Search results for: retinal Müller cell
1624 Size Selective Synthesis of Sulfur Nanoparticles and Their Anticancer Activity
Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein
Abstract:
Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, syn-thesis of nano-composites for lithium batteries, modification of carbon nano tubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work Sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM and TEM in order to confirm their sizes and structures.Application of nanotechnology is suggested for diag-nosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, XRD
Procedia PDF Downloads 6541623 Size Selective Synthesis of Sulfur Nanoparticles and Their Anti Cancer Activity
Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein
Abstract:
Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, synthesis of nanocomposites for lithium batteries, modification of carbon nanotubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro-emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work, sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM, and TEM in order to confirm their sizes and structures. Application of nanotechnology is suggested for diagnosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, anti cancer activity, XRD
Procedia PDF Downloads 5161622 Enhancement of Radiosensitization by Aptamer 5TR1-Functionalized AgNCs for Triple-Negative Breast Cancer
Authors: Xuechun Kan, Dongdong Li, Fan Li, Peidang Liu
Abstract:
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with a poor prognosis, and radiotherapy is one of the main treatment methods. However, due to the obvious resistance of tumor cells to radiotherapy, high dose of ionizing radiation is required during radiotherapy, which causes serious damage to normal tissues near the tumor. Therefore, how to improve radiotherapy resistance and enhance the specific killing of tumor cells by radiation is a hot issue that needs to be solved in clinic. Recent studies have shown that silver-based nanoparticles have strong radiosensitization, and silver nanoclusters (AgNCs) also provide a broad prospect for tumor targeted radiosensitization therapy due to their ultra-small size, low toxicity or non-toxicity, self-fluorescence and strong photostability. Aptamer 5TR1 is a 25-base oligonucleotide aptamer that can specifically bind to mucin-1 highly expressed on the membrane surface of TNBC 4T1 cells, and can be used as a highly efficient tumor targeting molecule. In this study, AgNCs were synthesized by DNA template based on 5TR1 aptamer (NC-T5-5TR1), and its role as a targeted radiosensitizer in TNBC radiotherapy was investigated. The optimal DNA template was first screened by fluorescence emission spectroscopy, and NC-T5-5TR1 was prepared. NC-T5-5TR1 was characterized by transmission electron microscopy, ultraviolet-visible spectroscopy and dynamic light scattering. The inhibitory effect of NC-T5-5TR1 on cell activity was evaluated using the MTT method. Laser confocal microscopy was employed to observe NC-T5-5TR1 targeting 4T1 cells and verify its self-fluorescence characteristics. The uptake of NC-T5-5TR1 by 4T1 cells was observed by dark-field imaging, and the uptake peak was evaluated by inductively coupled plasma mass spectrometry. The radiation sensitization effect of NC-T5-5TR1 was evaluated through cell cloning and in vivo anti-tumor experiments. Annexin V-FITC/PI double staining flow cytometry was utilized to detect the impact of nanomaterials combined with radiotherapy on apoptosis. The results demonstrated that the particle size of NC-T5-5TR1 is about 2 nm, and the UV-visible absorption spectrum detection verifies the successful construction of NC-T5-5TR1, and it shows good dispersion. NC-T5-5TR1 significantly inhibited the activity of 4T1 cells and effectively targeted and fluoresced within 4T1 cells. The uptake of NC-T5-5TR1 reached its peak at 3 h in the tumor area. Compared with AgNCs without aptamer modification, NC-T5-5TR1 exhibited superior radiation sensitization, and combined radiotherapy significantly inhibited the activity of 4T1 cells and tumor growth in 4T1-bearing mice. The apoptosis level of NC-T5-5TR1 combined with radiation was significantly increased. These findings provide important theoretical and experimental support for NC-T5-5TR1 as a radiation sensitizer for TNBC.Keywords: 5TR1 aptamer, silver nanoclusters, radio sensitization, triple-negative breast cancer
Procedia PDF Downloads 611621 The Molecular Biology Behind the Spread of Breast Cancer Inflammatory Breast Cancer: Symptoms and Genetic Factors
Authors: Fakhrosadat Sajjadian
Abstract:
In the USA, about 5% of women diagnosed with breast cancer annually are affected by Inflammatory Breast Cancer (IBC), which is a highly aggressive type of Locally Advanced Breast Cancer (LABC). It is a type of LABC that is clinically and pathologically different, known for its rapid growth, invasiveness, and ability to promote the growth of blood vessels. Almost all women are found to have lymph nodes affected upon diagnosis, while around 36% show obvious distant metastases. Even with the latest improvements in multimodality therapies, the outlook for patients with IBC remains bleak, as the average disease-free survival time is less than 2.5 years. Recent research on the genetic factors responsible for the IBC phenotype has resulted in the discovery of genes that play a role in the advancement of this illness. The development of primary human cell lines and animal models has assisted in this research. These advancements offer new possibilities for future actions in identifying and treating IBC.Keywords: breast cancer, inflammation, diagnosis, IBC, LABC
Procedia PDF Downloads 431620 Hybrid Molecules: A Promising Approach to Design Potent Antimicrobial and Anticancer Drugs
Authors: Blessing Atim Aderibigbe
Abstract:
A series of amine/ester-linked hybrid compounds containing pharmacophores, such as ursolic acid, oleanolic acid, ferrocene and bisphosphonates, were synthesized in an attempt to develop potent antibacterial and anticancer agents. Their structures were analyzed and confirmed using Nuclear Magnetic Resonance, Fourier Transform Infrared Spectroscopy, and mass spectroscopy. All the synthesized hybrid compounds were evaluated for their antibacterial activities against eleven selected bacterial strains using a serial dilution method. Some of the compounds displayed significant antibacterial activity against most of the bacterial and fungal strains. In addition, the in vitro cytotoxicity of these compounds was also performed against selected cancer cell lines. Some of the compounds were also found to be more active than their parent compounds, revealing the efficacy of designing hybrid molecules using plant-based bioactive agents.Keywords: ursolic acid, hybrid drugs, oleanolic acid, bisphosphonates
Procedia PDF Downloads 861619 Rooting Out Breast Cancer by Repressing ER Gene Expression: Correlating Bioactivity of Pomegranate Rind with Chemical Constituents Identified by HPLC-MS/MS
Authors: Alaa M. M. Badr Eldin, Marwa I. Ezzat, Mohammed S. Sedeek, Manal S. Afifi, Omar M. Sabry
Abstract:
Cytotoxic activity of the total methanol extract against breast cancer cell line MCF-7 was amazing IC50 at 54 ug/ml. 130 polyphenolic compounds were tentatively identified in pomegranate peel (Punica granatum L.) methanol extract using HPLC-MS/MS technique. The antiestrogenic activity of the polyphenolic constituents found in pomegranate extract was confirmed experimentally in-vitro and by the in-silico molecular docking using gallagic acid, ellagic acid, and Punicalagin as these are considered model compounds confirmed in pomegranate peel extract. The methanolic extract was found to suppress ER, TGF-β, and NF-kB in-vitro gene expression strongly, and that was verified by qPCR and Western Blot gel electrophoresis techniques.Keywords: HPLC-MS/MS, pomegranate, breast cancer, ovarian cancer, ER, TGF-β, NF-kB
Procedia PDF Downloads 1021618 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering
Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad
Abstract:
The field of tissue engineering is an active area of research. Bone tissue engineering helps to resolve the clinical problems of critical size and non-healing defects by the creation of man-made bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature, with which we will not only be able to predict the oxygen, glucose and cell density dynamics, more accurately, but will also sort the issues arising due to anisotropy. We will fix these problems with the help of modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes, by adaptive grid refinement strategy and by transient analysis.Keywords: scaffolds, porosity, diffusion, transient analysis
Procedia PDF Downloads 5411617 Mechanism of Dual Ferroic Properties Formation in Substituted M-Type Hexaferrites
Authors: A. V. Trukhanov, S. V. Trukhanov, L. V. Panina, V. G. Kostishin, V. A. Turchenko
Abstract:
It has been shown that BaFe12O19 is a perspective room-temperature multiferroic material. A large spontaneous polarization was observed for the BaFe12O19 ceramics revealing a clear ferroelectric hysteresis loop. The maximum polarization was estimated to be approximately 11.8 μC/cm2. The FeO6 octahedron in its perovskite-like hexagonal unit cell and the shift of Fe3+ off the center of octahedron are suggested to be the origin of the polarization in BaFe12O19. The magnetic field induced electric polarization has been also observed in the doped BaFe12-x-δScxMδO19 (δ=0.05) at 10 K and in the BaScxFe12−xO19 and SrScxFe12−xO19 (x = 1.3–1.7) M-type hexaferrites. The investigated BaFe12-xDxO19 (x=0.1, D-Al3+, In3+) samples have been obtained by two-step “topotactic” reactions. The powder neutron investigations of the samples were performed by neutron time of flight method at High Resolution Fourier Diffractometer.Keywords: substituted hexaferrites, ferrimagnetics, ferroelectrics, neutron powder diffraction, crystal and magnetic structures
Procedia PDF Downloads 2571616 Comparison Between Fuzzy and P&O Control for MPPT for Photovoltaic System Using Boost Converter
Authors: M. Doumi, A. Miloudi, A. G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir
Abstract:
The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. Some MPPT techniques are available in that perturbation and observation (P&O) and Fuzzy logic controller (FLC). The fuzzy control method has been compared with perturb and observe (P&O) method as one of the most widely conventional method used in this area. Both techniques have been analyzed and simulated. MPPT using fuzzy logic shows superior performance and more reliable control with respect to the P&O technique for this application.Keywords: photovoltaic system, MPPT, perturb and observe, fuzzy logic
Procedia PDF Downloads 6041615 Smart Multifunctionalized and Responsive Polymersomes as Targeted and Selective Recognition Systems
Authors: Silvia Moreno, Banu Iyisan, Hannes Gumz, Brigitte Voit, Dietmar Appelhans
Abstract:
Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. In addition, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.Keywords: multifunctionalized, pH stimulus, controllable release, cellular uptake
Procedia PDF Downloads 3201614 The Effect of Immobilization Conditions on Hydrogen Production from Palm Oil Mill Effluent
Authors: A. W. Zularisam, Lakhveer Singh, Mimi Sakinah Abdul Munaim
Abstract:
In this study, the optimization of hydrogen production using polyethylene glycol (PEG) immobilized sludge was investigated in batch tests. Palm oil mill effluent (POME) is used as a substrate that can act as a carbon source. Experiment focus on the effect of some important affecting factors on fermentative hydrogen production. Results showed that immobilized sludge demonstrated the maximum hydrogen production rate of 340 mL/L-POME/h under follow optimal condition: amount of biomass 10 mg VSS/ g bead, PEG concentration 10%, and cell age 24 h or 40 h. More importantly, immobilized sludge not only enhanced hydrogen production but can also tolerate the harsh environment and produce hydrogen at the wide ranges of pH. The present results indicate the potential of PEG-immobilized sludge for large-scale operations as well; these factors play an important role in stable and continuous hydrogen production.Keywords: bioydrogen, immobilization, polyethylene glycol, palm oil mill effluent, dark fermentation
Procedia PDF Downloads 3431613 Anti-Inflammatory Effect of Myristic Acid through Inhibiting NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Stimulated RAW 264.7 Macrophage Cells
Authors: Hyun Ji Hyun, Hyo Sun Suh, Min Kook Kim, Yong Chan Kwon, Byung-Mu Lee
Abstract:
Scope: This study is focused on the effect of myristic acid on LPS-induced inflammation in RAW 264.7 macrophage cells. Methods and results: For the experiment, RAW 264.7 mouse macrophage cell line was used. Results showed that treatment with myristic acid can attenuate LPS-induced inflammation. Moreover, myristic acid significantly suppressed expression of inflammatory mediators and down-regulating UVB-induced intracellular ROS generation. Furthermore, myristic acid reduced the expression of NF-κB by inhibiting degradation of IκB-α and ERK, JNK, and p38 pathways by inhibiting phosphorylation in RAW 264.7 macrophage cells. Conclusion: Overall, these data suggest that the myristic acid could reduce LPS-induced inflammation. Acknowledgment: This research was supported by the Ministry of Trade, Industry & Energy(MOTIE), Korea Institute for Advancement of Technology(KIAT) through the Encouragement Program for The Industries of Economic Cooperation RegionKeywords: anti-inflammation, myristic acid, ROS, ultraviolet light
Procedia PDF Downloads 2051612 Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques
Authors: P. Satish Kumar, K. Ramakrishna, Ch. Lokeshwar Reddy, G. Sridhar
Abstract:
This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-Frequency Pulse Width Modulation (FFPWM) and Multilevel Sinusoidal-Modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase Opposition Disposition (APOD), Phase Shifted Carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation.Keywords: cascaded multilevel inverters, hybrid modulation, power loss analysis, pulse width modulation
Procedia PDF Downloads 5371611 Antioxidants Effects on Sperm Parameter in Varicocelized Male Rat
Authors: Mehdi Abbasi, Masoumeh Majidi Zolbin
Abstract:
Varicocele is one of the common causes of infertility in 30-50% of married men which occurs within the spermatic cord. It can be considered as an abnormal dilatation and stasis of veins of the pampiniform plexus that drain the testis. It occurs in 15-20% of the male population. Inducible nitric oxide synthase (NOS) activity has been frequently reported in varicose veins. Several studies have considered the relationship between varicocele and semen NO concentrations. NOS isoforms have been shown to regulate a number of functions, e.g., sperm motility and maturation and germ cell apoptosis in the testes. In adult patients with varicocele, the amount of NO levels in the varicose veins are 25 times higher than in serum of peripheral veins. The aim of this study was to review the effect of different antioxidant that we applied so far on sperm parameters as well as sperm DNA fragmentation. The findings of this study suggest that antioxidants improve sperm parameters which are associated with infertility in varicocelized rats, and treatment can reduce damage to sperm DNA and increase the chance of fertility.Keywords: antioxidant, rat, sperm parameter, varicocele
Procedia PDF Downloads 2801610 Preparation and Characterization of Lanthanum Aluminate Electrolyte Material for Solid Oxide Fuel Cell
Authors: Onkar Nath Verma, Nitish Kumar Singh, Raghvendra, Pravin Kumar, Prabhakar Singh
Abstract:
The perovskite type electrolyte material LaAlO3 was prepared by solution based auto-combustion method using Al (NO3)3.6H2O, La2O3 with dilute nitrate acid (HNO3) as precursors and citric acid (C6H8O7.H2O) as a fuel. The synthesis protocol gave an easy processing of the LaAlO3 nano-particles. The XRD measurement revealed that the material has single phase with space group R-3c (rhombohedral). Thermal behavior was measured by simultaneous differential thermal analysis and thermo gravimetric analysis (DTA-TGA). The compact pellet density was determined. Also, the surface morphology was studied using scanning electron microscopy (SEM). The conductivity of LaAlO3 was measured employing LCR meter and found to increase with increasing temperature. This increase in conductivity may be attributed to increased mobility of oxide ion.Keywords: perovskite, LaAlO3, XRD, SEM, DTA-TGA, SOFC
Procedia PDF Downloads 5031609 Investigation of the Effects of Quercetin on Oxidative Stress in Cells Infected with Infectious Pancreatic Necrosis Virus
Authors: Dilek Zorlu Kaya, Sena Çenesiz, Utku Duran
Abstract:
Infectious pancreatic necrosis virus is a disease of great concern in aquaculture, causing mortality of 80 - 90% of the stocks in salmonid production. We aimed to investigate the efficacy of quercetin on oxidant and antioxidant parameters of infectious pancreatic necrosis virus, which is important for fish farming and economy in vitro. Quercetin experimental model was used in the cell culture of Oncorhynchus mykiss infected with infectious pancreatic necrosis virus. Malondialdehyde, ceruloplasmin, total oxidant capacity, total antioxidant levels, and glutathione-peroxidase were measured in the samples. As a result of the study, it was observed that quercetin can minimize the damage caused by scavenging free radicals in cells infected with infectious pancreatic necrosis virus. Thus, we think that an important development can be achieved for fish farming and the economy.Keywords: IPNV, oncorhynchus mykiss, TAS, TOS, quercetin
Procedia PDF Downloads 651608 Chip Less Microfluidic Device for High Throughput Liver Spheroid Generation
Authors: Sourita Ghosh, Falguni Pati, Suhanya Duraiswamy
Abstract:
Spheroid, a simple three-dimensional cellular aggregate, allows us to simulate the in-vivo complexity of cellular signaling and interactions in greater detail than traditional 2D cell culture. It can be used as an in-vitro model for drug toxicity testing, tumor modeling and many other such applications specifically for cancer. Our work is focused on the development of an affordable, user-friendly, robust, reproducible, high throughput microfluidic device for water in oil droplet production, which can, in turn, be used for spheroids manufacturing. Here, we have investigated the droplet breakup between two non-Newtonian fluids, viz. silicone oil and decellularized liver matrix, which acts as our extra cellular matrix (ECM) for spheroids formation. We performed some biochemical assays to characterize the liver ECM, as well as rheological studies on our two fluids and observed a critical dependence of capillary number (Ca) on droplet breakup and homogeneous drop formationKeywords: chip less, droplets, extracellular matrix, liver spheroid
Procedia PDF Downloads 891607 Laboratory Assessment of Electrical Vertical Drains in Composite Soils Using Kaolin and Bentonite Clays
Authors: Maher Z. Mohammed, Barry G. Clarke
Abstract:
As an alternative to stone column in fine grained soils, it is possible to create stiffened columns of soils using electroosmosis (electroosmotic piles). This program of this research is to establish the effectiveness and efficiency of the process in different soils. The aim of this study is to assess the capability of electroosmosis treatment in a range of composite soils. The combined electroosmotic and preloading equipment developed by Nizar and Clarke (2013) was used with an octagonal array of anodes surrounding a single cathode in a nominal 250mm diameter 300mm deep cylinder of soil and 80mm anode to cathode distance. Copper coiled springs were used as electrodes to allow the soil to consolidate either due to an external vertical applied load or electroosmosis. The equipment was modified to allow the temperature to be monitored during the test. Electroosmotic tests were performed on China Clay Grade E kaolin and calcium bentonite (Bentonex CB) mixed with sand fraction C (BS 1881 part 131) at different ratios by weight; (0, 23, 33, 50 and 67%) subjected to applied voltages (5, 10, 15 and 20). The soil slurry was prepared by mixing the dry soil with water to 1.5 times the liquid limit of the soil mixture. The mineralogical and geotechnical properties of the tested soils were measured before the electroosmosis treatment began. In the electroosmosis cell tests, the settlement, expelled water, variation of electrical current and applied voltage, and the generated heat was monitored during the test time for 24 osmotic tests. Water content was measured at the end of each test. The electroosmotic tests are divided into three phases. In Phase 1, 15 kPa was applied to simulate a working platform and produce a uniform soil which had been deposited as a slurry. 50 kPa was used in Phase 3 to simulate a surcharge load. The electroosmotic treatment was only performed during Phase 2 where a constant voltage was applied through the electrodes in addition to the 15 kPa pressure. This phase was stopped when no further water was expelled from the cell, indicating the electroosmotic process had stopped due to either the degradation of the anode or the flow due to the hydraulic gradient exactly balanced the electroosmotic flow resulting in no flow. Control tests for each soil mixture were carried out to assess the behaviour of the soil samples subjected to only an increase of vertical pressure, which is 15kPa in Phase 1 and 50kPa in Phase 3. Analysis of the experimental results from this study showed a significant dewatering effect on the soil slurries. The water discharged by the electroosmotic treatment process decreased as the sand content increased. Soil temperature increased significantly when electrical power was applied and drops when applied DC power turned off or when the electrode degraded. The highest increase in temperature was found in pure clays at higher applied voltage after about 8 hours of electroosmosis test.Keywords: electrokinetic treatment, electrical conductivity, electroosmotic consolidation, electroosmosis permeability ratio
Procedia PDF Downloads 1661606 Chitin Degradation in Pseudomonas fluorescens
Authors: Azhar Alhasawi, Vasu D. Appanna
Abstract:
Chitin, the second most abundant bio-polymer in nature after cellulose, composed of β (1→4) linked N-acetylglucosamine (GlcNAc), is a major structural component in the cell walls of fungi and the shells of crustaceans. Chitin and its derivatives are gaining importance of economic value due to its biological activity and its industrial and biomedical applications. There are several methods to hydrolyze chitin to NAG, but they are typically expensive and environmentally unfriendly. Chitinase which catalyzes the breakdown of chitin to NAG has received much attention owing to its various applications in biotechnology. The presented research examines the ability of the versatile soil microbe, Pseudomonas fluorescens grown in chitin medium to produce chitinase and a variety of value-added products under abiotic stress. We have found that with high pH, Pseudomonas fluorescens enable to metabolize chitin more than with neutral pH and the overexpression of chitinase was also increased. P-dimethylaminobenzaldehyde (DMAB) assay for NAG production will be monitored and a combination of sodium dodecyl polyacrylamide gels will be used to monitor the proteomic and metabolomic changes as a result of the abiotic stress. The bioreactor of chitinase will also be utilized.Keywords: Pseudomonas fluorescens, chitin, DMAB, chitinase
Procedia PDF Downloads 3541605 Electrochemical Performance of Al-Mn2O3 Based Electrode Materials
Authors: Noor Ul Ain Bhatti, M. Junaid Khan, Javed Ahmad, Murtaza Saleem, Shahid M. Ramay, Saadat A. Siddiqi
Abstract:
Manganese oxide is being recently used as electrode material for rechargeable batteries. In this study, Al incorporated Mn2O3 compositions were synthesized to study the effect of Al doping on electrochemical performance of host material. Structural studies were carried out using X-ray diffraction analysis to confirm the phase stability and explore the lattice parameters, crystallite size, lattice strain, density and cell volume. Morphology and composition were analyzed using field emission scanning electron microscope and energy dispersive X-ray spectroscopy, respectively. Dynamic light scattering analysis was performed to observe the average particle size of the compositions. FTIR measurements exhibit the O-Al-O and O-Mn-O and Al-O bonding and with increasing the concentration of Al, the vibrational peaks of Mn-O become sharper. An enhanced electrochemical performance was observed in compositions with higher Al content.Keywords: Mn2O3, electrode materials, energy storage and conversion, electrochemical performance
Procedia PDF Downloads 3671604 Solar Architecture of Low-Energy Buildings for Industrial Applications
Authors: P. Brinks, O. Kornadt, R. Oly
Abstract:
This research focuses on the optimization of glazed surfaces and the assessment of possible solar gains in industrial buildings. Existing window rating methods for single windows were evaluated and a new method for a simple analysis of energy gains and losses by single windows was introduced. Furthermore extensive transient building simulations were carried out to appraise the performance of low cost polycarbonate multi-cell sheets in interaction with typical buildings for industrial applications. Mainly, energy-saving potential was determined by optimizing the orientation and area of such glazing systems in dependency on their thermal qualities. Moreover the impact on critical aspects such as summer overheating and daylight illumination was considered to ensure the user comfort and avoid additional energy demand for lighting or cooling. Hereby the simulated heating demand could be reduced by up to 1/3 compared to traditional architecture of industrial halls using mainly skylights.Keywords: solar architecture, Passive Solar Building Design, glazing, Low-Energy Buildings, industrial buildings
Procedia PDF Downloads 2361603 Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance
Authors: R. Abd-Rahman, M. M. Isa, H. H. Goh
Abstract:
A compound parabolic concentrator (CPC) is a well known non-imaging concentrator that will concentrate the solar radiation onto receiver (PV cell). One of disadvantage of CPC is has tall and narrow height compared to its diameter entry aperture area. Therefore, for economic reason, a truncation had been done by removed from the top of the full height CPC. This is also will lead to the decreases of concentration ratio but it will be negligible. In this paper, the flux distribution of untruncated and truncated 2-D hollow compound parabolic trough concentrator (hCPTC) design is presented. The untruncated design has initial height, H=193.4mm with concentration ratio, C_(2-D)=4. This paper presents the optical simulation of compound parabolic trough concentrator using ray-tracing software TracePro. Results showed that, after the truncation, the height of CPC reduced 45% from initial height with the geometrical concentration ratio only decrease 10%. Thus, the cost of reflector and material dielectric usage can be saved especially at manufacturing site.Keywords: compound parabolic trough concentrator, optical modelling, ray-tracing analysis, improved performance
Procedia PDF Downloads 4621602 Design and Implementation of Testable Reversible Sequential Circuits Optimized Power
Authors: B. Manikandan, A. Vijayaprabhu
Abstract:
The conservative reversible gates are used to designed reversible sequential circuits. The sequential circuits are flip-flops and latches. The conservative logic gates are Feynman, Toffoli, and Fredkin. The design of two vectors testable sequential circuits based on conservative logic gates. All sequential circuit based on conservative logic gates can be tested for classical unidirectional stuck-at faults using only two test vectors. The two test vectors are all 1s, and all 0s. The designs of two vectors testable latches, master-slave flip-flops and double edge triggered (DET) flip-flops are presented. We also showed the application of the proposed approach toward 100% fault coverage for single missing/additional cell defect in the quantum- dot cellular automata (QCA) layout of the Fredkin gate. The conservative logic gates are in terms of complexity, speed, and area.Keywords: DET, QCA, reversible logic gates, POS, SOP, latches, flip flops
Procedia PDF Downloads 3041601 Evaluating the Durability and Safety of Lithium-Ion Batterie in High-Temperature Desert Climates
Authors: Kenza Maher, Yahya Zakaria, Noora S. Al-Jaidah
Abstract:
Temperature is a critical parameter for lithium-ion battery performance, life, and safety. In this study, four commercially available 18650 lithium-ion cells from four different manufacturers are subjected to accelerated cycle aging for up to 500 cycles at two different temperatures (25°C and 45°C). The cells are also calendar-aged at the same temperatures in both charged and discharged states for 6 months to investigate the effect of aging and temperature on capacity fade and state of health. The results showed that all battery cells demonstrated good cyclability and had a good state of health at both temperatures. However, the capacity loss and state of health of these cells are found to be dependent on the cell chemistry and aging conditions, including temperature. Specifically, the capacity loss is found to be higher at the higher aging temperature, indicating the significant impact of temperature on the aging of lithium-ion batteries.Keywords: lithium-ion battery, aging mechanisms, cycle aging, calendar aging.
Procedia PDF Downloads 991600 Development of a Non-Dispersive Infrared Multi Gas Analyzer for a TMS
Authors: T. V. Dinh, I. Y. Choi, J. W. Ahn, Y. H. Oh, G. Bo, J. Y. Lee, J. C. Kim
Abstract:
A Non-Dispersive Infrared (NDIR) multi-gas analyzer has been developed to monitor the emission of carbon monoxide (CO) and sulfur dioxide (SO2) from various industries. The NDIR technique for gas measurement is based on the wavelength absorption in the infrared spectrum as a way to detect particular gasses. NDIR analyzers have popularly applied in the Tele-Monitoring System (TMS). The advantage of the NDIR analyzer is low energy consumption and cost compared with other spectroscopy methods. However, zero/span drift and interference are its urgent issues to be solved. Multi-pathway technique based on optical White cell was employed to improve the sensitivity of the analyzer in this work. A pyroelectric detector was used to detect the Infrared radiation. The analytical range of the analyzer was 0 ~ 200 ppm. The instrument response time was < 2 min. The detection limits of CO and SO2 were < 4 ppm and < 6 ppm, respectively. The zero and span drift of 24 h was less than 3%. The linearity of the analyzer was less than 2.5% of reference values. The precision and accuracy of both CO and SO2 channels were < 2.5% of relative standard deviation. In general, the analyzer performed well. However, the detection limit and 24h drift should be improved to be a more competitive instrument.Keywords: analyzer, CEMS, monitoring, NDIR, TMS
Procedia PDF Downloads 2571599 Dynamic Changes in NT-proBNP Levels in Unrelated Donors during Hematopoietic Stem Cells Mobilization
Authors: Natalia V. Minaeva, Natalia A. Zorina, Marina N. Khorobrikh, Philipp S. Sherstnev, Tatiana V. Krivokorytova, Alexander S. Luchinin, Maksim S. Minaev, Igor V. Paramonov
Abstract:
Background. Over the last few decades, the Center for International Blood and Marrow Transplant Research (CIBMTR) and the World Marrow Donor Association (WMDA) have been actively working to ensure the safety of the hematopoietic stem cell (HSC) donation process. Registration of adverse events that may occur during the donation period and establishing a relationship between donation and side effects are included in the WMDA international standards. The level of blood serum N-terminal pro-brain natriuretic peptide (NT-proBNP) is an early marker of myocardial stress. Due to the high analytical sensitivity and specificity, laboratory assessment of NT-proBNP makes it possible to objectively diagnose myocardial dysfunction. It is well known that the main stimulus for proBNP synthesis and secretion from atrial and ventricular cardiac myocytes is myocyte stretch and increasement of myocardial extensibility and pressure in the heart chambers. Аim. The aim of the study was to assess the dynamic changes in the levels of blood serum N-terminal pro-brain natriuretic peptide of unrelated donors at various stages of hematopoietic stem cell mobilization. Materials. We have examined 133 unrelated donors, including 92 men and 41 women, that have been included into the study. The NT-proBNP levels were measured before the start of mobilization, then on the day of apheresis, and after the donation of allogeneic HSC. The relationship between NT-proBNP levels and body mass index (BMI), ferritin, hemoglobin, and white blood cells (WBC) levels was assessed on the day of apheresis. The median age of donors was 34 years. Mobilization of HSCs was managed with filgrastim administration at a dose of 10 μg/kg daily for 4-5 days. The first leukocytapheresis was performed on day 4 from the start of filgrastim administration. Quantitative values of the blood serum NT-proBNP level are presented as a median (Me), first and third quartiles (Q1-Q3). Comparative analysis was carried out using the t-test and correlation analysis as well by Spearman method. Results. The baseline blood serum NT-proBNP levels in all 133 donors were within the reference values (<125 pg/ml) and equaled 21,6 (10,0; 43,3) pg/ml. At the same time, the level of NT-proBNP in women was significantly higher than that of men. On the day of the HSC apheresis, a significant increase of blood serum NT-proBNP levels was detected and equald 131,2 (72,6; 165,3) pg/ml (p<0,001), with higher rates in female donors. A statistically significant weak inverse correleation was established between the level of NT-proBNP and the BMI of donors (-0.18, p = 0,03), as well as the level of hemoglobin (-0.33, p <0,001), and ferritin levels (-0.19, p = 0,03). No relationship has been established between the magnitude of WBC levels achieved as a result of the mobilization of HSC on the day of leukocytapheresis. A day after the apheresis, the blood serum NT-proBNP levels still exceeded the reference values, but there was a decreasing tendency. Conclusion. An increase of the blood serum NT-proBNP level in unrelated donors during the mobilization of HSC was established. Future studies should clarify the reason for this phenomenon, as well as its effects on donors' long-term health.Keywords: unrelated donors, mobilization, hematopoietic stem cells, N-terminal pro-brain natriuretic peptide
Procedia PDF Downloads 1011598 One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells
Authors: Leila Samiee, Amir Yadegari, Saeedeh Tasharrofi
Abstract:
In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells.Keywords: alkaline fuel cell, graphene, metal-free catalyst, paraphenylen diamine
Procedia PDF Downloads 4791597 Physical Properties of Uranium Dinitride UN2 by Using Density Functional Theory (DFT and DFT+U)
Authors: T. Zergoug, S. E. H. Abaidia, A. Nedjar, M. Y. Mokeddem
Abstract:
Physical properties of uranium di-nitride (UN2) were investigated in detail using first principles calculations based on density functional theory. To treat the strong correlation effects caused by 5f Uranium valence electrons, on-site Coulomb interaction correction via the Hubbard-like term, U (DFT+U) was employed. The UN2 structural, mechanical and thermodynamic properties were calculated within DFT and Various U of DFT+U approach. The Perdew–Burke–Ernzerhof (PBE.5.2) version of the generalized gradient approximation (GGA) is used to describe the exchange-correlation with the projector-augmented wave (PAW) pseudo potentials. A comparative study shows that results are improved by using the Hubbard formalism for a certain U value correction like the structural parameter. For some physical properties the variation versus Hubbard U is strong like Young modulus but for others it is weakly noticeable such as the density of state (DOS) or bulk modulus. We noticed also that up from U=7.5 eV, elastic results become not conform to the cubic cell elastic criteria since the C44 values turn out to be negative.Keywords: uranium diNitride, UN2, DFT+U, elastic properties
Procedia PDF Downloads 4491596 Oncogenic Functions of Long Non-Coding RNA XIST in Human Nasopharyngeal Carcinoma by Targeting MiR-34a-5p
Authors: Cheng-Cao Sun, Shu-Jun Li, De-Jia Li
Abstract:
Long non-coding RNA (lncRNA) X inactivate-specific transcript (XIST) has been verified as an oncogenic gene in several human malignant tumors, and its dysregulation was closed associated with tumor initiation, development and progression. Nevertheless, whether the aberrant expression of XIST in human nasopharyngeal carcinoma (NPC) is corrected with malignancy, metastasis or prognosis has not been elaborated. Here, we discovered that XIST was up-regulated in NPC tissues and higher expression of XIST contributed to a markedly poorer survival time. In addition, multivariate analysis demonstrated XIST was an independent risk factor for prognosis. XIST over-expression enhanced, while XIST silencing hampered the cell growth in NPC. Additionally, mechanistic analysis revealed that XIST up-regulated the expression of miR-34a-5p targeted gene E2F3 through acting as a competitive ‘sponge’ of miR-34a-5p. Taking all into account, we concluded that XIST functioned as an oncogene in NPC through up-regulating E2F3 in part through ‘spongeing’ miR-34a-5p.Keywords: X inactivate-specific transcript; hsa-miRNA-34a-5p, miR-34a-5p; E2F3, nasopharyngeal carcinoma, tumorigenesis
Procedia PDF Downloads 2401595 On the Exergy Analysis of the Aluminum Smelter
Authors: Ayoola T. Brimmo, Mohamed I. Hassan
Abstract:
The push to mitigate the aluminum smelting industry’s enormous energy consumption and high emission releases is now even more persistent with the recent climate change happenings. Common approaches to achieve this have been focused on improving energy efficiency in the pot line and cast house sections of the smelter. However, the conventional energy efficiency analyses are based on the first law of thermodynamics, which do not shed proper light on the smelter’s degradation of energy. This just gives a general idea of the furnace’s performance with no reference to locations where improvement is a possibility based on the second law of thermodynamics. In this study, we apply exergy analyses on the pot line and cast house sections of the smelter to identify the locality and causes of energy degradation. The exergy analyses, which are based on a real life smelter conditions, highlight the possible locations for technology improvement in a typical smelter. With this established, methods of minimizing the smelter’s exergy losses are assessed.Keywords: exergy analysis, electrolytic cell, furnace, heat transfer
Procedia PDF Downloads 289