Search results for: nonlinear dynamic model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19927

Search results for: nonlinear dynamic model

17737 Numerical Analysis of Gas-Particle Mixtures through Pipelines

Authors: G. Judakova, M. Bause

Abstract:

The ability to model and simulate numerically natural gas flow in pipelines has become of high importance for the design of pipeline systems. The understanding of the formation of hydrate particles and their dynamical behavior is of particular interest, since these processes govern the operation properties of the systems and are responsible for system failures by clogging of the pipelines under certain conditions. Mathematically, natural gas flow can be described by multiphase flow models. Using the two-fluid modeling approach, the gas phase is modeled by the compressible Euler equations and the particle phase is modeled by the pressureless Euler equations. The numerical simulation of compressible multiphase flows is an important research topic. It is well known that for nonlinear fluxes, even for smooth initial data, discontinuities in the solution are likely to occur in finite time. They are called shock waves or contact discontinuities. For hyperbolic and singularly perturbed parabolic equations the standard application of the Galerkin finite element method (FEM) leads to spurious oscillations (e.g. Gibb's phenomenon). In our approach, we use stabilized FEM, the streamline upwind Petrov-Galerkin (SUPG) method, where artificial diffusion acting only in the direction of the streamlines and using a special treatment of the boundary conditions in inviscid convective terms, is added. Numerical experiments show that the numerical solution obtained and stabilized by SUPG captures discontinuities or steep gradients of the exact solution in layers. However, within this layer the approximate solution may still exhibit overshoots or undershoots. To suitably reduce these artifacts we add a discontinuity capturing or shock capturing term. The performance properties of our numerical scheme are illustrated for two-phase flow problem.

Keywords: two-phase flow, gas-particle mixture, inviscid two-fluid model, euler equation, finite element method, streamline upwind petrov-galerkin, shock capturing

Procedia PDF Downloads 311
17736 Model Order Reduction Using Hybrid Genetic Algorithm and Simulated Annealing

Authors: Khaled Salah

Abstract:

Model order reduction has been one of the most challenging topics in the past years. In this paper, a hybrid solution of genetic algorithm (GA) and simulated annealing algorithm (SA) are used to approximate high-order transfer functions (TFs) to lower-order TFs. In this approach, hybrid algorithm is applied to model order reduction putting in consideration improving accuracy and preserving the properties of the original model which are two important issues for improving the performance of simulation and computation and maintaining the behavior of the original complex models being reduced. Compared to conventional mathematical methods that have been used to obtain a reduced order model of high order complex models, our proposed method provides better results in terms of reducing run-time. Thus, the proposed technique could be used in electronic design automation (EDA) tools.

Keywords: genetic algorithm, simulated annealing, model reduction, transfer function

Procedia PDF Downloads 143
17735 Biomechanical Modeling, Simulation, and Comparison of Human Arm Motion to Mitigate Astronaut Task during Extra Vehicular Activity

Authors: B. Vadiraj, S. N. Omkar, B. Kapil Bharadwaj, Yash Vardhan Gupta

Abstract:

During manned exploration of space, missions will require astronaut crewmembers to perform Extra Vehicular Activities (EVAs) for a variety of tasks. These EVAs take place after long periods of operations in space, and in and around unique vehicles, space structures and systems. Considering the remoteness and time spans in which these vehicles will operate, EVA system operations should utilize common worksites, tools and procedures as much as possible to increase the efficiency of training and proficiency in operations. All of the preparations need to be carried out based on studies of astronaut motions. Until now, development and training activities associated with the planned EVAs in Russian and U.S. space programs have relied almost exclusively on physical simulators. These experimental tests are expensive and time consuming. During the past few years a strong increase has been observed in the use of computer simulations due to the fast developments in computer hardware and simulation software. Based on this idea, an effort to develop a computational simulation system to model human dynamic motion for EVA is initiated. This study focuses on the simulation of an astronaut moving the orbital replaceable units into the worksites or removing them from the worksites. Our physics-based methodology helps fill the gap in quantitative analysis of astronaut EVA by providing a multisegment human arm model. Simulation work described in the study improves on the realism of previous efforts, incorporating joint stops to account for the physiological limits of range of motion. To demonstrate the utility of this approach human arm model is simulated virtually using ADAMS/LifeMOD® software. Kinematic mechanism for the astronaut’s task is studied from joint angles and torques. Simulation results obtained is validated with numerical simulation based on the principles of Newton-Euler method. Torques determined using mathematical model are compared among the subjects to know the grace and consistency of the task performed. We conclude that due to uncertain nature of exploration-class EVA, a virtual model developed using multibody dynamics approach offers significant advantages over traditional human modeling approaches.

Keywords: extra vehicular activity, biomechanics, inverse kinematics, human body modeling

Procedia PDF Downloads 342
17734 Enhanced Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterwards, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model were considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field, is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low salinity water flooding, immiscible displacement, kashkari oil field, twophase flow, numerical reservoir simulation model

Procedia PDF Downloads 42
17733 Omni-Modeler: Dynamic Learning for Pedestrian Redetection

Authors: Michael Karnes, Alper Yilmaz

Abstract:

This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.

Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition

Procedia PDF Downloads 76
17732 An Analytic Network Process Approach towards Academic Staff Selection

Authors: Nasrullah khan

Abstract:

Today business environment is very dynamic and most of organizations are in tough competition for their added values and sustainable hold in market. To achieve such objectives, organizations must have dynamic and creative people as optimized process. To get these people, there should strong human resource management system in organizations. There are multiple approaches have been devised in literature to hire more job relevant and more suitable people. This study proposed an ANP (Analytic Network Process) approach to hire faculty members for a university system. This study consists of two parts. In fist part, a through literature survey and universities interview are conducted in order to find the common criteria for the selection of academic staff. In second part the available candidates are prioritized on the basis of the relative values of these criteria. According to results the GRE & foreign language, GPA and research paper writing were most important factors for the selection of academic staff.

Keywords: creative people, ANP, academic staff, business environment

Procedia PDF Downloads 415
17731 Dynamic Programming Based Algorithm for the Unit Commitment of the Transmission-Constrained Multi-Site Combined Heat and Power System

Authors: A. Rong, P. B. Luh, R. Lahdelma

Abstract:

High penetration of intermittent renewable energy sources (RES) such as solar power and wind power into the energy system has caused temporal and spatial imbalance between electric power supply and demand for some countries and regions. This brings about the critical need for coordinating power production and power exchange for different regions. As compared with the power-only systems, the combined heat and power (CHP) systems can provide additional flexibility of utilizing RES by exploiting the interdependence of power and heat production in the CHP plant. In the CHP system, power production can be influenced by adjusting heat production level and electric power can be used to satisfy heat demand by electric boiler or heat pump in conjunction with heat storage, which is much cheaper than electric storage. This paper addresses multi-site CHP systems without considering RES, which lay foundation for handling penetration of RES. The problem under study is the unit commitment (UC) of the transmission-constrained multi-site CHP systems. We solve the problem by combining linear relaxation of ON/OFF states and sequential dynamic programming (DP) techniques, where relaxed states are used to reduce the dimension of the UC problem and DP for improving the solution quality. Numerical results for daily scheduling with realistic models and data show that DP-based algorithm is from a few to a few hundred times faster than CPLEX (standard commercial optimization software) with good solution accuracy (less than 1% relative gap from the optimal solution on the average).

Keywords: dynamic programming, multi-site combined heat and power system, relaxed states, transmission-constrained generation unit commitment

Procedia PDF Downloads 365
17730 Towards an Enhanced Compartmental Model for Profiling Malware Dynamics

Authors: Jessemyn Modiini, Timothy Lynar, Elena Sitnikova

Abstract:

We present a novel enhanced compartmental model for malware spread analysis in cyber security. This paper applies cyber security data features to epidemiological compartmental models to model the infectious potential of malware. Compartmental models are most efficient for calculating the infectious potential of a disease. In this paper, we discuss and profile epidemiologically relevant data features from a Domain Name System (DNS) dataset. We then apply these features to epidemiological compartmental models to network traffic features. This paper demonstrates how epidemiological principles can be applied to the novel analysis of key cybersecurity behaviours and trends and provides insight into threat modelling above that of kill-chain analysis. In applying deterministic compartmental models to a cyber security use case, the authors analyse the deficiencies and provide an enhanced stochastic model for cyber epidemiology. This enhanced compartmental model (SUEICRN model) is contrasted with the traditional SEIR model to demonstrate its efficacy.

Keywords: cybersecurity, epidemiology, cyber epidemiology, malware

Procedia PDF Downloads 107
17729 Efficient Chess Board Representation: A Space-Efficient Protocol

Authors: Raghava Dhanya, Shashank S.

Abstract:

This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.

Keywords: chess, optimisation, encoding, bit manipulation

Procedia PDF Downloads 50
17728 Design Development and Qualification of a Magnetically Levitated Blower for C0₂ Scrubbing in Manned Space Missions

Authors: Larry Hawkins, Scott K. Sakakura, Michael J. Salopek

Abstract:

The Marshall Space Flight Center is designing and building a next-generation CO₂ removal system, the Four Bed Carbon Dioxide Scrubber (4BCO₂), which will use the International Space Station (ISS) as a testbed. The current ISS CO2 removal system has faced many challenges in both performance and reliability. Given that CO2 removal is an integral Environmental Control and Life Support System (ECLSS) subsystem, the 4BCO2 Scrubber has been designed to eliminate the shortfalls identified in the current ISS system. One of the key required upgrades was to improve the performance and reliability of the blower that provides the airflow through the CO₂ sorbent beds. A magnetically levitated blower, capable of higher airflow and pressure than the previous system, was developed to meet this need. The design and qualification testing of this next-generation blower are described here. The new blower features a high-efficiency permanent magnet motor, a five-axis, active magnetic bearing system, and a compact controller containing both a variable speed drive and a magnetic bearing controller. The blower uses a centrifugal impeller to pull air from the inlet port and drive it through an annular space around the motor and magnetic bearing components to the exhaust port. Technical challenges of the blower and controller development include survival of the blower system under launch random vibration loads, operation in microgravity, packaging under strict size and weight requirements, and successful operation during 4BCO₂ operational changeovers. An ANSYS structural dynamic model of the controller was used to predict response to the NASA defined random vibration spectrum and drive minor design changes. The simulation results are compared to measurements from qualification testing the controller on a vibration table. Predicted blower performance is compared to flow loop testing measurements. Dynamic response of the system to valve changeovers is presented and discussed using high bandwidth measurements from dynamic pressure probes, magnetic bearing position sensors, and actuator coil currents. The results presented in the paper show that the blower controller will survive launch vibration levels, the blower flow meets the requirements, and the magnetic bearings have adequate load capacity and control bandwidth to maintain the desired rotor position during the valve changeover transients.

Keywords: blower, carbon dioxide removal, environmental control and life support system, magnetic bearing, permanent magnet motor, validation testing, vibration

Procedia PDF Downloads 135
17727 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 72
17726 Increasing Recoverable Oil in Northern Afghanistan Kashkari Oil Field by Low-Salinity Water Flooding

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi

Abstract:

Afghanistan is located in a tectonically complex and dynamic area, surrounded by rocks that originated on the mother continent of Gondwanaland. The northern Afghanistan basin, which runs along the country's northern border, has the potential for petroleum generation and accumulation. The Amu Darya basin has the largest petroleum potential in the region. Sedimentation occurred in the Amu Darya basin from the Jurassic to the Eocene epochs. Kashkari oil field is located in northern Afghanistan's Amu Darya basin. The field structure consists of a narrow northeast-southwest (NE-SW) anticline with two structural highs, the northwest limb being mild and the southeast limb being steep. The first oil production well in the Kashkari oil field was drilled in 1976, and a total of ten wells were drilled in the area between 1976 and 1979. The amount of original oil in place (OOIP) in the Kashkari oil field, based on the results of surveys and calculations conducted by research institutions, is estimated to be around 140 MMbbls. The objective of this study is to increase recoverable oil reserves in the Kashkari oil field through the implementation of low-salinity water flooding (LSWF) enhanced oil recovery (EOR) technique. The LSWF involved conducting a core flooding laboratory test consisting of four sequential steps with varying salinities. The test commenced with the use of formation water (FW) as the initial salinity, which was subsequently reduced to a salinity level of 0.1%. Afterward, the numerical simulation model of core scale oil recovery by LSWF was designed by Computer Modelling Group’s General Equation Modeler (CMG-GEM) software to evaluate the applicability of the technology to the field scale. Next, the Kahskari oil field simulation model was designed, and the LSWF method was applied to it. To obtain reasonable results, laboratory settings (temperature, pressure, rock, and oil characteristics) are designed as far as possible based on the condition of the Kashkari oil field, and several injection and production patterns are investigated. The relative permeability of oil and water in this study was obtained using Corey’s equation. In the Kashkari oilfield simulation model, three models: 1. Base model (with no water injection), 2. FW injection model, and 3. The LSW injection model was considered for the evaluation of the LSWF effect on oil recovery. Based on the results of the LSWF laboratory experiment and computer simulation analysis, the oil recovery increased rapidly after the FW was injected into the core. Subsequently, by injecting 1% salinity water, a gradual increase of 4% oil can be observed. About 6.4% of the field is produced by the application of the LSWF technique. The results of LSWF (salinity 0.1%) on the Kashkari oil field suggest that this technology can be a successful method for developing Kashkari oil production.

Keywords: low-salinity water flooding, immiscible displacement, Kashkari oil field, two-phase flow, numerical reservoir simulation model

Procedia PDF Downloads 39
17725 An Image Based Visual Servoing (IBVS) Approach Using a Linear-Quadratic Regulator (LQR) for Quadcopters

Authors: C. Gebauer, C. Henke, R. Vossen

Abstract:

Within the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020, a team of unmanned aerial vehicles (UAV) is used to capture intruder drones by physical interaction. The challenge is motivated by UAV safety. The purpose of this work is to investigate the agility of a quadcopter being controlled visually. The aim is to track and follow a highly dynamic target, e.g., an intruder quadcopter. The following is realized in close range and the opponent has a velocity of up to 10 m/s. Additional limitations are given by the hardware itself, where only monocular vision is present, and no additional knowledge about the targets state is available. An image based visual servoing (IBVS) approach is applied in combination with a Linear Quadratic Regulator (LQR). The IBVS is integrated into the LQR and an optimal trajectory is computed within the projected three-dimensional image-space. The approach has been evaluated on real quadcopter systems in different flight scenarios to demonstrate the system's stability.

Keywords: image based visual servoing, quadcopter, dynamic object tracking, linear-quadratic regulator

Procedia PDF Downloads 150
17724 Thermal Analysis and Optimization of a High-Speed Permanent Magnet Synchronous Motor with Toroidal Windings

Authors: Yuan Wan, Shumei Cui, Shaopeng Wu

Abstract:

Toroidal windings were taken advantage of to reduce of axial length of the motor, so as to match the applications that have severe restrictions on the axial length. But slotting in the out edge of the stator will decrease the heat-dissipation capacity of the water cooling of the housing. Besides, the windings in the outer slots will increase the copper loss, which will further increase the difficult for heat dissipation of the motor. At present, carbon-fiber composite retaining sleeve are increasingly used to be mounted over the magnets to ensure the rotor strength at high speeds. Due to the poor thermal conductivity of carbon-fiber sleeve, the cooling of the rotor becomes very difficult, which may result in the irreversible demagnetization of magnets for the excessively high temperature. So it is necessary to analyze the temperature rise of such motor. This paper builds a computational fluid dynamic (CFD) model of a toroidal-winding high-speed permanent magnet synchronous motor (PMSM) with water cooling of housing and forced air cooling of rotor. Thermal analysis was carried out based on the model and the factors that affects the temperature rise were investigated. Then thermal optimization for the prototype was achieved. Finally, a small-size prototype was manufactured and the thermal analysis results were verified.

Keywords: thermal analysis, temperature rise, toroidal windings, high-speed PMSM, CFD

Procedia PDF Downloads 493
17723 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis

Authors: Mennatallah M. Hussein, Olivier de Weck

Abstract:

The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.

Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics

Procedia PDF Downloads 31
17722 Integrating RAG with Prompt Engineering for Dynamic Log Parsing and Anomaly Detections

Authors: Liu Lin Xin

Abstract:

With the increasing complexity of systems, log parsing and anomaly detection have become crucial for maintaining system stability. However, traditional methods often struggle with adaptability and accuracy, especially when dealing with rapidly evolving log content and unfamiliar domains. To address these challenges, this paper proposes approach that integrates Retrieval Augmented Generation (RAG) technology with Prompt Engineering for Large Language Models, applied specifically in LogPrompt. This approach enables dynamic log parsing and intelligent anomaly detection by combining real-time information retrieval with prompt optimization. The proposed method significantly enhances the adaptability of log analysis and improves the interpretability of results. Experimental results on several public datasets demonstrate the method's superior performance, particularly in scenarios lacking training data, where it significantly outperforms traditional methods. This paper introduces a novel technical pathway for log parsing and anomaly detection, showcasing the substantial theoretical value and practical potential.

Keywords: log parsing, anomaly detection, RAG, prompt engineering, LLMs

Procedia PDF Downloads 34
17721 Review on Application of DVR in Compensation of Voltage Harmonics in Power Systems

Authors: S. Sudhharani

Abstract:

Energy distribution networks are the main link between the energy industry and consumers and are subject to the most scrutiny and testing of any category. As a result, it is important to monitor energy levels during the distribution phase. Power distribution networks, on the other hand, remain subject to common problems, including voltage breakdown, power outages, harmonics, and capacitor switching, all of which disrupt sinusoidal waveforms and reduce the quality and power of the network. Using power appliances in the form of custom power appliances is one way to deal with energy quality issues. Dynamic Voltage Restorer (DVR), integrated with network and distribution networks, is one of these devices. At the same time, by injecting voltage into the system, it can adjust the voltage amplitude and phase in the network. In the form of injections and three-phase syncing, it is used to compensate for the difficulty of energy quality. This article examines the recent use of DVR for power compensation and provides data on the control of each DVR in distribution networks.

Keywords: dynamic voltage restorer (DVR), power quality, distribution networks, control systems(PWM)

Procedia PDF Downloads 136
17720 Implication of Soil and Seismic Ground Motion Variability on Dynamic Pile Group Impedance for Bridges

Authors: Muhammad Tariq Chaudhary

Abstract:

Bridges constitute a vital link in a transportation system and their functionality after an earthquake is critical in reducing disruption to social and economic activities of the society. Bridges supported on pile foundations are commonly used in many earthquake-prone regions. In order to properly design or investigate the performance of such structures, it is imperative that the effect of soil-foundation-structure interaction be properly taken into account. This study focused on the influence of soil and seismic ground motion variability on the dynamic impedance of pile-group foundations typically used for medium-span (about 30 m) urban viaduct bridges. Soil profiles corresponding to various AASHTO soil classes were selected from actual data of such bridges and / or from the literature. The selected soil profiles were subjected to 1-D wave propagation analysis to determine effective values of soil shear modulus and damping ratio for a suite of properly selected actual seismic ground motions varying in PGA from 0.01g to 0.64g, and having variable velocity and frequency content. The effective values of the soil parameters were then employed to determine the dynamic impedance of pile groups in horizontal, vertical and rocking modes in various soil profiles. Pile diameter was kept constant for bridges in various soil profiles while pile length and number of piles were changed based on AASHTO design requirements for various soil profiles and earthquake ground motions. Conclusions were drawn regarding variability in effective soil shear modulus, soil damping, shear wave velocity and pile group impedance for various soil profiles and ground motions and its implications for design and evaluation of pile-supported bridges. It was found that even though the effective soil parameters underwent drastic variation with increasing PGA, the pile group impedance was not affected much in properly designed pile foundations due to the corresponding increase in pile length or increase in a number of piles or both when subjected to increasing PGA or founded in weaker soil profiles.

Keywords: bridge, pile foundation, dynamic foundation impedance, soil profile, shear wave velocity, seismic ground motion, seismic wave propagation

Procedia PDF Downloads 324
17719 Control of Spherical Robot with Sliding Mode

Authors: Roya Khajepour, Alireza B. Novinzadeh

Abstract:

A major issue with spherical robot is it surface shape, which is not always predictable. This means that given only the dynamic model of the robot, it is not possible to control the robot. Due to the fact that in certain conditions it is not possible to measure surface friction, control methods must be prepared for these conditions. Moreover, although spherical robot never becomes unstable or topples thanks to its special shape, since it moves by rolling it has a non-holonomic constraint at point of contact and therefore it is considered a non-holonomic system. Existence of such a point leads to complexity and non-linearity of robot's kinematic equations and makes the control problem difficult. Due to the non-linear dynamics and presence of uncertainty, the sliding-mode control is employed. The proposed method is based on Lyapunov Theory and guarantees system stability. This controller is insusceptible to external disturbances and un-modeled dynamics.

Keywords: sliding mode, spherical robot, non-holomonic constraint, system stability

Procedia PDF Downloads 389
17718 Reference Model for the Implementation of an E-Commerce Solution in Peruvian SMEs in the Retail Sector

Authors: Julio Kauss, Miguel Cadillo, David Mauricio

Abstract:

E-commerce is a business model that allows companies to optimize the processes of buying, selling, transferring goods and exchanging services through computer networks or the Internet. In Peru, the electronic commerce is used infrequently. This situation is due, in part to the fact that there is no model that allows companies to implement an e-commerce solution, which means that most SMEs do not have adequate knowledge to adapt to electronic commerce. In this work, a reference model is proposed for the implementation of an e-commerce solution in Peruvian SMEs in the retail sector. It consists of five phases: Business Analysis, Business Modeling, Implementation, Post Implementation and Results. The present model was validated in a SME of the Peruvian retail sector through the implementation of an electronic commerce platform, through which the company increased its sales through the delivery channel by 10% in the first month of deployment. This result showed that the model is easy to implement, is economical and agile. In addition, it allowed the company to increase its business offer, adapt to e-commerce and improve customer loyalty.

Keywords: e-commerce, retail, SMEs, reference model

Procedia PDF Downloads 320
17717 Analysis of a Single Motor Finger Mechanism for a Prosthetic Hand

Authors: Shaukat Ali, Kanber Sedef, Mustafa Yilmaz

Abstract:

This work analyzes a finger mechanism for a prosthetic hand that will help in improving the living standards of people who have lost their hands for a variety of reasons. The finger mechanism is single degree of freedom and hence has advantages such as compact size, reduced mass and less energy consumption. The proposed finger mechanism is a six bar linkage actuated by a single motor. The kinematic, static and dynamic analyses have been done by using the conventional methods of mechanism analysis. The kinematic results present the motion of the proposed finger mechanism and location of the fingertip. The static and dynamic analyses provide the useful information about the gripping force at the fingertip for various configurations and the selection of motor that will move the finger over its range of configuration. This single motor finger mechanism is simple and resembles the human finger’s motion suitable for grasping operation. This study can be used in the optimization of geometrical parameters of the proposed mechanism to obtain the desired configurations with minimum torque and enhanced griping.

Keywords: dynamics, finger mechanism, grasping, kinematics

Procedia PDF Downloads 358
17716 Comparison of Various Policies under Different Maintenance Strategies on a Multi-Component System

Authors: Demet Ozgur-Unluakin, Busenur Turkali, Ayse Karacaorenli

Abstract:

Maintenance strategies can be classified into two types, which are reactive and proactive, with respect to the time of the failure and maintenance. If the maintenance activity is done after a breakdown, it is called reactive maintenance. On the other hand, proactive maintenance, which is further divided as preventive and predictive, focuses on maintaining components before a failure occurs to prevent expensive halts. Recently, the number of interacting components in a system has increased rapidly and therefore, the structure of the systems have become more complex. This situation has made it difficult to provide the right maintenance decisions. Herewith, determining effective decisions has played a significant role. In multi-component systems, many methodologies and strategies can be applied when a component or a system has already broken down or when it is desired to identify and avoid proactively defects that could lead to future failure. This study focuses on the comparison of various maintenance strategies on a multi-component dynamic system. Components in the system are hidden, although there exists partial observability to the decision maker and they deteriorate in time. Several predefined policies under corrective, preventive and predictive maintenance strategies are considered to minimize the total maintenance cost in a planning horizon. The policies are simulated via Dynamic Bayesian Networks on a multi-component system with different policy parameters and cost scenarios, and their performances are evaluated. Results show that when the difference between the corrective and proactive maintenance cost is low, none of the proactive maintenance policies is significantly better than the corrective maintenance. However, when the difference is increased, at least one policy parameter for each proactive maintenance strategy gives significantly lower cost than the corrective maintenance.

Keywords: decision making, dynamic Bayesian networks, maintenance, multi-component systems, reliability

Procedia PDF Downloads 129
17715 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials

Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte

Abstract:

Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.

Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance

Procedia PDF Downloads 80
17714 The Consequences of Vibrations in Machining

Authors: Boughedaoui Rachid, Belaidi Idir, Ouali Mohamed

Abstract:

The formatting by removal of material remains an indispensable means for obtaining different forms of pieces. The objective of this work is to study the influence of parameters of the vibratory regime of the system PTM 'Piece-Tool-Machine, in the case of the machining of the thin pieces on the surface finish. As a first step, an analytical study of essential dynamic models 2D slice will be presented. The stability lobes will be thus obtained. In a second step, a characterization of PTM system will be realized. This system will be instrumented with accelerometric sensors but also a laser vibrometer so as to have the information closer to the cutting area. Dynamometers three components will be used for the analysis of cutting forces. Surface states will be measured and the condition of the cutting edge will be visualized thanks to a binocular microscope coupled to a data acquisition system. This information will allow quantifying the influence of chatter on the dimensional quality of the parts. From lobes stabilities previously determined experimental validation allow for the development a method for detecting of the phenomenon of chatter and so an approach will be proposed.

Keywords: chatter, dynamic, milling, lobe stability

Procedia PDF Downloads 357
17713 The Physical Impact of Nano-Layer Due to Dispersions of Carbon Nano-Tubes through an Absorbent Channel: A Numerical Nano-Fluid Flow Model

Authors: Muhammad Zubair Akbar Qureshi, Abdul Bari Farooq

Abstract:

The intention of the current study to analyze the significance of nano-layer in incompressible magneto-hydrodynamics (MHD) flow of a Newtonian nano-fluid consisting of carbon nano-materials has been considered through an absorbent channel with moving porous walls. Using applicable similarity transforms, the governing equations are converted into a system of nonlinear ordinary differential equations which are solved by using the 4th-order Runge-Kutta technique together with shooting methodology. The phenomena of nano-layer have also been modeled mathematically. The inspiration behind this segment is to reveal the behavior of involved parameters on velocity and temperature profiles. A detailed table is presented in which the effects of involved parameters on shear stress and heat transfer rate are discussed. Specially presented the impact of the thickness of the nano-layer and radius of the particle on the temperature profile. We observed that due to an increase in the thickness of the nano-layer, the heat transfer rate increases rapidly. The consequences of this research may be advantageous to the applications of biotechnology and industrial motive.

Keywords: carbon nano-tubes, magneto-hydrodynamics, nano-layer, thermal conductivity

Procedia PDF Downloads 128
17712 An Extended Basic Period and Power-of-Two Policy for Economic Lot-Size Batch-Shipment Scheduling Problem

Authors: Wen-Tsung Ho, Ku-Kuang Chang, Hsin-Yuan Chang

Abstract:

In this study, we consider an economic lot-size batch-shipment scheduling problem (ELBSP) with extended basic period (EBP) and power-of-two (PoT) policies. In this problem, the supplier using a single facility to manufacture multiple products and equally sized batches are then delivered by the supplier to buyers over an infinite planning horizon. Further, the extended basic period (EBP) and power-of-two (PoT) policy are utilized. Relaxing the production schedule converts the ELBSP to an economic lot-size batch-shipment problem (ELBP) with EBP and PoT policies, and a nonlinear integer programming model of the ELBP is constructed. Using the replenishment cycle division and recursive tightening methods, optimal solutions are then solved separately for each product. The sum of these optimal solutions is the lower bound of the ELBSP. A proposed heuristic method with polynomial complexity is then applied to figure out the near-optimal solutions of the ELBSP. Numerical example is presented to confirm the efficacy of the proposed method.

Keywords: economic lot-size scheduling problem, extended basic period, replenishment cycle division, recursive tightening, power-of-two

Procedia PDF Downloads 338
17711 Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

In designing a kinetic façade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range.

Keywords: design media, kinetic facades, tangible user interface, 3D scanning

Procedia PDF Downloads 413
17710 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 11
17709 A Large Language Model-Driven Method for Automated Building Energy Model Generation

Authors: Yake Zhang, Peng Xu

Abstract:

The development of building energy models (BEM) required for architectural design and analysis is a time-consuming and complex process, demanding a deep understanding and proficient use of simulation software. To streamline the generation of complex building energy models, this study proposes an automated method for generating building energy models using a large language model and the BEM library aimed at improving the efficiency of model generation. This method leverages a large language model to parse user-specified requirements for target building models, extracting key features such as building location, window-to-wall ratio, and thermal performance of the building envelope. The BEM library is utilized to retrieve energy models that match the target building’s characteristics, serving as reference information for the large language model to enhance the accuracy and relevance of the generated model, allowing for the creation of a building energy model that adapts to the user’s modeling requirements. This study enables the automatic creation of building energy models based on natural language inputs, reducing the professional expertise required for model development while significantly decreasing the time and complexity of manual configuration. In summary, this study provides an efficient and intelligent solution for building energy analysis and simulation, demonstrating the potential of a large language model in the field of building simulation and performance modeling.

Keywords: artificial intelligence, building energy modelling, building simulation, large language model

Procedia PDF Downloads 26
17708 An Improved Model of Estimation Global Solar Irradiation from in situ Data: Case of Oran Algeria Region

Authors: Houcine Naim, Abdelatif Hassini, Noureddine Benabadji, Alex Van Den Bossche

Abstract:

In this paper, two models to estimate the overall monthly average daily radiation on a horizontal surface were applied to the site of Oran (35.38 ° N, 0.37 °W). We present a comparison between the first one is a regression equation of the Angstrom type and the second model is developed by the present authors some modifications were suggested using as input parameters: the astronomical parameters as (latitude, longitude, and altitude) and meteorological parameters as (relative humidity). The comparisons are made using the mean bias error (MBE), root mean square error (RMSE), mean percentage error (MPE), and mean absolute bias error (MABE). This comparison shows that the second model is closer to the experimental values that the model of Angstrom.

Keywords: meteorology, global radiation, Angstrom model, Oran

Procedia PDF Downloads 233