Search results for: reacting flow
2636 Construction of a Dynamic Migration Model of Extracellular Fluid in Brain for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki, Kyoka Sato
Abstract:
In emergency medicine, it is recognized that brain resuscitation is very important for the reduction of mortality rate and neurological sequelae. Especially, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) are most required for stabilizing brain’s physiological state in the treatment for such as brain injury, stroke, and encephalopathy. However, the manual control of BT, ICP, and CBF frequently requires the decision and operation of medical staff, relevant to medication and the setting of therapeutic apparatus. Thus, the integration and the automation of the control of those is very effective for not only improving therapeutic effect but also reducing staff burden and medical cost. For realizing such integration and automation, a mathematical model of brain physiological state is necessary as the controlled object in simulations, because the performance test of a prototype of the control system using patients is not ethically allowed. A model of cerebral blood circulation has already been constructed, which is the most basic part of brain physiological state. Also, a migration model of extracellular fluid in brain has been constructed, however the condition that the total volume of intracranial cavity is almost changeless due to the hardness of cranial bone has not been considered in that model. Therefore, in this research, the dynamic migration model of extracellular fluid in brain was constructed on the consideration of the changelessness of intracranial cavity’s total volume. This model is connectable to the cerebral blood circulation model. The constructed model consists of fourteen compartments, twelve of which corresponds to perfused area of bilateral anterior, middle and posterior cerebral arteries, the others corresponds to cerebral ventricles and subarachnoid space. This model enable to calculate the migration of tissue fluid from capillaries to gray matter and white matter, the flow of tissue fluid between compartments, the production and absorption of cerebrospinal fluid at choroid plexus and arachnoid granulation, and the production of metabolic water. Further, the volume, the colloid concentration, and the tissue pressure of/in each compartment are also calculable by solving 40-dimensional non-linear simultaneous differential equations. In this research, the obtained model was analyzed for its validation under the four condition of a normal adult, an adult with higher cerebral capillary pressure, an adult with lower cerebral capillary pressure, and an adult with lower colloid concentration in cerebral capillary. In the result, calculated fluid flow, tissue volume, colloid concentration, and tissue pressure were all converged to suitable value for the set condition within 60 minutes at a maximum. Also, because these results were not conflict with prior knowledge, it is certain that the model can enough represent physiological state of brain under such limited conditions at least. One of next challenges is to integrate this model and the already constructed cerebral blood circulation model. This modification enable to simulate CBF and ICP more precisely due to calculating the effect of blood pressure change to extracellular fluid migration and that of ICP change to CBF.Keywords: dynamic model, cerebral extracellular migration, brain resuscitation, automatic control
Procedia PDF Downloads 1562635 The Influence of Bentonite on the Rheology of Geothermal Grouts
Authors: A. N. Ghafar, O. A. Chaudhari, W. Oettel, P. Fontana
Abstract:
This study is a part of the EU project GEOCOND-Advanced materials and processes to improve performance and cost-efficiency of shallow geothermal systems and underground thermal storage. In heat exchange boreholes, to improve the heat transfer between the pipes and the surrounding ground, the space between the pipes and the borehole wall is normally filled with geothermal grout. Traditionally, bentonite has been a crucial component in most commercially available geothermal grouts to assure the required stability and impermeability. The investigations conducted in the early stage of this project during the benchmarking tests on some commercial grouts showed considerable sensitivity of the rheological properties of the tested grouts to the mixing parameters, i.e., mixing time and velocity. Further studies on this matter showed that bentonite, which has been one of the important constituents in most grout mixes, was probably responsible for such behavior. Apparently, proper amount of shear should be applied during the mixing process to sufficiently activate the bentonite. The higher the amount of applied shear the more the activation of bentonite, resulting in change in the grout rheology. This explains why, occasionally in the field applications, the flow properties of the commercially available geothermal grouts using different mixing conditions (mixer type, mixing time, mixing velocity) are completely different than expected. A series of tests were conducted on the grout mixes, with and without bentonite, using different mixing protocols. The aim was to eliminate/reduce the sensitivity of the rheological properties of the geothermal grouts to the mixing parameters by replacing bentonite with polymeric (non-clay) stabilizers. The results showed that by replacing bentonite with a proper polymeric stabilizer, the sensitivity of the grout mix on mixing time and velocity was to a great extent diminished. This can be considered as an alternative for the developers/producers of geothermal grouts to provide enhanced materials with less uncertainty in obtained results in the field applications.Keywords: flow properties, geothermal grout, mixing time, mixing velocity, rheological properties
Procedia PDF Downloads 1252634 The Asymptotic Hole Shape in Long Pulse Laser Drilling: The Influence of Multiple Reflections
Authors: Torsten Hermanns, You Wang, Stefan Janssen, Markus Niessen, Christoph Schoeler, Ulrich Thombansen, Wolfgang Schulz
Abstract:
In long pulse laser drilling of metals, it can be demonstrated that the ablation shape approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from ultra short pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in long pulse drilling of metals is identified, a model for the description of the asymptotic hole shape numerically implemented, tested and clearly confirmed by comparison with experimental data. The model assumes a robust process in that way that the characteristics of the melt flow inside the arising melt film does not change qualitatively by changing the laser or processing parameters. Only robust processes are technically controllable and thus of industrial interest. The condition for a robust process is identified by a threshold for the mass flow density of the assist gas at the hole entrance which has to be exceeded. Within a robust process regime the melt flow characteristics can be captured by only one model parameter, namely the intensity threshold. In analogy to USP ablation (where it is already known for a long time that the resulting hole shape results from a threshold for the absorbed laser fluency) it is demonstrated that in the case of robust long pulse ablation the asymptotic shape forms in that way that along the whole contour the absorbed heat flux density is equal to the intensity threshold. The intensity threshold depends on the special material and radiation properties and has to be calibrated be one reference experiment. The model is implemented in a numerical simulation which is called AsymptoticDrill and requires such a few amount of resources that it can run on common desktop PCs, laptops or even smart devices. Resulting hole shapes can be calculated within seconds what depicts a clear advantage over other simulations presented in literature in the context of industrial every day usage. Against this background the software additionally is equipped with a user-friendly GUI which allows an intuitive usage. Individual parameters can be adjusted using sliders while the simulation result appears immediately in an adjacent window. A platform independent development allow a flexible usage: the operator can use the tool to adjust the process in a very convenient manner on a tablet during the developer can execute the tool in his office in order to design new processes. Furthermore, at the best knowledge of the authors AsymptoticDrill is the first simulation which allows the import of measured real beam distributions and thus calculates the asymptotic hole shape on the basis of the real state of the specific manufacturing system. In this paper the emphasis is placed on the investigation of the effect of multiple reflections on the asymptotic hole shape which gain in importance when drilling holes with large aspect ratios.Keywords: asymptotic hole shape, intensity threshold, long pulse laser drilling, robust process
Procedia PDF Downloads 2132633 Mining in Peru and Local Governance: Assessing the Contribution of CRS Projects
Authors: Sandra Carrillo Hoyos
Abstract:
Mining activities in South America have significantly grown during the last decades, given the abundance of natural resources, the implemented governmental policies to incentivize foreign investment as well as the boom in international prices for metals and oil between 2002 and 2008. While this context allowed the region to occupy a leading position between the top producers of minerals around the world, it has also meant an increase in socio-environmental conflicts which have generated costs and negative impacts not only for the companies but especially for the governments and local communities.During the latest decade, the mining sector in Peru has faced with the social resistance of a large number of communities, which began organizing actions against the implementation of high investing projects. The dissatisfaction has derived in the prevalence of socio-environmental conflicts associated with mining activities, some of them never solved into an agreement. In order to prevent those socio-environmental conflicts and obtain the social license from local communities, most of the mining companies have developed diverse initiatives within the framework of policies and practices of corporate social responsibility (CSR). This paper has assessed the mining sector’s contribution toward the local development management along the last decade, as part of CSR strategies as well as the policies promoted by the Peruvian State. This assessment found that, in the beginning, these initiatives have been based on a philanthropic approach and were reacting to pressures from local stakeholders to maintain the consent to operate from the surrounding communities as well as to create, as a result, a harmonious atmosphere for operations. Due to the weak State presence, such practices have increased the expectations of communities related to the participation of mining companies in solving structural development problems, especially those related to primary needs, infrastructure, education, health, among others. In other words, this paper was focused on analyze in what extent these initiatives have promoted local empowerment for development planning and integrated management of natural resources from a territorial approach. From this perspective, the analysis demonstrates that, while the design and planning of social investment initiatives have improved due to the sector´s sustainability approach, many companies have developed actions beyond their competence during this process. In some cases, the referenced actions have generated dependency with communities, even though this relationship has not exempted the companies of conflict situations with unfortunate consequences. Furthermore, the social programs developed have not necessarily generated a significant impact in improving the quality of life of affected populations. In fact, it is possible to identify that those regions with high mining resources and investment are facing with a situation of poverty and high dependency on mining production. In spite of the revenues derived from mining industry, local governments have not been able to translate the royalties into sustainable development opportunities. For this reason, the proposed paper suggests some challenges for the mining sector contribution to local development based on the best practices and lessons learnt from a benchmarking for the leading mining companies.Keywords: corporate social responsibility, local development, mining, socio-environmental conflict
Procedia PDF Downloads 4052632 Simulation of Hydraulic Fracturing Fluid Cleanup for Partially Degraded Fracturing Fluids in Unconventional Gas Reservoirs
Authors: Regina A. Tayong, Reza Barati
Abstract:
A stable, fast and robust three-phase, 2D IMPES simulator has been developed for assessing the influence of; breaker concentration on yield stress of filter cake and broken gel viscosity, varying polymer concentration/yield stress along the fracture face, fracture conductivity, fracture length, capillary pressure changes and formation damage on fracturing fluid cleanup in tight gas reservoirs. This model has been validated as against field data reported in the literature for the same reservoir. A 2-D, two-phase (gas/water) fracture propagation model is used to model our invasion zone and create the initial conditions for our clean-up model by distributing 200 bbls of water around the fracture. A 2-D, three-phase IMPES simulator, incorporating a yield-power-law-rheology has been developed in MATLAB to characterize fluid flow through a hydraulically fractured grid. The variation in polymer concentration along the fracture is computed from a material balance equation relating the initial polymer concentration to total volume of injected fluid and fracture volume. All governing equations and the methods employed have been adequately reported to permit easy replication of results. The effect of increasing capillary pressure in the formation simulated in this study resulted in a 10.4% decrease in cumulative production after 100 days of fluid recovery. Increasing the breaker concentration from 5-15 gal/Mgal on the yield stress and fluid viscosity of a 200 lb/Mgal guar fluid resulted in a 10.83% increase in cumulative gas production. For tight gas formations (k=0.05 md), fluid recovery increases with increasing shut-in time, increasing fracture conductivity and fracture length, irrespective of the yield stress of the fracturing fluid. Mechanical induced formation damage combined with hydraulic damage tends to be the most significant. Several correlations have been developed relating pressure distribution and polymer concentration to distance along the fracture face and average polymer concentration variation with injection time. The gradient in yield stress distribution along the fracture face becomes steeper with increasing polymer concentration. The rate at which the yield stress (τ_o) is increasing is found to be proportional to the square of the volume of fluid lost to the formation. Finally, an improvement on previous results was achieved through simulating yield stress variation along the fracture face rather than assuming constant values because fluid loss to the formation and the polymer concentration distribution along the fracture face decreases as we move away from the injection well. The novelty of this three-phase flow model lies in its ability to (i) Simulate yield stress variation with fluid loss volume along the fracture face for different initial guar concentrations. (ii) Simulate increasing breaker activity on yield stress and broken gel viscosity and the effect of (i) and (ii) on cumulative gas production within reasonable computational time.Keywords: formation damage, hydraulic fracturing, polymer cleanup, multiphase flow numerical simulation
Procedia PDF Downloads 1302631 Compatibility of Sulphate Resisting Cement with Super and Hyper-Plasticizer
Authors: Alper Cumhur, Hasan Baylavlı, Eren Gödek
Abstract:
Use of superplasticity chemical admixtures in concrete production is widespread all over the world and has become almost inevitable. Super-plasticizers (SPA), extend the setting time of concrete by adsorbing onto cement particles and provide concrete to preserve its fresh state workability properties. Hyper-plasticizers (HPA), as a special type of superplasticizer, provide the production of qualified concretes by increasing the workability properties of concrete, effectively. However, compatibility of cement with super and hyper-plasticizers is quite important for achieving efficient workability in order to produce qualified concretes. In 2011, the EN 197-1 standard is edited and cement classifications were updated. In this study, the compatibility of hyper-plasticizer and CEM I SR0 type sulphate resisting cement (SRC) that firstly classified in EN 197-1 is investigated. Within the scope of the experimental studies, a reference cement mortar was designed with a water/cement ratio of 0.50 confirming to EN 196-1. Fresh unit density of mortar was measured and spread diameters (at 0, 60, 120 min after mix preparation) and setting time of reference mortar were determined with flow table and Vicat tests, respectively. Three mortars are being re-prepared with using both super and hyper-plasticizer confirming to ASTM C494 by 0.50, 0.75 and 1.00% of cement weight. Fresh unit densities, spread diameters and setting times of super and hyper plasticizer added mortars (SPM, HPM) will be determined. Theoretical air-entrainment values of both SPMs and HPMs will be calculated by taking the differences between the densities of plasticizer added mortars and reference mortar. The flow table and Vicat tests are going to be repeated to these mortars and results will be compared. In conclusion, compatibility of SRC with SPA and HPA will be investigated. It is expected that optimum dosages of SPA and HPA will be determined for providing the required workability and setting conditions of SRC mortars, and the advantages/disadvantages of both SPA and HPA will be discussed.Keywords: CEM I SR0, hyper-plasticizer, setting time, sulphate resisting cement, super-plasticizer, workability
Procedia PDF Downloads 2152630 3D Numerical Modelling of a Pulsed Pumping Process of a Large Dense Non-Aqueous Phase Liquid Pool: In situ Pilot-Scale Case Study of Hexachlorobutadiene in a Keyed Enclosure
Authors: Q. Giraud, J. Gonçalvès, B. Paris
Abstract:
Remediation of dense non-aqueous phase liquids (DNAPLs) represents a challenging issue because of their persistent behaviour in the environment. This pilot-scale study investigates, by means of in situ experiments and numerical modelling, the feasibility of the pulsed pumping process of a large amount of a DNAPL in an alluvial aquifer. The main compound of the DNAPL is hexachlorobutadiene, an emerging organic pollutant. A low-permeability keyed enclosure was built at the location of the DNAPL source zone in order to isolate a finite undisturbed volume of soil, and a 3-month pulsed pumping process was applied inside the enclosure to exclusively extract the DNAPL. The water/DNAPL interface elevation at both the pumping and observation wells and the cumulated pumped volume of DNAPL were also recorded. A total volume of about 20m³ of purely DNAPL was recovered since no water was extracted during the process. The three-dimensional and multiphase flow simulator TMVOC was used, and a conceptual model was elaborated and generated with the pre/post-processing tool mView. Numerical model consisted of 10 layers of variable thickness and 5060 grid cells. Numerical simulations reproduce the pulsed pumping process and show an excellent match between simulated, and field data of DNAPL cumulated pumped volume and a reasonable agreement between modelled and observed data for the evolution of the water/DNAPL interface elevations at the two wells. This study offers a new perspective in remediation since DNAPL pumping system optimisation may be performed where a large amount of DNAPL is encountered.Keywords: dense non-aqueous phase liquid (DNAPL), hexachlorobutadiene, in situ pulsed pumping, multiphase flow, numerical modelling, porous media
Procedia PDF Downloads 1742629 Numerical Modeling of Turbulent Natural Convection in a Square Cavity
Authors: Mohammadreza Sedighi, Mohammad Said Saidi, Hesamoddin Salarian
Abstract:
A numerical study has been performed to investigate the effect of using different turbulent models on natural convection flow field and temperature distributions in partially heated square cavity compare to benchmark. The temperature of the right vertical wall is lower than that of heater while other walls are insulated. The commercial CFD codes are used to model. Standard k-w model provided good agreement with the experimental data.Keywords: Buoyancy, Cavity, CFD, Heat Transfer, Natural Convection, Turbulence
Procedia PDF Downloads 3412628 Financial Performance Model of Local Economic Enterprises in Matalam, Cotabato
Authors: Kristel Faye Tandog
Abstract:
The State Owned Enterprise (SOE) or also called Public Enterprise (PE) has been playing a vital role in a country’s social and economic development. Following this idea, this study focused on the Factor Structures of Financial Performance of the Local Economic Enterprises (LEEs) namely: Food Court, Market, Slaughterhouse, and Terminal in Matalam, Cotabato. It aimed to determine the profile of the LEEs in terms of organizational structure, manner of creation, years in operation, source of initial operating requirements, annual operating budget, geographical location, and size or description of the facility. This study also included the different financial ratios of LEE that covered a five year period from Calendar Year 2009 to 2013. Primary data using survey questionnaire was administered to 468 respondents and secondary data were sourced out from the government archives and financial documents of the said LGU. There were 12 dominant factors identified namely: “management”, “enforcement of laws”, “strategic location”, “existence of non-formal competitors”, “proper maintenance”, “pricing”, “customer service”, “collection process”, “rentals and services”, “efficient use of resources”, “staffing”, and “timeliness and accuracy”. On the other hand, the financial performance of the LEE of Matalam, Cotabato using financial ratios needs reformatting. This denotes that refinement as to the following ratios: Cash Flow Indicator, Activity, Profitability and Growth is necessary. The cash flow indicator ratio showed difficulty in covering its debts in successive years. Likewise, the activity ratios showed that the LEE had not been effective in putting its investment at work. Moreover, profitability ratios revealed that it had operated in minimum capacity and had incurred net losses and thus, it had a weak profit performance. Furthermore, growth ratios showed that LEE had a declining growth trend particularly in net income.Keywords: factor structures, financial performance, financial ratios, state owned enterprises
Procedia PDF Downloads 2552627 Experimental Study Analysis of Flow over Pickup Truck’s Cargo Area Using Bed Covers
Authors: Jonathan Rodriguez, Dominga Guerrero, Surupa Shaw
Abstract:
Automobiles are modeled in various forms, and they interact with air when in motion. Aerodynamics is the study of such interactions where solid bodies affect the way air moves around them. The shape of solid bodies can impact the ease at which they move against the flow of air; due to which any additional freightage, or loads, impact its aerodynamics. It is important to transport people and cargo safely. Despite the various safety measures, there are a large number of vehicle-related accidents. This study precisely explores the effects an automobile experiences, with added cargo and covers. The addition of these items changes the original vehicle shape and the approved design for safe driving. This paper showcases the effects of the changed vehicle shape and design via experimental testing conducted on a physical 1:27 scale and CAD model of an F-150 pickup truck, the most common pickup truck in the United States, with differently shaped loads and weight traveling at a constant speed. The additional freightage produces unwanted drag or lift resulting in lower fuel efficiencies and unsafe driving conditions. This study employs an adjustable external shell on the F-150 pickup truck to create a controlled aerodynamic geometry to combat the detrimental effects of additional freightage. The results utilize colored powder [ which acts as a visual medium for the interaction of air with the vehicle], to highlight the impact of the additional freight on the automobile’s external shell. This will be done along with simulation models using Altair CFD software of twelve cases regarding the effects of an added load onto an F-150 pickup truck. This paper is an attempt toward standardizing the geometric design of the external shell, given the uniqueness of every load and its placement on the vehicle; while providing real-time data to be compared to simulation results from the existing literature.Keywords: aerodynamics, CFD, freightage, pickup cover
Procedia PDF Downloads 1682626 Investigations on Enhancement of Fly Ash in Cement Manufacturing through Optimization of Clinker Quality and Fly Ash Fineness
Authors: Suresh Vanguri, Suresh Palla, K. V. Kalyani, S. K. Chaturvedi, B. N. Mohapatra
Abstract:
Enhancing the fly ash utilization in the manufacture of cement is identified as one of the key areas to mitigate the Green House Gas emissions from the cement industry. Though increasing the fly ash content in cement has economic and environmental benefits, it results in a decrease in the compressive strength values, particularly at early ages. Quality of clinker and fly ash were identified as predominant factors that govern the extent of absorption of fly ash in the manufacturing of cement. This paper presents systematic investigations on the effect of clinker and fly ash quality on the properties of resultant cement. Since mechanical activation alters the physicochemical properties such as particle size distribution, surface area, phase morphology, understanding the variation of these properties with activation is required for its applications. The effect of mechanical activation on fly ash surface area, specific gravity, flow properties, lime reactivity, comparative compressive strength (CCS), reactive silica and mineralogical properties were also studied. The fineness of fly ash was determined by Blaine’s method, specific gravity, lime reactivity, CCS were determined as per the method IS 1727-1967. The phase composition of fly ash was studied using the X-ray Diffraction technique. The changes in the microstructure and morphology with activation were examined using the scanning electron microscope. The studies presented in this paper also include evaluation of Portland Pozzolana Cement (PPC), prepared using high volume fly ash. Studies are being carried out using clinker from cement plants located in different regions/clusters in India. Blends of PPC containing higher contents of activated fly ash have been prepared and investigated for their chemical and physical properties, as per Indian Standard procedures. Changes in the microstructure of fly ash with activation and mechanical properties of resultant cement containing high volumes of fly ash indicated the significance of optimization of the quality of clinker and fly ash fineness for better techno-economical benefits.Keywords: flow properties, fly ash enhancement, lime reactivity, microstructure, mineralogy
Procedia PDF Downloads 4632625 Quantitative Analysis Of Traffic Dynamics And Violation Patterns Triggered By Cruise Ship Tourism In Victoria, British Columbia
Authors: Muhammad Qasim, Laura Minet
Abstract:
Victoria (BC), Canada, is a major cruise ship destination, attracting over 600,000 tourists annually. Residents of the James Bay neighborhood, home to the Ogden Point cruise terminal, have expressed concerns about the impacts of cruise ship activity on local traffic, air pollution, and safety compliance. This study evaluates the effects of cruise ship-induced traffic in James Bay, focusing on traffic flow intensification, density surges, changes in traffic mix, and speeding violations. To achieve these objectives, traffic data was collected in James Bay during two key periods: May, before the peak cruise season, and August, during full cruise operations. Three Miovision cameras captured the vehicular traffic mix at strategic entry points, while nine traffic counters monitored traffic distribution and speeding violations across the network. Traffic data indicated an average volume of 308 vehicles per hour during peak cruise times in May, compared to 116 vehicles per hour when no ships were in port. Preliminary analyses revealed a significant intensification of traffic flow during cruise ship "hoteling hours," with a volume increase of approximately 10% per cruise ship arrival. A notable 86% surge in taxi presence was observed on days with three cruise ships in port, indicating a substantial shift in traffic composition, particularly near the cruise terminal. The number of tourist buses escalated from zero in May to 32 in August, significantly altering traffic dynamics within the neighborhood. The period between 8 pm and 11 pm saw the most significant increases in traffic volume, especially when three ships were docked. Higher vehicle volumes were associated with a rise in speed violations, although this pattern was inconsistent across all areas. Speeding violations were more frequent on roads with lower traffic density, while roads with higher traffic density experienced fewer violations, due to reduced opportunities for speeding in congested conditions. PTV VISUM software was utilized for fuzzy distribution analysis and to visualize traffic distribution across the study area, including an assessment of the Level of Service on major roads during periods before and during the cruise ship season. This analysis identified the areas most affected by cruise ship-induced traffic, providing a detailed understanding of the impact on specific parts of the transportation network. These findings underscore the significant influence of cruise ship activity on traffic dynamics in Victoria, BC, particularly during peak periods when multiple ships are in port. The study highlights the need for targeted traffic management strategies to mitigate the adverse effects of increased traffic flow, changes in traffic mix, and speed violations, thereby enhancing road safety in the James Bay neighborhood. Further research will focus on detailed emissions estimation to fully understand the environmental impacts of cruise ship activity in Victoria.Keywords: cruise ship tourism, air quality, traffic violations, transport dynamics, pollution
Procedia PDF Downloads 222624 Energy-Led Sustainability Assessment Approach for Energy-Efficient Manufacturing
Authors: Aldona Kluczek
Abstract:
In recent years, manufacturing processes have interacted with sustainability issues realized in the cost-effective ways that minimalize energy, decrease negative impacts on the environment and are safe for society. However, the attention has been on separate sustainability assessment methods considering energy and material flow, energy consumption, and emission release or process control. In this paper, the energy-led sustainability assessment approach combining the methods: energy Life Cycle Assessment to assess environmental impact, Life Cycle Cost to analyze costs, and Social Life Cycle Assessment through ‘energy LCA-based value stream map’, is used to assess the energy sustainability of the hardwood lumber manufacturing process in terms of technologies. The approach integrating environmental, economic and social issues can be visualized in the considered energy-efficient technologies on the map of an energy LCA-related (input and output) inventory data. It will enable the identification of efficient technology of a given process to be reached, through the effective analysis of energy flow. It is also indicated that interventions in the considered technology should focus on environmental, economic improvements to achieve energy sustainability. The results have indicated that the most intense energy losses are caused by a cogeneration technology. The environmental impact analysis shows that a substantial reduction by 34% can be achieved with the improvement of it. From the LCC point of view, the result seems to be cost-effective, when done at that plant where the improvement is used. By demonstrating the social dimension, every component of the energy of plant labor use in the life-cycle process of the lumber production has positive energy benefits. The energy required to install the energy-efficient technology amounts to 30.32 kJ compared to others components of the energy of plant labor and it has the highest value in terms of energy-related social indicators. The paper depicts an example of hardwood lumber production in order to prove the applicability of a sustainability assessment method.Keywords: energy efficiency, energy life cycle assessment, life cycle cost, social life cycle analysis, manufacturing process, sustainability assessment
Procedia PDF Downloads 2472623 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet
Procedia PDF Downloads 1612622 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations
Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li
Abstract:
The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.Keywords: surface roughness, Taguchi parameter design, CNC turning, CNC milling
Procedia PDF Downloads 1552621 Hiveopolis - Honey Harvester System
Authors: Erol Bayraktarov, Asya Ilgun, Thomas Schickl, Alexandre Campo, Nicolis Stamatios
Abstract:
Traditional means of harvesting honey are often stressful for honeybees. Each time honey is collected a portion of the colony can die. In consequence, the colonies’ resilience to environmental stressors will decrease and this ultimately contributes to the global problem of honeybee colony losses. As part of the project HIVEOPOLIS, we design and build a different kind of beehive, incorporating technology to reduce negative impacts of beekeeping procedures, including honey harvesting. A first step in maintaining more sustainable honey harvesting practices is to design honey storage frames that can automate the honey collection procedures. This way, beekeepers save time, money, and labor by not having to open the hive and remove frames, and the honeybees' nest stays undisturbed.This system shows promising features, e.g., high reliability which could be a key advantage compared to current honey harvesting technologies.Our original concept of fractional honey harvesting has been to encourage the removal of honey only from "safe" locations and at levels that would leave the bees enough high-nutritional-value honey. In this abstract, we describe the current state of our honey harvester, its technology and areas to improve. The honey harvester works by separating the honeycomb cells away from the comb foundation; the movement and the elastic nature of honey supports this functionality. The honey sticks to the foundation, because of the surface tension forces amplified by the geometry. In the future, by monitoring the weight and therefore the capped honey cells on our honey harvester frames, we will be able to remove honey as soon as the weight measuring system reports that the comb is ready for harvesting. Higher viscosity honey or crystalized honey cause challenges in temperate locations when a smooth flow of honey is required. We use resistive heaters to soften the propolis and wax to unglue the moving parts during extraction. These heaters can also melt the honey slightly to the needed flow state. Precise control of these heaters allows us to operate the device for several purposes. We use ‘Nitinol’ springs that are activated by heat as an actuation method. Unlike conventional stepper or servo motors, which we also evaluated throughout development, the springs and heaters take up less space and reduce the overall system complexity. Honeybee acceptance was unknown until we actually inserted a device inside a hive. We not only observed bees walking on the artificial comb but also building wax, filling gaps with propolis and storing honey. This also shows that bees don’t mind living in spaces and hives built from 3D printed materials. We do not have data yet to prove that the plastic materials do not affect the chemical composition of the honey. We succeeded in automatically extracting stored honey from the device, demonstrating a useful extraction flow and overall effective operation this way.Keywords: honey harvesting, honeybee, hiveopolis, nitinol
Procedia PDF Downloads 1082620 Comparative Numerical Simulations of Reaction-Coupled Annular and Free-Bubbling Fluidized Beds Performance
Authors: Adefarati Oloruntoba, Yongmin Zhang, Hongliang Xiao
Abstract:
An annular fluidized bed (AFB) is gaining extensive application in the process industry due to its efficient gas-solids contacting. But a direct evaluation of its reaction performance is still lacking. In this paper, comparative 3D Euler–Lagrange multiphase-particle-in-cell (MP-PIC) computations are performed to assess the reaction performance of AFB relative to a bubbling fluidized bed (BFB) in an FCC regeneration process. By using the energy-minimization multi-scale (EMMS) drag model with a suitable heterogeneity index, the MP-PIC simulation predicts the typical fountain region in AFB and solids holdup of BFB, which is consistent with an experiment. Coke combustion rate, flue gas and temperature profile are utilized as the performance indicators, while related bed hydrodynamics are explored to account for the different performance under varying superficial gas velocities (0.5 m/s, 0.6 m/s, and 0.7 m/s). Simulation results indicate that the burning rates of coke and its species are relatively the same in both beds, albeit marginal increase in BFB. Similarly, the shape and evolution time of flue gas (CO, CO₂, H₂O and O₂) curves are indistinguishable but match the coke combustion rates. However, AFB has high proclivity to high temperature-gradient as higher gas and solids temperatures are predicted in the freeboard. Moreover, for both beds, the effect of superficial gas velocity is only conspicuous on the temperature but negligible on combustion efficiency and effluent gas emissions due to constant gas volumetric flow rate and bed loading criteria. Cross-flow of solids from the annulus to the spout region as well as the high primary gas in the AFB directly assume the underlying mechanisms for its unique gas-solids hydrodynamics (pressure, solids holdup, velocity, mass flux) and local spatial homogeneity, which in turn influence the reactor performance. Overall, the study portrays AFB as a cheap alternative reactor to BFB for catalyst regeneration.Keywords: annular fluidized bed, bubbling fluidized bed, coke combustion, flue gas, fountaining, CFD, MP-PIC, hydrodynamics, FCC regeneration
Procedia PDF Downloads 1632619 Estimating the Traffic Impacts of Green Light Optimal Speed Advisory Systems Using Microsimulation
Authors: C. B. Masera, M. Imprialou, L. Budd, C. Morton
Abstract:
Even though signalised intersections are necessary for urban road traffic management, they can act as bottlenecks and disrupt traffic operations. Interrupted traffic flow causes congestion, delays, stop-and-go conditions (i.e. excessive acceleration/deceleration) and longer journey times. Vehicle and infrastructure connectivity offers the potential to provide improved new services with additional functions of assisting drivers. This paper focuses on one of the applications of vehicle-to-infrastructure communication namely Green Light Optimal Speed Advisory (GLOSA). To assess the effectiveness of GLOSA in the urban road network, an integrated microscopic traffic simulation framework is built into VISSIM software. Vehicle movements and vehicle-infrastructure communications are simulated through the interface of External Driver Model. A control algorithm is developed for recommending an optimal speed that is continuously updated in every time step for all vehicles approaching a signal-controlled point. This algorithm allows vehicles to pass a traffic signal without stopping or to minimise stopping times at a red phase. This study is performed with all connected vehicles at 100% penetration rate. Conventional vehicles are also simulated in the same network as a reference. A straight road segment composed of two opposite directions with two traffic lights per lane is studied. The simulation is implemented under 150 vehicles per hour and 200 per hour traffic volume conditions to identify how different traffic densities influence the benefits of GLOSA. The results indicate that traffic flow is improved by the application of GLOSA. According to this study, vehicles passed through the traffic lights more smoothly, and waiting times were reduced by up to 28 seconds. Average delays decreased for the entire network by 86.46% and 83.84% under traffic densities of 150 vehicles per hour per lane and 200 vehicles per hour per lane, respectively.Keywords: connected vehicles, GLOSA, intelligent transport systems, vehicle-to-infrastructure communication
Procedia PDF Downloads 1712618 Laboratory Assessment of Electrical Vertical Drains in Composite Soils Using Kaolin and Bentonite Clays
Authors: Maher Z. Mohammed, Barry G. Clarke
Abstract:
As an alternative to stone column in fine grained soils, it is possible to create stiffened columns of soils using electroosmosis (electroosmotic piles). This program of this research is to establish the effectiveness and efficiency of the process in different soils. The aim of this study is to assess the capability of electroosmosis treatment in a range of composite soils. The combined electroosmotic and preloading equipment developed by Nizar and Clarke (2013) was used with an octagonal array of anodes surrounding a single cathode in a nominal 250mm diameter 300mm deep cylinder of soil and 80mm anode to cathode distance. Copper coiled springs were used as electrodes to allow the soil to consolidate either due to an external vertical applied load or electroosmosis. The equipment was modified to allow the temperature to be monitored during the test. Electroosmotic tests were performed on China Clay Grade E kaolin and calcium bentonite (Bentonex CB) mixed with sand fraction C (BS 1881 part 131) at different ratios by weight; (0, 23, 33, 50 and 67%) subjected to applied voltages (5, 10, 15 and 20). The soil slurry was prepared by mixing the dry soil with water to 1.5 times the liquid limit of the soil mixture. The mineralogical and geotechnical properties of the tested soils were measured before the electroosmosis treatment began. In the electroosmosis cell tests, the settlement, expelled water, variation of electrical current and applied voltage, and the generated heat was monitored during the test time for 24 osmotic tests. Water content was measured at the end of each test. The electroosmotic tests are divided into three phases. In Phase 1, 15 kPa was applied to simulate a working platform and produce a uniform soil which had been deposited as a slurry. 50 kPa was used in Phase 3 to simulate a surcharge load. The electroosmotic treatment was only performed during Phase 2 where a constant voltage was applied through the electrodes in addition to the 15 kPa pressure. This phase was stopped when no further water was expelled from the cell, indicating the electroosmotic process had stopped due to either the degradation of the anode or the flow due to the hydraulic gradient exactly balanced the electroosmotic flow resulting in no flow. Control tests for each soil mixture were carried out to assess the behaviour of the soil samples subjected to only an increase of vertical pressure, which is 15kPa in Phase 1 and 50kPa in Phase 3. Analysis of the experimental results from this study showed a significant dewatering effect on the soil slurries. The water discharged by the electroosmotic treatment process decreased as the sand content increased. Soil temperature increased significantly when electrical power was applied and drops when applied DC power turned off or when the electrode degraded. The highest increase in temperature was found in pure clays at higher applied voltage after about 8 hours of electroosmosis test.Keywords: electrokinetic treatment, electrical conductivity, electroosmotic consolidation, electroosmosis permeability ratio
Procedia PDF Downloads 1662617 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production: A Cost-Minimization Approach
Authors: Yoftahe Nigussie Worku
Abstract:
This report unveils a meticulous project focused on the design intricacies of a Fire Tube Boiler tailored for the efficient generation of saturated steam. The overarching objective is to produce 2000kg/h of saturated steam at 12-bar design pressure, achieved through the development of an advanced fire tube boiler. This design is meticulously crafted to harmonize cost-effectiveness and parameter refinement, with a keen emphasis on material selection for component parts, construction materials, and production methods throughout the analytical phases. The analytical process involves iterative calculations, utilizing pertinent formulas to optimize design parameters, including the selection of tube diameters and overall heat transfer coefficients. The boiler configuration incorporates two passes, a strategic choice influenced by tube and shell size considerations. The utilization of heavy oil fuel no. 6, with a higher heating value of 44000kJ/kg and a lower heating value of 41300kJ/kg, results in a fuel consumption of 140.37kg/hr. The boiler achieves an impressive heat output of 1610kW with an efficiency rating of 85.25%. The fluid flow pattern within the boiler adopts a cross-flow arrangement strategically chosen for inherent advantages. Internally, the welding of the tube sheet to the shell, secured by gaskets and welds, ensures structural integrity. The shell design adheres to European Standard code sections for pressure vessels, encompassing considerations for weight, supplementary accessories (lifting lugs, openings, ends, manhole), and detailed assembly drawings. This research represents a significant stride in optimizing fire tube boiler technology, balancing efficiency and safety considerations in the pursuit of enhanced saturated steam production.Keywords: fire tube, saturated steam, material selection, efficiency
Procedia PDF Downloads 812616 A Variational Reformulation for the Thermomechanically Coupled Behavior of Shape Memory Alloys
Authors: Elisa Boatti, Ulisse Stefanelli, Alessandro Reali, Ferdinando Auricchio
Abstract:
Thanks to their unusual properties, shape memory alloys (SMAs) are good candidates for advanced applications in a wide range of engineering fields, such as automotive, robotics, civil, biomedical, aerospace. In the last decades, the ever-growing interest for such materials has boosted several research studies aimed at modeling their complex nonlinear behavior in an effective and robust way. Since the constitutive response of SMAs is strongly thermomechanically coupled, the investigation of the non-isothermal evolution of the material must be taken into consideration. The present study considers an existing three-dimensional phenomenological model for SMAs, able to reproduce the main SMA properties while maintaining a simple user-friendly structure, and proposes a variational reformulation of the full non-isothermal version of the model. While the considered model has been thoroughly assessed in an isothermal setting, the proposed formulation allows to take into account the full nonisothermal problem. In particular, the reformulation is inspired to the GENERIC (General Equations for Non-Equilibrium Reversible-Irreversible Coupling) formalism, and is based on a generalized gradient flow of the total entropy, related to thermal and mechanical variables. Such phrasing of the model is new and allows for a discussion of the model from both a theoretical and a numerical point of view. Moreover, it directly implies the dissipativity of the flow. A semi-implicit time-discrete scheme is also presented for the fully coupled thermomechanical system, and is proven unconditionally stable and convergent. The correspondent algorithm is then implemented, under a space-homogeneous temperature field assumption, and tested under different conditions. The core of the algorithm is composed of a mechanical subproblem and a thermal subproblem. The iterative scheme is solved by a generalized Newton method. Numerous uniaxial and biaxial tests are reported to assess the performance of the model and algorithm, including variable imposed strain, strain rate, heat exchange properties, and external temperature. In particular, the heat exchange with the environment is the only source of rate-dependency in the model. The reported curves clearly display the interdependence between phase transformation strain and material temperature. The full thermomechanical coupling allows to reproduce the exothermic and endothermic effects during respectively forward and backward phase transformation. The numerical tests have thus demonstrated that the model can appropriately reproduce the coupled SMA behavior in different loading conditions and rates. Moreover, the algorithm has proved effective and robust. Further developments are being considered, such as the extension of the formulation to the finite-strain setting and the study of the boundary value problem.Keywords: generalized gradient flow, GENERIC formalism, shape memory alloys, thermomechanical coupling
Procedia PDF Downloads 2212615 Analysis of Cell Cycle Status in Radiation Non-Targeted Hepatoma Cells Using Flow Cytometry: Evidence of Dose Dependent Response
Authors: Sharmi Mukherjee, Anindita Chakraborty
Abstract:
Cellular irradiation incites complex responses including arrest of cell cycle progression. This article accentuates the effects of radiation on cell cycle status of radiation non-targeted cells. Human Hepatoma HepG2 cells were exposed to increasing doses of γ radiations (1, 2, 4, 6 Gy) and their cell culture media was transferred to non-targeted HepG2 cells cultured in other Petri plates. These radiation non-targeted cells cultured in the ICCM (Irradiated cell conditioned media) were the bystander cells on which cell cycle analysis was performed using flow cytometry. An apparent decrease in the distribution of bystander cells at G0/G1 phase was observed with increased radiation doses upto 4 Gy representing a linear relationship. This was accompanied by a gradual increase in cellular distribution at G2/M phase. Interestingly the number of cells in G2/M phase at 1 and 2 Gy irradiation was not significantly different from each other. However, the percentage of G2 phase cells at 4 and 6 Gy doses were significantly higher than 2 Gy dose indicating the IC50 dose to be between 2 and 4 Gy. Cell cycle arrest is an indirect indicator of genotoxic damage in cells. In this study, bystander stress signals through the cell culture media of irradiated cells disseminated the radiation induced DNA damages in the non-targeted cells which resulted in arrest of the cell cycle progression at G2/M phase checkpoint. This implies that actual radiation biological effects represent a penumbra with effects encompassing a larger area than the actual beam. This article highlights the existence of genotoxic damages as bystander effects of γ rays in human Hepatoma cells by cell cycle analysis and opens up avenues for appraisal of bystander stress communications between tumor cells. Contemplation of underlying signaling mechanisms can be manipulated to maximize damaging effects of radiation with minimum dose and thus has therapeutic applications.Keywords: bystander effect, cell cycle, genotoxic damage, hepatoma
Procedia PDF Downloads 1842614 Market-Driven Process of Brain Circulation in Knowledge Services Industry in Sri Lanka
Authors: Panagodage Janaka Sampath Fernando
Abstract:
Brain circulation has become a buzzword in the skilled migration literature. However, promoting brain circulation; returning of skilled migrants is challenging. Success stories in Asia, for instances, Taiwan, and China, are results of rigorous policy interventions of the respective governments. Nonetheless, the same policy mix has failed in other countries making it skeptical to attribute the success of brain circulation to the policy interventions per se. The paper seeks to answer whether the success of brain circulation within the Knowledge Services Industry (KSI) in Sri Lanka is a policy driven or a market driven process. Mixed method approach, which is a combination of case study and survey methods, was employed. Qualitative data derived from ten case studies of returned entrepreneurs whereas quantitative data generated from a self-administered survey of 205 returned skilled migrants (returned skilled employees and entrepreneurs) within KSI. The pull factors have driven the current flow of brain circulation within KSI but to a lesser extent, push factors also have influenced. The founding stone of the industry has been laid by a group of returned entrepreneurs, and the subsequent growth of the industry has attracted returning skilled employees. Sri Lankan government has not actively implemented the reverse brain drain model, however, has played a passive role by creating a peaceful and healthy environment for the industry. Therefore, in contrast to the other stories, brain circulation within KSI has emerged as a market driven process with minimal government interventions. Entrepreneurs play the main role in a market-driven process of brain circulation, and it is free from the inherent limitations of the reverse brain drain model such as discriminating non-migrants and generating a sudden flow of low-skilled migrants. Thus, to experience a successful brain circulation, developing countries should promote returned entrepreneurs by creating opportunities in knowledge-based industries.Keywords: brain circulation, knowledge services industry, return migration, Sri Lanka
Procedia PDF Downloads 2792613 Role of Vitamin-D in Reducing Need for Supplemental Oxygen Among COVID-19 Patients
Authors: Anita Bajpai, Sarah Duan, Ashlee Erskine, Shehzein Khan, Raymond Kramer
Abstract:
Introduction: This research focuses on exploring the beneficial effects if any, of Vitamin-D in reducing the need for supplemental oxygen among hospitalized COVID-19 patients. Two questions are investigated – Q1)Doeshaving a healthy level of baselineVitamin-D 25-OH (≥ 30ng/ml) help,andQ2) does administering Vitamin-D therapy after-the-factduring inpatient hospitalization help? Methods/Study Design: This is a comprehensive, retrospective, observational study of all inpatients at RUHS from March through December 2020 who tested positive for COVID-19 based on real-time reverse transcriptase–polymerase chain reaction assay of nasal and pharyngeal swabs and rapid assay antigen test. To address Q1, we looked atall N1=182 patients whose baseline plasma Vitamin-D 25-OH was known and who needed supplemental oxygen. Of this, a total of 121 patients had a healthy Vitamin-D level of ≥30 ng/mlwhile the remaining 61 patients had low or borderline (≤ 29.9ng/ml)level. Similarly, for Q2, we looked at a total of N2=893 patients who were given supplemental oxygen, of which713 were not given Vitamin-D and 180 were given Vitamin-D therapy. The numerical value of the maximum amount of oxygen flow rate(dependent variable) administered was recorded for each patient. The mean values and associated standard deviations for each group were calculated. Thesetwo sets of independent data served as the basis for independent, two-sample t-Test statistical analysis. To be accommodative of any reasonable benefitof Vitamin-D, ap-value of 0.10(α< 10%) was set as the cutoff point for statistical significance. Results: Given the large sample sizes, the calculated statistical power for both our studies exceeded the customary norm of 80% or better (β< 0.2). For Q1, the mean value for maximumoxygen flow rate for the group with healthybaseline level of Vitamin-D was 8.6 L/min vs.12.6L/min for those with low or borderline levels, yielding a p-value of 0.07 (p < 0.10) with the conclusion that those with a healthy level of baseline Vitamin-D needed statistically significant lower levels of supplemental oxygen. ForQ2, the mean value for a maximum oxygen flow rate for those not administered Vitamin-Dwas 12.5 L/min vs.12.8L/min for those given Vitamin-D, yielding a p-valueof 0.87 (p > 0.10). We thereforeconcludedthat there was no statistically significant difference in the use of oxygen therapy between those who were or were not administered Vitamin-D after-the-fact in the hospital. Discussion/Conclusion: We found that patients who had healthy levels of Vitamin-D at baseline needed statistically significant lower levels of supplemental oxygen. Vitamin-D is well documented, including in a recent article in the Lancet, for its anti-inflammatory role as an adjuvant in the regulation of cytokines and immune cells. Interestingly, we found no statistically significant advantage for giving Vitamin-D to hospitalized patients. It may be a case of “too little too late”. A randomized clinical trial reported in JAMA also did not find any reduction in hospital stay of patients given Vitamin-D. Such conclusions come with a caveat that any delayed marginal benefits may not have materialized promptly in the presence of a significant inflammatory condition. Since Vitamin-D is a low-cost, low-risk option, it may still be useful on an inpatient basis until more definitive findings are established.Keywords: COVID-19, vitamin-D, supplemental oxygen, vitamin-D in primary care
Procedia PDF Downloads 1532612 A CORDIC Based Design Technique for Efficient Computation of DCT
Authors: Deboraj Muchahary, Amlan Deep Borah Abir J. Mondal, Alak Majumder
Abstract:
A discrete cosine transform (DCT) is described and a technique to compute it using fast Fourier transform (FFT) is developed. In this work, DCT of a finite length sequence is obtained by incorporating CORDIC methodology in radix-2 FFT algorithm. The proposed methodology is simple to comprehend and maintains a regular structure, thereby reducing computational complexity. DCTs are used extensively in the area of digital processing for the purpose of pattern recognition. So the efficient computation of DCT maintaining a transparent design flow is highly solicited.Keywords: DCT, DFT, CORDIC, FFT
Procedia PDF Downloads 4782611 Effects of Umbilical Cord Clamping on Puppies Neonatal Vitality
Authors: Maria L. G. Lourenço, Keylla H. N. P. Pereira, Viviane Y. Hibaru, Fabiana F. Souza, Joao C. P. Ferreira, Simone B. Chiacchio, Luiz H. A. Machado
Abstract:
In veterinary medicine, the standard procedure during a caesarian section is clamping the umbilical cord immediately after birth. In human neonates, when the umbilical cord is kept intact after birth, blood continues to flow from the cord to the newborn, but this procedure may prove to be difficult in dogs due to the shorter umbilical cord and the number of newborns in the litter. However, a possible detachment of the placenta while keeping the umbilical cord intact may make the residual blood to flow to the neonate. This study compared the effects on neonatal vitality between clamping and no clamping the umbilical cord of dogs born through cesarean section, assessing them through Apgar and reflex scores. Fifty puppies delivered from 16 bitches were randomly allocated to receive clamping of the umbilical cord immediately (n=25) or to not receive the clamping until breathing (n=25). The neonates were assessed during the first five min of life and once again 10 min after the first assessment. The differences observed between the two moments were significant (p < 0.01) for both the Apgar and reflex scores. The differences observed between the groups (clamped vs. not clamped) were not significant for the Apgar score in the 1st moment (p=0.1), but the 2nd moment was significantly (p < 0.01) in the group not clamped, as well as significant (p < 0.05) for the reflex score in the 1st moment and 2nd moment (p < 0.05), revealing higher neonatal vitality in the not clamped group. The differences observed between the moments (1st vs. 2nd) of each group as significant (p < 0.01), revealing higher neonatal vitality in the 2nd moments. In the no clamping group, after removing the neonates together with the umbilical cord and the placenta, we observed that the umbilical cords were full of blood at the time of birth and later became whitish and collapsed, demonstrating the blood transfer. The results suggest that keeping the umbilical cord intact for at least three minutes after the onset breathing is not detrimental and may contribute to increase neonate vitality in puppies delivered by cesarean section.Keywords: puppy vitality, newborn dog, cesarean section, Apgar score
Procedia PDF Downloads 1532610 Study on Planning of Smart GRID Using Landscape Ecology
Authors: Sunglim Lee, Susumu Fujii, Koji Okamura
Abstract:
Smart grid is a new approach for electric power grid that uses information and communications technology to control the electric power grid. Smart grid provides real-time control of the electric power grid, controlling the direction of power flow or time of the flow. Control devices are installed on the power lines of the electric power grid to implement smart grid. The number of the control devices should be determined, in relation with the area one control device covers and the cost associated with the control devices. One approach to determine the number of the control devices is to use the data on the surplus power generated by home solar generators. In current implementations, the surplus power is sent all the way to the power plant, which may cause power loss. To reduce the power loss, the surplus power may be sent to a control device and sent to where the power is needed from the control device. Under assumption that the control devices are installed on a lattice of equal size squares, our goal is to figure out the optimal spacing between the control devices, where the power sharing area (the area covered by one control device) is kept small to avoid power loss, and at the same time the power sharing area is big enough to have no surplus power wasted. To achieve this goal, a simulation using landscape ecology method is conducted on a sample area. First an aerial photograph of the land of interest is turned into a mosaic map where each area is colored according to the ratio of the amount of power production to the amount of power consumption in the area. The amount of power consumption is estimated according to the characteristics of the buildings in the area. The power production is calculated by the sum of the area of the roofs shown in the aerial photograph and assuming that solar panels are installed on all the roofs. The mosaic map is colored in three colors, each color representing producer, consumer, and neither. We started with a mosaic map with 100 m grid size, and the grid size is grown until there is no red grid. One control device is installed on each grid, so that the grid is the area which the control device covers. As the result of this simulation we got 350 m as the optimal spacing between the control devices that makes effective use of the surplus power for the sample area.Keywords: landscape ecology, IT, smart grid, aerial photograph, simulation
Procedia PDF Downloads 4442609 Unveiling Drought Dynamics in the Cuneo District, Italy: A Machine Learning-Enhanced Hydrological Modelling Approach
Authors: Mohammadamin Hashemi, Mohammadreza Kashizadeh
Abstract:
Droughts pose a significant threat to sustainable water resource management, agriculture, and socioeconomic sectors, particularly in the field of climate change. This study investigates drought simulation using rainfall-runoff modelling in the Cuneo district, Italy, over the past 60-year period. The study leverages the TUW model, a lumped conceptual rainfall-runoff model with a semi-distributed operation capability. Similar in structure to the widely used Hydrologiska Byråns Vattenbalansavdelning (HBV) model, the TUW model operates on daily timesteps for input and output data specific to each catchment. It incorporates essential routines for snow accumulation and melting, soil moisture storage, and streamflow generation. Multiple catchments' discharge data within the Cuneo district form the basis for thorough model calibration employing the Kling-Gupta Efficiency (KGE) metric. A crucial metric for reliable drought analysis is one that can accurately represent low-flow events during drought periods. This ensures that the model provides a realistic picture of water availability during these critical times. Subsequent validation of monthly discharge simulations thoroughly evaluates overall model performance. Beyond model development, the investigation delves into drought analysis using the robust Standardized Runoff Index (SRI). This index allows for precise characterization of drought occurrences within the study area. A meticulous comparison of observed and simulated discharge data is conducted, with particular focus on low-flow events that characterize droughts. Additionally, the study explores the complex interplay between land characteristics (e.g., soil type, vegetation cover) and climate variables (e.g., precipitation, temperature) that influence the severity and duration of hydrological droughts. The study's findings demonstrate successful calibration of the TUW model across most catchments, achieving commendable model efficiency. Comparative analysis between simulated and observed discharge data reveals significant agreement, especially during critical low-flow periods. This agreement is further supported by the Pareto coefficient, a statistical measure of goodness-of-fit. The drought analysis provides critical insights into the duration, intensity, and severity of drought events within the Cuneo district. This newfound understanding of spatial and temporal drought dynamics offers valuable information for water resource management strategies and drought mitigation efforts. This research deepens our understanding of drought dynamics in the Cuneo region. Future research directions include refining hydrological modelling techniques and exploring future drought projections under various climate change scenarios.Keywords: hydrologic extremes, hydrological drought, hydrological modelling, machine learning, rainfall-runoff modelling
Procedia PDF Downloads 412608 Identifying Game Variables from Students’ Surveys for Prototyping Games for Learning
Authors: N. Ismail, O. Thammajinda, U. Thongpanya
Abstract:
Games-based learning (GBL) has become increasingly important in teaching and learning. This paper explains the first two phases (analysis and design) of a GBL development project, ending up with a prototype design based on students’ and teachers’ perceptions. The two phases are part of a full cycle GBL project aiming to help secondary school students in Thailand in their study of Comprehensive Sex Education (CSE). In the course of the study, we invited 1,152 students to complete questionnaires and interviewed 12 secondary school teachers in focus groups. This paper found that GBL can serve students in their learning about CSE, enabling them to gain understanding of their sexuality, develop skills, including critical thinking skills and interact with others (peers, teachers, etc.) in a safe environment. The objectives of this paper are to outline the development of GBL variables from the research question(s) into the developers’ flow chart, to be responsive to the GBL beneficiaries’ preferences and expectations, and to help in answering the research questions. This paper details the steps applied to generate GBL variables that can feed into a game flow chart to develop a GBL prototype. In our approach, we detailed two models: (1) Game Elements Model (GEM) and (2) Game Object Model (GOM). There are three outcomes of this research – first, to achieve the objectives and benefits of GBL in learning, game design has to start with the research question(s) and the challenges to be resolved as research outcomes. Second, aligning the educational aims with engaging GBL end users (students) within the data collection phase to inform the game prototype with the game variables is essential to address the answer/solution to the research question(s). Third, for efficient GBL to bridge the gap between pedagogy and technology and in order to answer the research questions via technology (i.e. GBL) and to minimise the isolation between the pedagogists “P” and technologist “T”, several meetings and discussions need to take place within the team.Keywords: games-based learning, engagement, pedagogy, preferences, prototype
Procedia PDF Downloads 1702607 T Cell Immunity Profile in Pediatric Obesity and Asthma
Authors: Mustafa M. Donma, Erkut Karasu, Burcu Ozdilek, Burhan Turgut, Birol Topcu, Burcin Nalbantoglu, Orkide Donma
Abstract:
The mechanisms underlying the association between obesity and asthma may be related to a decreased immunological tolerance induced by a defective function of regulatory T cells (Tregs). The aim of this study is to establish the potential link between these diseases and CD4+, CD25+ FoxP3+ Tregs as well as T helper cells (Ths) in children. This is a prospective case control study. Obese (n:40), asthmatic (n:40), asthmatic obese (n:40), and healthy children (n:40), who don't have any acute or chronic diseases, were included in this study. Obese children were evaluated according to WHO criteria. Asthmatic patients were chosen based on GINA criteria. Parents were asked to fill up the questionnaire. Informed consent forms were taken. Blood samples were marked with CD4+, CD25+ and FoxP3+ in order to determine Tregs and Ths by flow cytometric method. Statistical analyses were performed. p≤0.05 was chosen as meaningful threshold. Tregs exhibiting anti-inflammatory nature were significantly lower in obese (0,16%; p≤0,001), asthmatic (0,25%; p≤0,01) and asthmatic obese (0,29%; p≤0,05) groups than the control group (0,38%). Ths were counted higher in asthma group than the control (p≤0,01) and obese (p≤0,001)) groups. T cell immunity plays important roles in obesity and asthma pathogeneses. Decreased numbers of Tregs found in obese, asthmatic and asthmatic obese children may help to elucidate some questions in pathophysiology of these diseases. For HOMA-IR levels, any significant difference was not noted between control and obese groups, but statistically higher values were found for obese asthmatics. The values obtained in all groups were found to be below the critical cut off points. This finding has made the statistically significant difference observed between Tregs of obese, asthmatic, obese asthmatic, and control groups much more valuable. These findings will be useful in diagnosis and treatment of these disorders and future studies are needed. The production and propagation of Tregs may be promising in alternative asthma and obesity treatments.Keywords: asthma, flow cytometry, pediatric obesity, T cells
Procedia PDF Downloads 346