenology, growth and grain yield, as well as simulate water productivity under different management scenarios that can help to identify options to improve water productivity in the changing climate of the semi-arid central Rift valley of Ethiopia.Keywords: andosol, CERES-maize, luvisol, model evaluation, water productivity
Procedia PDF Downloads 7510885 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification
Procedia PDF Downloads 34910884 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System
Authors: Sheela Tiwari, R. Naresh, R. Jha
Abstract:
The paper presents an investigation into the effect of neural network predictive control of UPFC on the transient stability performance of a multi-machine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers and an improved damping of the power oscillations as compared to the conventional PI controller.Keywords: identification, neural networks, predictive control, transient stability, UPFC
Procedia PDF Downloads 37110883 Water-in-Diesel Fuel Nanoemulsions Prepared by Modified Low Energy: Emulsion Drop Size and Stability, Physical Properties, and Emission Characteristics
Authors: M. R. Noor El-Din, Marwa R. Mishrif, R. E. Morsi, E. A. El-Sharaky, M. E. Haseeb, Rania T. M. Ghanem
Abstract:
This paper studies the physical and rheological behaviours of water/in/diesel fuel nanoemulsions prepared by modified low energy method. Twenty of water/in/diesel fuel nanoemulsions were prepared using mixed nonionic surfactants of sorbitan monooleate and polyoxyethylene sorbitan trioleate (MTS) at Hydrophilic-Lipophilic Balance (HLB) value of 10 and a working temperature of 20°C. The influence of the prepared nanoemulsions on the physical properties such as kinematic viscosity, density, and calorific value was studied. Also, nanoemulsion systems were subjected to rheological evaluation. The effect of water loading percentage (5, 6, 7, 8, 9 and 10 wt.%) on rheology was assessed at temperatures range from 20 to 60°C with temperature interval of 10 for time lapse 0, 1, 2 and 3 months, respectively. Results show that all of the sets nanoemulsions exhibited a Newtonian flow character of low-shear viscosity in the range of 132 up to 191 1/s, and followed by a shear-thinning region with yield value (Non-Newtonian behaviour) at high shear rate for all water ratios (5 to 10 wt.%) and at all test temperatures (20 to 60°C) for time ageing up to 3 months. Also, the viscosity/temperature relationship of all nanoemulsions fitted well Arrhenius equation with high correlation coefficients that ascertain their Newtonian behavior.Keywords: alternative fuel, nanoemulsion, surfactant, diesel fuel
Procedia PDF Downloads 31310882 Health Trajectory Clustering Using Deep Belief Networks
Authors: Farshid Hajati, Federico Girosi, Shima Ghassempour
Abstract:
We present a Deep Belief Network (DBN) method for clustering health trajectories. Deep Belief Network (DBN) is a deep architecture that consists of a stack of Restricted Boltzmann Machines (RBM). In a deep architecture, each layer learns more complex features than the past layers. The proposed method depends on DBN in clustering without using back propagation learning algorithm. The proposed DBN has a better a performance compared to the deep neural network due the initialization of the connecting weights. We use Contrastive Divergence (CD) method for training the RBMs which increases the performance of the network. The performance of the proposed method is evaluated extensively on the Health and Retirement Study (HRS) database. The University of Michigan Health and Retirement Study (HRS) is a nationally representative longitudinal study that has surveyed more than 27,000 elderly and near-elderly Americans since its inception in 1992. Participants are interviewed every two years and they collect data on physical and mental health, insurance coverage, financial status, family support systems, labor market status, and retirement planning. The dataset is publicly available and we use the RAND HRS version L, which is easy to use and cleaned up version of the data. The size of sample data set is 268 and the length of the trajectories is equal to 10. The trajectories do not stop when the patient dies and represent 10 different interviews of live patients. Compared to the state-of-the-art benchmarks, the experimental results show the effectiveness and superiority of the proposed method in clustering health trajectories.Keywords: health trajectory, clustering, deep learning, DBN
Procedia PDF Downloads 36910881 Chemical Modification of Biosorbent for Prconcentation of Cadmium in Water Sample
Authors: Homayon Ahmad Panahi, Niusha Mohseni Darabi, Elham Moniri
Abstract:
A new biosorbent is prepared by coupling a cibacron blue to yeast cells. The modified yeast cells with cibacron blue has been characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis and applied for the preconcentration and solid phase extraction of trace cadmium ion from water samples. The optimum pH value for sorption of the cadmium ions by yeast cells- cibacron blue was 5.5. The sorption capacity of modified biosorbent was 45 mg. g−1. A recovery of 98.2% was obtained for Cd(II) when eluted with 0.5 M nitric acid. The method was applied for Cd(II) preconcentration and determination in sea water sample.Keywords: solid phase extraction, yeast cells, Nickl, isotherm study
Procedia PDF Downloads 26410880 The Importance of Efficient and Sustainable Water Resources Management and the Role of Artificial Intelligence in Preventing Forced Migration
Authors: Fateme Aysin Anka, Farzad Kiani
Abstract:
Forced migration is a situation in which people are forced to leave their homes against their will due to political conflicts, wars and conflicts, natural disasters, climate change, economic crises, or other emergencies. This type of migration takes place under conditions where people cannot lead a sustainable life due to reasons such as security, shelter and meeting their basic needs. This type of migration may occur in connection with different factors that affect people's living conditions. In addition to these general and widespread reasons, water security and resources will be one that is starting now and will be encountered more and more in the future. Forced migration may occur due to insufficient or depleted water resources in the areas where people live. In this case, people's living conditions become unsustainable, and they may have to go elsewhere, as they cannot obtain their basic needs, such as drinking water, water used for agriculture and industry. To cope with these situations, it is important to minimize the causes, as international organizations and societies must provide assistance (for example, humanitarian aid, shelter, medical support and education) and protection to address (or mitigate) this problem. From the international perspective, plans such as the Green New Deal (GND) and the European Green Deal (EGD) draw attention to the need for people to live equally in a cleaner and greener world. Especially recently, with the advancement of technology, science and methods have become more efficient. In this regard, in this article, a multidisciplinary case model is presented by reinforcing the water problem with an engineering approach within the framework of the social dimension. It is worth emphasizing that this problem is largely linked to climate change and the lack of a sustainable water management perspective. As a matter of fact, the United Nations Development Agency (UNDA) draws attention to this problem in its universally accepted sustainable development goals. Therefore, an artificial intelligence-based approach has been applied to solve this problem by focusing on the water management problem. The most general but also important aspect in the management of water resources is its correct consumption. In this context, the artificial intelligence-based system undertakes tasks such as water demand forecasting and distribution management, emergency and crisis management, water pollution detection and prevention, and maintenance and repair control and forecasting.Keywords: water resource management, forced migration, multidisciplinary studies, artificial intelligence
Procedia PDF Downloads 8710879 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 14210878 Performance Comparison of Resource Allocation without Feedback in Wireless Body Area Networks by Various Pseudo Orthogonal Sequences
Authors: Ojin Kwon, Yong-Jin Yoon, Liu Xin, Zhang Hongbao
Abstract:
Wireless Body Area Network (WBAN) is a short-range wireless communication around human body for various applications such as wearable devices, entertainment, military, and especially medical devices. WBAN attracts the attention of continuous health monitoring system including diagnostic procedure, early detection of abnormal conditions, and prevention of emergency situations. Compared to cellular network, WBAN system is more difficult to control inter- and inner-cell interference due to the limited power, limited calculation capability, mobility of patient, and non-cooperation among WBANs. In this paper, we compare the performance of resource allocation scheme based on several Pseudo Orthogonal Codewords (POCs) to mitigate inter-WBAN interference. Previously, the POCs are widely exploited for a protocol sequence and optical orthogonal code. Each POCs have different properties of auto- and cross-correlation and spectral efficiency according to its construction of POCs. To identify different WBANs, several different pseudo orthogonal patterns based on POCs exploits for resource allocation of WBANs. By simulating these pseudo orthogonal resource allocations of WBANs on MATLAB, we obtain the performance of WBANs according to different POCs and can analyze and evaluate the suitability of POCs for the resource allocation in the WBANs system.Keywords: wireless body area network, body sensor network, resource allocation without feedback, interference mitigation, pseudo orthogonal pattern
Procedia PDF Downloads 35310877 Construction of the Large Scale Biological Networks from Microarrays
Authors: Fadhl Alakwaa
Abstract:
One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method.Keywords: gene regulatory network, biclustering, denoising, system biology
Procedia PDF Downloads 23910876 On Physico-Chemical Status of Agbabu Water, Oluwa River, Odigbo Local Government Area, Ondo State, Nigeria
Authors: Olaniyan Rotimi Francis
Abstract:
Agbabu Water, Oluwa River is used for artisanal fishing, ferrying and domestic activities in Odigbo Local Government Area (OLGA), Ondo State. The river receives bitumen spills and domestic and agricultural wastes, which could adversely impact on the water quality and resident biota. In spite of anthropogenic activities, there is a dearth of information on the limnology and biota of the river. Extensive bitumen spills, as well as uncontrolled discharge of domestic wastes have pollution implications as they alter prevailing conditions and destroy the habitats of aquatic organisms. The aim of this study was to investigate the physic-chemical parameters of Agbabu Water in order to provide baseline information for effective management. Monthly water samples were collected on the surface of Agbabu water, Oluwa River, for a period of 6 months (June,2024 to November,2024). All physic-chemicals were collected and analyzed according to APHA (2005) standard methods. Results showed that temperature ranged between 26.0-32.0oC, transparency (1.0-8.0 m), alkalinity (14.0-25.0 mg/l), electrical conductivity (18-105 µS/cm), dissolved oxygen (1.2-3.8 mg/l), sulphate (0.0 -4.0mg/l) and total dissolved solids (18-36). The parameters at the downstream (station A) accounted for the bulk of the highest values; there were, however, no significant differences between the stations at P<0.05. The results obtained from the physic-chemical parameters agree with the limits set by both national and international bodies for drinking and fish growth. It was recommended that urgent checks and monitoring by relevant agencies, government representatives, public health practitioners, and community leaders are required.Keywords: physico-chemical, water, Agbabu, River
Procedia PDF Downloads 510875 Hydration Behavior of Belitic Cement in the Presence of Na₂CO₃, NaOH, KOH, and Water Glass
Authors: F. Amor, A. Bouregba, N. El Fami, A. Diouri
Abstract:
This study provides insights into the role of alkalis in modifying the hydration kinetics and microstructural development of β-dicalcium silicate, highlighting potential pathways for enhancing the performance of belite-based cements in various construction applications. It investigates the behavior of β-dicalcium silicates (β-Ca₂SiO₄) when hydrated in various alkaline environments, including deionized water and solutions containing 2M concentrations of Na₂CO₃, NaOH, KOH, and water glass. The dicalcium silicate was synthesized with laboratory reagents, calcium carbonate, and gel silica. The hydration process was carried out over different periods, ranging from 7 to 90 days. The hydrated samples were characterized using X-ray diffraction, infrared spectroscopy, and scanning electron microscopy, while the mechanical strength tests were performed at 28 and 90 days. The results indicate that the presence of alkalis significantly influences the hydration of belite cement. Early hydration is accelerated, which is evident from the faster dissolution of C₂S, a decrease in C₂S peaks, and the formation of C-S-H products, including sodium-containing C-(N)-S-H and potassium-containing C-(K)-S-H.Keywords: dicalcium silicate, alkali activator, hydration, water glass, Na₂CO₃, NaOH, KOH
Procedia PDF Downloads 1410874 Application Case and Result Consideration About Basic and Working Design of Floating PV Generation System Installed in the Upstream of Dam
Authors: Jang-Hwan Yin, Hae-Jeong Jeong, Hyo-Geun Jeong
Abstract:
K-water (Korea Water Resources Corporation) conducted basic and working design about floating PV generation system installed above water in the upstream of dam to develop clean energy using water with importance of green growth is magnified ecumenically. PV Generation System on the ground applied considerably until now raise environmental damage by using farmland and forest land, PV generation system on the building roof is already installed at almost the whole place of business and additional installation is almost impossible. Installation space of PV generation system is infinite and efficient national land use is possible because it is installed above water. Also, PV module's efficiency increase by natural water cooling method and no shade. So it is identified that annual power generation is more than PV generation system on the ground by operating performance data. Although it is difficult to design and construct by high cost, little application case, difficult installation of floater, mooring device, underwater cable, etc. However, it has been examined cost reduction plan such as structure weight lightening, floater optimal design, etc. This thesis described basic and working design result systematically about K-water's floating PV generation system development and suggested optimal design method of floating PV generation system. Main contents are photovoltaic array location select, substation location select related underwater cable, PV module and inverter design, transmission and substation equipment design, floater design related structure weight lightening, mooring system design related water level fluctuation, grid connecting technical review, remote control and monitor equipment design, etc. This thesis will contribute to optimal design and business extension of floating PV generation system, and it will be opportunity revitalize clean energy development using water.Keywords: PV generation system, clean energy, green growth, solar energy
Procedia PDF Downloads 41310873 Investigation of Steady State Infiltration Rate for Different Head Condition
Authors: Nour Aljafari, Mariam, S. Maani, Serter Atabay, Tarig Ali, Said Daker, Lara Daher, Hamad Bukhammas, Mohammed Abou Shakra
Abstract:
This paper aims at determining the soil characteristics that influence the irrigation process of green landscapes and deciding on the optimum amount of water needed for irrigation. The laboratory experiments were conducted using the constant head methodology to determine the soil infiltration rates. The steady state infiltration rate was reached after 10 minutes of infiltration at a rate of 200 mm/hr. The effects of different water heads on infiltration rates were also investigated, and the head of 11 cm was found to be the optimum head for the test. The experimental results showed consistent infiltration results for the range between 11 cm and 15 cm. The study also involved finding the initial moisture content, which ranged between 5% and 25%, and finding the organic content, which occupied 1% to 2% of the soil. These results will be later utilized, using the water balance approach, to estimate the optimum amount of water needed for irrigation for changing weather conditions.Keywords: infiltration rate, moisture content, grass type, organic content
Procedia PDF Downloads 29410872 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks
Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy
Abstract:
With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.Keywords: localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI, GPS
Procedia PDF Downloads 33910871 Next Generation Membrane for Water Desalination: Facile Fabrication of Patterned Graphene Membrane
Authors: Jae-Kyung Choi, Soon-Yong Kwon, Hyung Duk Yun, Hyun-Sang Chung, Seongho Seo, Kukjin Bae
Abstract:
Recently, there were several attempts to utilize a graphene layer as a water desalination membrane. In order to use a graphene layer as a water desalination membrane, fabrication of crack-free suspension of graphene on a porous membrane, having hydrophobic surface, and generation of a uniform holes on a graphene are very important. In here, we showed a simple chemical vapor deposition (CVD) method to create a patterned graphene membrane on a patterned platinum film. After CVD growth process of patterned graphene layer/patterned Pt on SiO2 substrates, the patterned graphene layer can be successfully transferred onto arbitrary substrates via thermal-assisted transfer method. In this result, the transferred patterned graphene membrane has so hydrophobic surface which will certainly impact on the naturally and speed pass way for fresh water. In addition to this, we observed that overlapping of patterned graphene membranes reported previously by our group may generate different size of holes.Keywords: chemical vapor deposition (CVD), hydrophobic surface, membrane desalination, porous graphene
Procedia PDF Downloads 47110870 The Effects of Native Forests Conservation and Preservation Scenarios on Two Chilean Basins Water Cycle, under Climate Change Conditions
Authors: Hernández Marieta, Aguayo Mauricio, Pedreros María, Llompart Ovidio
Abstract:
The hydrological cycle is influenced by multiple factors, including climate change, land use changes, and anthropogenic activities, all of which threaten water availability and quality worldwide. In recent decades, numerous investigations have used landscape metrics and hydrological modeling to demonstrate the influence of landscape patterns on the hydrological cycle components' natural dynamics. Many of these investigations have determined the repercussions on the quality and availability of water, sedimentation, and erosion regime, mainly in Asian basins. In fact, there is progress in this branch of science, but there are still unanswered questions for our region. This study examines the hydrological response in Chilean basins under various land use change scenarios (LUCC) and the influence of climate change. The components of the water cycle were modeled using a physically distributed type hydrological and hydraulic simulation model based on and oriented to mountain basins TETIS model. Future climate data were derived from Chilean regional simulations using the WRF-MIROC5 model, forced with the RCP 8.5 scenario, at a 25 km resolution for the periods 2030-2060 and 2061-2091. LUCC scenarios were designed based on nature-based solutions, landscape pattern influences, current national and international water conservation legislation, and extreme scenarios of non-preservation and conservation of native forests. The scenarios that demonstrate greater water availability, even under climate change, are those promoting the restoration of native forests in over 30% of the basins, even alongside agricultural activities. Current legislation promoting the restoration of native forests only in riparian zones (30-60 m or 200 m in steeper areas) will not be resilient enough to address future water shortages. Evapotranspiration, direct runoff, and water availability at basin outlets showed the greatest variations due to LUCC. The relationship between hydrological modeling and landscape configuration is an effective tool for establishing future territorial planning that prioritizes water resource protection.Keywords: TETIS, landscape pattern, hydrological process, water availability, Chilean basins
Procedia PDF Downloads 3610869 Generative Adversarial Network for Bidirectional Mappings between Retinal Fundus Images and Vessel Segmented Images
Authors: Haoqi Gao, Koichi Ogawara
Abstract:
Retinal vascular segmentation of color fundus is the basis of ophthalmic computer-aided diagnosis and large-scale disease screening systems. Early screening of fundus diseases has great value for clinical medical diagnosis. The traditional methods depend on the experience of the doctor, which is time-consuming, labor-intensive, and inefficient. Furthermore, medical images are scarce and fraught with legal concerns regarding patient privacy. In this paper, we propose a new Generative Adversarial Network based on CycleGAN for retinal fundus images. This method can generate not only synthetic fundus images but also generate corresponding segmentation masks, which has certain application value and challenge in computer vision and computer graphics. In the results, we evaluate our proposed method from both quantitative and qualitative. For generated segmented images, our method achieves dice coefficient of 0.81 and PR of 0.89 on DRIVE dataset. For generated synthetic fundus images, we use ”Toy Experiment” to verify the state-of-the-art performance of our method.Keywords: retinal vascular segmentations, generative ad-versarial network, cyclegan, fundus images
Procedia PDF Downloads 14410868 Numerical Investigation on Feasibility of Electromagnetic Wave as Water Hardness Detection in Water Cooling System Industrial
Authors: K. H. Teng, A. Shaw, M. Ateeq, A. Al-Shamma'a, S. Wylie, S. N. Kazi, B. T. Chew
Abstract:
Numerical and experimental of using novel electromagnetic wave technique to detect water hardness concentration has been presented in this paper. Simulation is powerful and efficient engineering methods which allow for a quick and accurate prediction of various engineering problems. The RF module is used in this research to predict and design electromagnetic wave propagation and resonance effect of a guided wave to detect water hardness concentration in term of frequency domain, eigenfrequency, and mode analysis. A cylindrical cavity resonator is simulated and designed in the electric field of fundamental mode (TM010). With the finite volume method, the three-dimensional governing equations were discretized. Boundary conditions for the simulation were the cavity materials like aluminum, two ports which include transmitting and receiving port, and assumption of vacuum inside the cavity. The design model was success to simulate a fundamental mode and extract S21 transmission signal within 2.1 – 2.8 GHz regions. The signal spectrum under effect of port selection technique and dielectric properties of different water concentration were studied. It is observed that the linear increment of magnitude in frequency domain when concentration increase. The numerical results were validated closely by the experimentally available data. Hence, conclusion for the available COMSOL simulation package is capable of providing acceptable data for microwave research.Keywords: electromagnetic wave technique, frequency domain, signal spectrum, water hardness concentration
Procedia PDF Downloads 27210867 Water Management in Rice Plants of Dry Season in the Rainfed Lowland
Authors: Zainal Arifin, Mohammad Saeri
Abstract:
The purpose of this study is to determine the efficiency of irrigation use on the growth and yield of two varieties of rice. Water management research on rainfed lowland rice was carried out in dry season (DS I) 2016 in an area of 10,000 m2 in Bunbarat Village, Rubaru Subdistrict, Sumenep Regency. The research was randomized block design factorial with 8 treatments and repeated 3 times, ie Factor I (varieties): (a) Inpago 9, and (b) Sidenuk; factor II (irrigation): (a) Alternate Wetting and Drying, (b) intermittent, (c) submerged, and (d) inundated. The results showed that dominant weed species such as purslane (Portulaca oleraceae L.) and barnyard grass (Echinochloa crusgalli) were mostly found in rice cultivation with Alternate Wetting and Drying, intermittent and submerged irrigation treatment, while the lowest was inundated irrigation. The use of Sidenuk variety with Alternate Wetting and Drying irrigation yielded 5.7 t/ha dry grain harvest (dgh) and was not significantly different from the inundated watering using the Sidenuk variety (6.2 t/ha dgh). With Alternate Wetting and Drying irrigation technique, water use is more efficient as much as 1,503 m3/ha so as to produce 1 kg of grain, it needs 459 liters of water compared to inundated irrigation (665 liters/kg of grain). Results of analysis of rice farming Sidenuk variety with Alternate Wetting and Drying irrigation has the highest B/C ratio (2.56) so that economically feasible.Keywords: water management, varieties, rice, dry season, rainfed lowland
Procedia PDF Downloads 17610866 Resource Orchestration Based on Two-Sides Scheduling in Computing Network Control Sytems
Authors: Li Guo, Jianhong Wang, Dian Huang, Shengzhong Feng
Abstract:
Computing networks as a new network architecture has shown great promise in boosting the utilization of different resources, such as computing, caching, and communications. To maximise the efficiency of resource orchestration in computing network control systems (CNCSs), this work proposes a dynamic orchestration strategy of a different resource based on task requirements from computing power requestors (CPRs). Specifically, computing power providers (CPPs) in CNCSs could share information with each other through communication channels on the basis of blockchain technology, especially their current idle resources. This dynamic process is modeled as a cooperative game in which CPPs have the same target of maximising long-term rewards by improving the resource utilization ratio. Meanwhile, the task requirements from CPRs, including size, deadline, and calculation, are simultaneously considered in this paper. According to task requirements, the proposed orchestration strategy could schedule the best-fitting resource in CNCSs, achieving the maximum long-term rewards of CPPs and the best quality of experience (QoE) of CRRs at the same time. Based on the EdgeCloudSim simulation platform, the efficiency of the proposed strategy is achieved from both sides of CPRs and CPPs. Besides, experimental results show that the proposed strategy outperforms the other comparisons in all cases.Keywords: computing network control systems, resource orchestration, dynamic scheduling, blockchain, cooperative game
Procedia PDF Downloads 11510865 The Results of Longitudinal Water Quality Monitoring of the Brandywine River, Chester County, Pennsylvania by High School Students
Authors: Dina L. DiSantis
Abstract:
Strengthening a sense of responsibility while relating global sustainability concepts such as water quality and pollution to a local water system can be achieved by teaching students to conduct and interpret water quality monitoring tests. When students conduct their own research, they become better stewards of the environment. Providing outdoor learning and place-based opportunities for students helps connect them to the natural world. By conducting stream studies and collecting data, students are able to better understand how the natural environment is a place where everything is connected. Students have been collecting physical, chemical and biological data along the West and East Branches of the Brandywine River, in Pennsylvania for over ten years. The stream studies are part of the advanced placement environmental science and aquatic science courses that are offered as electives to juniors and seniors at the Downingtown High School West Campus in Downingtown, Pennsylvania. Physical data collected includes: temperature, turbidity, width, depth, velocity, and volume of flow or discharge. The chemical tests conducted are: dissolved oxygen, carbon dioxide, pH, nitrates, alkalinity and phosphates. Macroinvertebrates are collected with a kick net, identified and then released. Students collect the data from several locations while traveling by canoe. In the classroom, students prepare a water quality data analysis and interpretation report based on their collected data. The summary of the results from longitudinal water quality data collection by students, as well as the strengths and weaknesses of student data collection will be presented.Keywords: place-based, student data collection, sustainability, water quality monitoring
Procedia PDF Downloads 15610864 Supply Chain Network Design for Perishable Products in Developing Countries
Authors: Abhishek Jain, Kavish Kejriwal, V. Balaji Rao, Abhigna Chavda
Abstract:
Increasing environmental and social concerns are forcing companies to take a fresh view of the impact of supply chain operations on environment and society when designing a supply chain. A challenging task in today’s food industry is the distribution of high-quality food items throughout the food supply chain. Improper storage and unwanted transportation are the major hurdles in food supply chain and can be tackled by making dynamic storage facility location decisions with the distribution network. Since food supply chain in India is one of the biggest supply chains in the world, the companies should also consider environmental impact caused by the supply chain. This project proposes a multi-objective optimization model by integrating sustainability in decision-making, on distribution in a food supply chain network (SCN). A Multi-Objective Mixed-Integer Linear Programming (MOMILP) model between overall cost and environmental impact caused by the SCN is formulated for the problem. The goal of MOMILP is to determine the pareto solutions for overall cost and environmental impact caused by the supply chain. This is solved by using GAMS with CPLEX as third party solver. The outcomes of the project are pareto solutions for overall cost and environmental impact, facilities to be operated and the amount to be transferred to each warehouse during the time horizon.Keywords: multi-objective mixed linear programming, food supply chain network, GAMS, multi-product, multi-period, environment
Procedia PDF Downloads 320