Search results for: medium entropy alloy matrix composite
5137 Theoretical Modeling of Mechanical Properties of Eco-Friendly Composites Derived from Sugar Palm
Authors: J. Sahari, S. M. Sapuan
Abstract:
Eco-friendly composites have been successfully prepared by using sugar palm tree as a sources. The effect of fibre content on mechanical properties of (SPF/SPS) biocomposites have been done and the experimentally tensile properties (tensile strength and modulus) of biocomposites have been compared with the existing theories of reinforcement. The biocomposites were prepared with different amounts of fibres (i.e. 10%, 20% and 30% by weight percent). The mechanical properties of plasticized SPS improved with the incorporation of fibres. Both approaches (experimental and theoretical) show that the young’s modulus of the biocomposites is consistently increased when the sugar palm fibre (SPF) are placed into the sugar palm starch matrix (SPS). Surface morphological study through scanning electron microscopy showed homogeneous distribution of fibres and matrix with good adhesion which play an important role in improving the mechanical properties of biocomposites. The observed deviations between the experimental and theoretical values are explained by the simplifying model assumptions applied for the configuration of the composites, in particular the sugar palm starch composites.Keywords: eco-friendly, biocomposite, mechanical, experimental, theoretical
Procedia PDF Downloads 4435136 Highly Stretchable, Intelligent and Conductive PEDOT/PU Nanofibers Based on Electrospinning and in situ Polymerization
Authors: Kun Qi, Yuman Zhou, Jianxin He
Abstract:
A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a highly stretchable and conductive Poly(3,4-ethylenedioxythiophene)/Polyurethane (PEDOT/PU) nanofibrous membrane is reported. PU nanofibers were prepared by electrospinning and then PEDOT was coated on the plasma modified PU nanofiber surface via in-situ polymerization to form flexible PEDOT/PU composite nanofibers with conductivity. The results show PEDOT is successfully synthesized on the surface of PU nanofiber and PEDOT/PU composite nanofibers possess skin-core structure. Furthermore, the experiments indicate the optimal technological parameters of the polymerization process are as follow: The concentration of EDOT monomers is 50 mmol/L, the polymerization time is 24 h and the temperature is 25℃. The PEDOT/PU nanofibers exhibit excellent electrical conductivity ( 27.4 S/cm). In addition, flexible sensor made from conductive PEDOT/PU nanofibers shows highly sensitive response towards tensile strain and also can be used to detect finger motion. The results demonstrate promising application of the as-obtained nanofibrous membrane in flexible wearable electronic fields.Keywords: electrospinning, polyurethane, PEDOT, conductive nanofiber, flexible senor
Procedia PDF Downloads 3595135 Analysis of Patent Protection of Bone Tissue Engineering Scaffold Technology
Authors: Yunwei Zhang, Na Li, Yuhong Niu
Abstract:
Bone tissue engineering scaffold was regarded as an important clinical technology of curing bony defect. The patent protection of bone tissue engineering scaffold had been paid more attention and strengthened all over the world. This study analyzed the future development trends of international technologies in the field of bone tissue engineering scaffold and its patent protection. This study used the methods of data classification and classification indexing to analyze 2718 patents retrieved in the patent database. Results showed that the patents coming from United States had a competitive advantage over other countiries in the field of bone tissue engineering scaffold. The number of patent applications by a single company in U.S. was a quarter of that of the world. However, the capability of R&D in China was obviously weaker than global level, patents mainly coming from universities and scientific research institutions. Moreover, it would be predicted that synthetic organic materials as new materials would be gradually replaced by composite materials. The patent technology protections of composite materials would be more strengthened in the future.Keywords: bone tissue engineering, patent analysis, Scaffold material, patent protection
Procedia PDF Downloads 1335134 A Flexible Piezoelectric - Polymer Composite for Non-Invasive Detection of Multiple Vital Signs of Human
Authors: Sarah Pasala, Elizabeth Zacharias
Abstract:
Vital sign monitoring is crucial for both everyday health and medical diagnosis. A significant factor in assessing a human's health is their vital signs, which include heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings. Vital sign monitoring has been the focus of many system and method innovations recently. Piezoelectrics are materials that convert mechanical energy into electrical energy and can be used for vital sign monitoring. Piezoelectric energy harvesters that are stretchable and flexible can detect very low frequencies like airflow, heartbeat, etc. Current advancements in piezoelectric materials and flexible sensors have made it possible to create wearable and implantable medical devices that can continuously monitor physiological signals in humans. But because of their non-biocompatible nature, they also produce a large amount of e-waste and require another surgery to remove the implant. This paper presents a biocompatible and flexible piezoelectric composite material for wearable and implantable devices that offers a high-performance platform for seamless and continuous monitoring of human physiological signals and tactile stimuli. It also addresses the issue of e-waste and secondary surgery. A Lead-free piezoelectric, SrBi4Ti4O15, is found to be suitable for this application because the properties can be tailored by suitable substitutions and also by varying the synthesis temperature protocols. In the present work, SrBi4Ti4O15 modified by rare-earth has been synthesized and studied. Coupling factors are calculated from resonant (fr) and anti-resonant frequencies (fa). It is observed that Samarium substitution in SBT has increased the Curie temperature, dielectric and piezoelectric properties. From impedance spectroscopy studies, relaxation, and non-Debye type behaviour are observed. The composite of bioresorbable poly(l-lactide) and Lead-free rare earth modified Bismuth Layered Ferroelectrics leads to a flexible piezoelectric device for non-invasive measurement of vital signs, such as heart rate, breathing rate, blood pressure, and electrocardiogram (ECG) readings and also artery pulse signals in near-surface arteries. These composites are suitable to detect slight movement of the muscles and joints. This Lead-free rare earth modified Bismuth Layered Ferroelectrics – polymer composite is synthesized using a ball mill and the solid-state double sintering method. XRD studies indicated the two phases in the composite. SEM studies revealed the grain size to be uniform and in the range of 100 nm. The electromechanical coupling factor is improved. The elastic constants are calculated and the mechanical flexibility is found to be improved as compared to the single-phase rare earth modified Bismuth Latered piezoelectric. The results indicate that this composite is suitable for the non-invasive detection of multiple vital signs of humans.Keywords: composites, flexible, non-invasive, piezoelectric
Procedia PDF Downloads 375133 Influence of Vibration Amplitude on Reaction Time and Drowsiness Level
Authors: Mohd A. Azizan, Mohd Z. Zali
Abstract:
It is well established that exposure to vibration has an adverse effect on human health, comfort, and performance. However, there is little quantitative knowledge on performance combined with drowsiness level during vibration exposure. This paper reports a study investigating the influence of vibration amplitude on seated occupant reaction time and drowsiness level. Eighteen male volunteers were recruited for this experiment. Before commencing the experiment, total transmitted acceleration measured at interfaces between the seat pan and seatback to human body was adjusted to become 0.2 ms-2 r.m.s and 0.4 ms-2 r.m.s for each volunteer. Seated volunteers were exposed to Gaussian random vibration with frequency band 1-15 Hz at two level of amplitude (low vibration amplitude and medium vibration amplitude) for 20-minutes in separate days. For the purpose of drowsiness measurement, volunteers were asked to complete 10-minutes PVT test before and after vibration exposure and rate their subjective drowsiness by giving score using Karolinska Sleepiness Scale (KSS) before vibration, every 5-minutes interval and following 20-minutes of vibration exposure. Strong evidence of drowsiness was found as there was a significant increase in reaction time and number of lapse following exposure to vibration in both conditions. However, the effect is more apparent in medium vibration amplitude. A steady increase of drowsiness level can also be observed in KSS in all volunteers. However, no significant differences were found in KSS between low vibration amplitude and medium vibration amplitude. It is concluded that exposure to vibration has an adverse effect on human alertness level and more pronounced at higher vibration amplitude. Taken together, these findings suggest a role of vibration in promoting drowsiness, especially at higher vibration amplitude.Keywords: drowsiness, human vibration, karolinska sleepiness scale, psychomotor vigilance test
Procedia PDF Downloads 2835132 Determination of LS-DYNA MAT162 Material input Parameters for Low Velocity Impact Analysis of Layered Composites
Authors: Mustafa Albayrak, Mete Onur Kaman, Ilyas Bozkurt
Abstract:
In this study, the necessary material parameters were determined to be able to conduct progressive damage analysis of layered composites under low velocity impact by using the MAT162 material module in the LS-DYNA program. The material module MAT162 based on Hashin failure criterion requires 34 parameters in total. Some of these parameters were obtained directly as a result of dynamic and quasi-static mechanical tests, and the remaining part was calibrated and determined by comparing numerical and experimental results. Woven glass/epoxy was used as the composite material and it was produced by vacuum infusion method. In the numerical model, composites are modeled as three-dimensional and layered. As a result, the acquisition of MAT162 material module parameters, which will enable progressive damage analysis, is given in detail and step by step, and the selection methods of the parameters are explained. Numerical data consistent with the experimental results are given in graphics.Keywords: Composite Impact, Finite Element Simulation, Progressive Damage Analyze, LS-DYNA, MAT162
Procedia PDF Downloads 1075131 Effect of Thermal Radiation on Flow, Heat, and Mass Transfer of a Nanofluid over a Stretching Horizontal Cylinder Embedded in a Porous Medium with Suction/Injection
Authors: Elsayed M. A. Elbashbeshy, T. G. Emam, M. S. El-Azab, K. M. Abdelgaber
Abstract:
The effect of thermal radiation on flow, heat and mass transfer of an incompressible viscous nanofluid over a stretching horizontal cylinder embedded in a porous medium with suction/injection is discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases, and found to be in a good agreement.Keywords: laminar flow, boundary layer, stretching horizontal cylinder, thermal radiation, suction/injection, nanofluid
Procedia PDF Downloads 3825130 Finite Element Analysis for Earing Prediction Incorporating the BBC2003 Material Model with Fully Implicit Integration Method: Derivation and Numerical Algorithm
Authors: Sajjad Izadpanah, Seyed Hadi Ghaderi, Morteza Sayah Irani, Mahdi Gerdooei
Abstract:
In this research work, a sophisticated yield criterion known as BBC2003, capable of describing planar anisotropic behaviors of aluminum alloy sheets, was integrated into the commercial finite element code ABAQUS/Standard via a user subroutine. The complete formulation of the implementation process using a fully implicit integration scheme, i.e., the classic backward Euler method, is presented, and relevant aspects of the yield criterion are introduced. In order to solve nonlinear differential and algebraic equations, the line-search algorithm was adopted in the user-defined material subroutine (UMAT) to expand the convergence domain of the iterative Newton-Raphson method. The developed subroutine was used to simulate a challenging computational problem with complex stress states, i.e., deep drawing of an anisotropic aluminum alloy AA3105. The accuracy and stability of the developed subroutine were confirmed by comparing the numerically predicted earing and thickness variation profiles with the experimental results, which showed an excellent agreement between numerical and experimental earing and thickness profiles. The integration of the BBC2003 yield criterion into ABAQUS/Standard represents a significant contribution to the field of computational mechanics and provides a useful tool for analyzing the mechanical behavior of anisotropic materials subjected to complex loading conditions.Keywords: BBC2003 yield function, plastic anisotropy, fully implicit integration scheme, line search algorithm, explicit and implicit integration schemes
Procedia PDF Downloads 755129 Anticorrosive Polyurethane Clear Coat with Self-Cleaning Character
Authors: Nihit Madireddi, P. A. Mahanwar
Abstract:
We have aimed to produce a self-cleaning transparent polymer coating with polyurethane (PU) matrix as the latter is highly solvent, chemical and weather resistant having good mechanical properties. Nano-silica modified by 1H, 1H, 2H, 2H-perflurooctyltriethoxysilane was incorporated into the PU matrix for attaining self-cleaning ability through hydrophobicity. The modification was confirmed by particle size analysis and scanning electron microscopy (SEM). Thermo-gravimetric (TGA) studies were carried to ascertain the grafting of silane onto the silica. Several coating formulations were prepared by varying the silica loading content and compared to a commercial equivalent. The effect of dispersion and the morphology of the coated films were assessed by SEM analysis. All coating standardized tests like solvent resistance, adhesion, flexibility, acid, alkali, gloss etc. have been performed as per ASTM standards. Water contact angle studies were conducted to analyze the hydrophobic character of the coating. In addition, the coatings were also subjected to salt spray and accelerated weather testing to analyze the durability of the coating.Keywords: FAS, nano-silica, PU clear coat, self-cleaning
Procedia PDF Downloads 3115128 Issues in Travel Demand Forecasting
Authors: Huey-Kuo Chen
Abstract:
Travel demand forecasting including four travel choices, i.e., trip generation, trip distribution, modal split and traffic assignment constructs the core of transportation planning. In its current application, travel demand forecasting has associated with three important issues, i.e., interface inconsistencies among four travel choices, inefficiency of commonly used solution algorithms, and undesirable multiple path solutions. In this paper, each of the three issues is extensively elaborated. An ideal unified framework for the combined model consisting of the four travel choices and variable demand functions is also suggested. Then, a few remarks are provided in the end of the paper.Keywords: travel choices, B algorithm, entropy maximization, dynamic traffic assignment
Procedia PDF Downloads 4585127 Plantlet Regeneration from Zygotic Embryos of Securidaca longepedunculata Fresen
Authors: Uche C. Okafor, Nwanneka M. Okpokwu, Felix Nwafor, Carl E. A. Okezie
Abstract:
Securidaca longepedunculata Fresen (Violet tree) belongs to the family Polygalaceae characterised by papillionaceous purplish flowers. This medicinally valued plant disappears at an alarming rate due to intensified anthropopressure particularly the unregulated manner of subterranean plant parts' collection from natural stands. Some indiscriminately harvested plants bear seeds containing both mature and immature zygotic embryos that are often discarded. Here, such seeds are collected for this experiment. Seeds were collected, washed, de-coated, and dipped in 70 % (v/v) ethanol for 30 s followed by rising in 5 % solution sodium hypochlorite, containing two drops of tween 20, for another 25 min. Mature zygotic embryos (MZEs) were excised from seeds and cultured in two basal media (MS and B5), three carbon sources (sucrose, glucose and fructose) at five concentrations (0-40 g/L) while immature zygotic embryos (iMZEs) were composed on similar basal media and carbon source supplemented with 0-2 mg/L Benzylaminopurine (BAP) and 0-2 mg/L Indole acetic acid (IAA). MZEs cultured on MS + 30g/L sucrose differed significantly from other treatments at p≤0.05 with maximum percent sprouting (85.24± 5.67 %) and shoot length (7.53±0.67 cm). MZEs culture had the maximum percent sprouting (85.24± 5.67 %) and shoot length (7.53±0.67 cm) in medium containing MS+ 30g L-1 sucrose. iMZEs on the other hand had maximum growth on MS + 40g/L sucrose supplemented with 1.5 mg/L IAA+ 1.0 mg/L BAP. This study is a geared towards creating an alternative path for the maximum production of plants in vitro, thereby, preventing the plants from disappearing.Keywords: Gamborg's medium, Murashige and Skoog medium, Securidaca longepedunculata, zygotic embryos
Procedia PDF Downloads 1565126 Preparation and Characterization of PVA Pure and PVA/MMT Matrix: Effect of Thermal Treatment
Authors: Albana Hasimi, Edlira Tako, Elvin Çomo, Partizan Malkaj, Blerina Papajani, Ledjan Malaj, Mirela Ndrita
Abstract:
Many endeavors have been exerted during the last years for developing new artificial polymeric membranes which fulfill the demanded conditions for biomedical uses. One of the most tested polymers is Poly(vinyl alcohol) [PVA]. Ours groups, is based on the possibility of using PVA for personal protective equipment against covid. In them, we explore the possibility of modifying the properties of the polymer by adding Montmorillonite [MMT]. Heat-treatment above the glass transition temperature are used to improve mechanical properties mainly by increasing the crystallinity of the polymer, which acts as a physical network. Temperature-Modulated Differential Scanning Calorimetry (TMDSC) measurements indicated that the presence of 0.5% MMT in PVA causes a higher Tg value and shaped peak of crystallinity. Decomposition is observed at two of the melting points of the crystals during heating 25-240oC and overlap of the recrystallization ridges during cooling 240-25oC. This is indicative of the presence of two types (quality or structure ) of polymer crystals. On the other hand, some indication of improvement of the quality of the crystals by heat-treatment is given by the distinct non-reversing contribution to melting. Data on sorption and transport of water in polyvinyl alcohol films: PVA pure and PVA/MMT matrix, modified by thermal treatment, are presented. The thermal treatment has aftereffect the films become more rigid, and because of this, the water uptake is significantly lower in membranes. That is indicates by analysis of the resulting water uptake kinetics. The presence 0.5% w/w of MMT has no significant impact on the properties of PVA membranes. Water uptake kinetics deviates from Fick’s law due to slow relaxation of glassy polymer matrix for all membranes category.Keywords: crystallinity, montmorillonite, nanocomposite, poly (vinyl alcohol)
Procedia PDF Downloads 1275125 Thermo-Oxidative Degradation of Esterified Starch (with Lauric Acid) -Plastic Composite Assembled with Pro-Oxidants and Elastomers
Authors: R. M. S. Sachini Amararathne
Abstract:
This research is striving to develop a thermo degradable starch plastic compound/ masterbatch for industrial packaging applications. A native corn starch-modified with an esterification reaction of lauric acid is melt blent with an unsaturated elastomer (styrene-butadiene-rubber/styrene-butadiene-styrene). A trace amount of metal salt is added into the internal mixer to study the effect of pro-oxidants in a thermo oxidative environment. Then the granulated polymer composite which is consisted with 80-86% of polyolefin (LLDP/LDPE/PP) as the pivotal agent; is extruded with processing aids, antioxidants and some other additives in a co-rotating twin-screw extruder. The pelletized composite is subjected to compression molding/ Injection molding or blown film extrusion processes to acquire the samples/specimen for tests. The degradation process is explicated by analyzing the results of fourier transform infrared spectroscopy (FTIR) measurements, thermo oxidative aging studies (placing the dumb-bell specimen in an air oven at 70 °C for four weeks of exposure.) governed by tensile and impact strength test reports. Furthermore, the samples were elicited into manifold outdoors to inspect the degradation process. This industrial process is implemented to reduce the volume of fossil-based garbage by achieving the biodegradability and compostability in the natural cycle. Hence the research leads to manufacturing a degradable plastic packaging compound which is now available in the Sri Lankan market.Keywords: blown film extrusion, compression moulding, polyolefin, pro-oxidant, styrene-butadine-rubber, styrene-butadiene-styrene, thermo oxidative aging, unsaturated elastomer
Procedia PDF Downloads 955124 Effect of Temperature on the Structural and Optical Properties of ZnS Thin Films Obtained by Chemical Bath Deposition in Acidic Medium
Authors: Hamid Merzouk, Dajhida Talantikite, Amel Tounsi
Abstract:
Thin films of ZnS have been deposited by chemical route into acidic medium. The deposition time fixed at 5 hours, and the bath temperature varied from 80° C to 95°C with an interval of 5°C. The X-ray diffraction (XRD), UV/ visible spectrophotometry, Fourier Transform Infrared spectroscopy (FTIR) have been used to study the effect of temperature on the structural and optical properties of ZnS thin films. The XRD spectrum of the ZnS layer obtained shows an increase of peaks intensity of ZnS with increasing bath temperature. The study of optical properties exhibit good transmittance (60–80% in the visible region), and the band gap energy of the ZnS thin film decrease from 3.71 eV to 3.64 eV while the refractive index (n) increase with increasing temperature bath. The FTIR analyze confirm our studies and show characteristics bands of vibration of Zn-S.Keywords: ZnS thin films, XRD spectra, optical gap, XRD
Procedia PDF Downloads 1555123 Valorisation of Waste Chicken Feathers: Electrospun Antibacterial Nanoparticles-Embedded Keratin Composite Nanofibers
Authors: Lebogang L. R. Mphahlele, Bruce B. Sithole
Abstract:
Chicken meat is the highest consumed meat in south Africa, with a per capita consumption of >33 kg yearly. Hence, South Africa produces over 250 million kg of waste chicken feathers each year, the majority of which is landfilled or incinerated. The discarded feathers have caused environmental pollution and natural protein resource waste. Therefore, the valorisation of waste chicken feathers is measured as a more environmentally friendly and cost-effective treatment. Feather contains 91% protein, the main component being beta-keratin, a fibrous and insoluble structural protein extensively cross linked by disulfide bonds. Keratin is usually converted it into nanofibers via electrospinning for a variety of applications. keratin nanofiber composites have many potential biomedical applications for their attractive features, such as high surface-to-volume ratio and very high porosity. The application of nanofibers in the biomedical wound dressing requires antimicrobial properties for materials. One approach is incorporating inorganic nanoparticles, among which silver nanoparticles played an important alternative antibacterial agent and have been studied against many types of microbes. The objective of this study is to combine synthetic polymer, chicken feather keratin, and antibacterial nanoparticles to develop novel electrospun antibacterial nanofibrous composites for possible wound dressing application. Furthermore, this study will converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM)Keywords: chicken feather keratin, nanofibers, nanoparticles, nanocomposites, wound dressing
Procedia PDF Downloads 1325122 Formation Control for Linear Multi-Robot System with Switched Directed Topology and Time-Varying Delays
Authors: Yaxiao Zhang, Yangzhou Chen
Abstract:
This study investigate the formation problem for high-order continuous-time multi-robot with bounded symmetric time-varying delay protocol under switched directed communication topology. By using a linear transformation, the formation problem is transformed to stability analysis of a switched delay system. Under the assumption that each communication topology has a directed spanning tree, sufficient conditions are presented in terms of linear matrix inequalities (LMIs) that the multi-robot system can achieve a desired formation by the trade-off among the pre-exist topologies with the help of the scheme of average dwell time. A numeral example is presented to illustrate the effectiveness of the obtained results.Keywords: multi-robot systems, formation, switched directed topology, symmetric time-varying delay, average dwell time, linear matrix inequalities (lmis)
Procedia PDF Downloads 5355121 Computational Fluid Dynamics Simulation of a Boiler Outlet Header Constructed of Inconel Alloy 740H
Authors: Sherman Ho, Ahmed Cherif Megri
Abstract:
Headers play a critical role in conveying steam to regulate heating system temperatures. While various materials like steel grades 91 and 92 have been traditionally used for pipes, this research proposes the use of a robust and innovative material, INCONEL Alloy 740H. Boilers in power plant configurations are exposed to cycling conditions due to factors such as daily, seasonal, and yearly variations in weather. These cycling conditions can lead to the deterioration of headers, which are vital components with intricate geometries. Header failures result in substantial financial losses from repair costs and power plant shutdowns, along with significant public inconveniences such as the loss of heating and hot water. To address this issue and seek solutions, a mechanical analysis, as well as a structural analysis, are recommended. Transient analysis to predict heat transfer conditions is of paramount importance, as the direction of heat transfer within the header walls and the passing steam can vary based on the location of interest, load, and operating conditions. The geometry and material of the header are also crucial design factors, and the choice of pipe material depends on its usage. In this context, the heat transfer coefficient plays a vital role in header design and analysis. This research employs ANSYS Fluent, a numerical simulation program, to understand header behavior, predict heat transfer, and analyze mechanical phenomena within the header. Transient simulations are conducted to investigate parameters like heat transfer coefficient, pressure loss coefficients, and heat flux, with the results used to optimize header design.Keywords: CFD, header, power plant, heat transfer coefficient, simulation using experimental data
Procedia PDF Downloads 665120 Effect of Microstructure of Graphene Oxide Fabricated through Different Self-Assembly Techniques on Alcohol Dehydration
Authors: Wei-Song Hung
Abstract:
We utilized pressure, vacuum, and evaporation-assisted self-assembly techniques through which graphene oxide (GO) was deposited on modified polyacrylonitrile (mPAN). The fabricated composite GO/mPAN membranes were applied to dehydrate 1-butanol mixtures by pervaporation. Varying driving forces in the self-assembly techniques induced different GO assembly layer microstructures. XRD results indicated that the GO layer d-spacing varied from 8.3 Å to 11.5 Å. The self-assembly technique with evaporation resulted in a heterogeneous GO layer with loop structures; this layer was shown to be hydrophobic, in contrast to the hydrophilic layer formed from the other two techniques. From the pressure-assisted technique, the composite membrane exhibited exceptional pervaporation performance at 30 C: concentration of water at the permeate side = 99.6 wt% and permeation flux = 2.54 kg m-2 h-1. Moreover, the membrane sustained its operating stability at a high temperature of 70 C: a high water concentration of 99.5 wt% was maintained, and a permeation flux as high as 4.34 kg m-2 h-1 was attained. This excellent separation performance stemmed from the dense, highly ordered laminate structure of GO.Keywords: graphene oxide, self-assembly, alcohol dehydration, polyacrylonitrile (mPAN)
Procedia PDF Downloads 2965119 Extraction of Scandium (Sc) from an Ore with Functionalized Nanoporous Silicon Adsorbent
Authors: Arezoo Rahmani, Rinez Thapa, Juha-Matti Aalto, Petri Turhanen, Jouko Vepsalainen, Vesa-PekkaLehto, Joakim Riikonen
Abstract:
Production of Scandium (Sc) is a complicated process because Sc is found only in low concentrations in ores and the concentration of Sc is very low compared with other metals. Therefore, utilization of typical extraction processes such as solvent extraction is problematic in scandium extraction. The Adsorption/desorption method can be used, but it is challenging to prepare materials, which have good selectivity, high adsorption capacity, and high stability. Therefore, efficient and environmentally friendly methods for Sc extraction are needed. In this study, the nanoporous composite material was developed for extracting Sc from an Sc ore. The nanoporous composite material offers several advantageous properties such as large surface area, high chemical and mechanical stability, fast diffusion of the metals in the material and possibility to construct a filter out of the material with good flow-through properties. The nanoporous silicon material was produced by first stabilizing the surfaces with a silicon carbide layer and then functionalizing the surface with bisphosphonates that act as metal chelators. The surface area and porosity of the material were characterized by N₂ adsorption and the morphology was studied by scanning electron microscopy (SEM). The bisphosphonate content of the material was studied by thermogravimetric analysis (TGA). The concentration of metal ions in the adsorption/desorption experiments was measured with inductively coupled plasma mass spectrometry (ICP-MS). The maximum capacity of the material was 25 µmol/g Sc at pH=1 and 45 µmol/g Sc at pH=3, obtained from adsorption isotherm. The selectivity of the material towards Sc in artificial solutions containing several metal ions was studied at pH one and pH 3. The result shows good selectivity of the nanoporous composite towards adsorption of Sc. Scandium was less efficiently adsorbed from solution leached from the ore of Sc because of excessive amounts of iron (Fe), aluminum (Al) and titanium (Ti) which disturbed the adsorption process. For example, the concentration of Fe was more than 4500 ppm, while the concentration of Sc was only three ppm, approximately 1500 times lower. Precipitation methods were developed to lower the concentration of the metals other than Sc. Optimal pH for precipitation was found to be pH 4. The concentration of Fe, Al and Ti were decreased by 99, 70, 99.6%, respectively, while the concentration of Sc decreased only 22%. Despite the large reduction in the concentration of other metals, more work is needed to further increase the relative concentration of Sc compared with other metals to efficiently extract it using the developed nanoporous composite material. Nevertheless, the developed material may provide an affordable, efficient and environmentally friendly method to extract Sc on a large scale.Keywords: adsorption, nanoporous silicon, ore solution, scandium
Procedia PDF Downloads 1465118 A Pilot Study of Robot Reminiscence in Dementia Care
Authors: Ryuji Yamazaki, Masahiro Kochi, Weiran Zhu, Hiroko Kase
Abstract:
In care for older adults, behavioral and psychological symptoms of dementia (BPSD) like agitation and aggression are distressing for patients and their caretakers, often resulting in premature institutionalization with increased costs of care. To improve mood and mitigate symptoms, as a non-pharmaceutical approach, emotion-oriented therapy like reminiscence work is adopted in face-to-face communication. Telecommunication support is expected to be provided by robotic media as a bridge for digital divide for those with dementia and facilitate social interaction both verbally and nonverbally. The purpose of this case study is to explore the conditions in which robotic media can effectively attract attention from older adults with dementia and promote their well-being. As a pilot study, we introduced the pillow-phone Hugvie®, a huggable humanly shaped communication medium to five residents with dementia at a care facility, to investigate how the following conditions work for the elderly when they use the medium; 1) no sound, 2) radio, non-interactive, 3) daily conversation, and 4) reminiscence work. As a result, under condition 4, reminiscence work, the five participants kept concentration in interacting with the medium for a longer duration than other conditions. In condition 4, they also showed larger amount of utterances than under other conditions. These results indicate that providing topics related to personal histories through robotic media could affect communication positively and should, therefore, be further investigated. In addition, the issue of ethical implications by using persuasive technology that affects emotions and behaviors of older adults is also discussed.Keywords: BPSD, reminiscence, tactile telecommunication, utterances
Procedia PDF Downloads 1745117 Influence оf Viscous Dampers on Seismic Response оf Isolated Bridges Including Soil Structure Interaction
Authors: Marija Vitanova, Aleksandra Bogdanovic, Kemal Edip, Viktor Hristovski, Vlado Micov
Abstract:
Bridges represent critical structures in lifeline systems. They provide reliable modes of transportation, so their failure can seriously obstruct relief and rehabilitation work. Earthquake ground motions can cause significant damages in bridges, so during the strong earthquakes, they can easily collapse. The base isolation technique has been quite effective in seismic response mitigation of the bridges in reducing the piers base shear. The effect of soil structure interaction on the dynamic responses of seismically isolated three span girder bridge with viscous dampers is investigated. Viscous dampers are installed in the mid span of the bridge to control bearing displacement. The soil surrounding the foundation of piers has been analyzed by applying different soil densities in order to consider the soil stiffness. The soil medium has been assumed as a four layered infill as dense and loose medium. The boundaries in the soil medium are considered as infinite elements in order to absorb the radiating waves. The formulation of infinite elements is the same as for the finite elements in addition to the mapping of the domain. Based on the iso-parametric concept, the infinite element in global coordinate is mapped onto an element in local coordinate system. In the formulation of the infinite element, only the positive direction extends to infinity thus allowing the waves to propagate outside of the soil medium. Dynamic analyses for two levels of earthquake intensity are performed in time domain using direct integration method. In order to specify the effects of the SSI, the responses of the isolated and controlled isolated bridges are compared. It is observed that the soil surrounding the piers has significant effects on the bearing displacement of the isolated RC bridges. In addition, it is observed that the seismic responses of isolated RC bridge reduced significantly with the installation of the viscous dampers.Keywords: viscous dampers, reinforced concrete girder bridges, seismic response, SSI
Procedia PDF Downloads 1245116 Development of Composite Materials for CO2 Reduction and Organic Compound Decomposition
Authors: H. F. Shi, C. L. Zhang
Abstract:
Visible-light-responsive g-C3N4/NaNbO3 nanowires photocatalysts were fabricated by introducing polymeric g-C3N4 on NaNbO3 nanowires. The microscopic mechanisms of interface interaction, charge transfer and separation, as well as the influence on the photocatalytic activity of g-C3N4/NaNbO3 composite were systematic investigated. The HR-TEM revealed that an intimate interface between C3N4 and NaNbO3 nanowires formed in the g-C3N4/NaNbO3 heterojunctions. The photocatalytic performance of photocatalysts was evaluated for CO2 reduction under visible-light illumination. Significantly, the activity of g-C3N4/NaNbO3 composite photocatalyst for photoreduction of CO2 was higher than that of either single-phase g-C3N4 or NaNbO3. Such a remarkable enhancement of photocatalytic activity was mainly ascribed to the improved separation and transfer of photogenerated electron-hole pairs at the intimate interface of g-C3N4/NaNbO3 heterojunctions, which originated from the well-aligned overlapping band structures of C3N4 and NaNbO3. Pt loaded NaNbO3-xNx (Pt-NNON), a visible-light-sensitive photocatalyst, was synthesized by an in situ photodeposition method from H2PtCl6•6H2O onto NaNbO3-xNx (NNON) sample. Pt-NNON exhibited a much higher photocatalytic activity for gaseous 2-propanol (IPA) degradation under visible-light irradiation in contrast to NNON. The apparent quantum efficiency (AQE) of Pt-NNON sample for IPA photodegradation achieved up to 8.6% at the wavelength of 419 nm. The notably enhanced photocatalytic performance was attributed to the promoted charge separation and transfer capability in the Pt-NNON system. This work suggests that surface nanosteps possibly play an important role as an electron transfer at high way, which facilitates to the charge carrier collection onto Pt rich zones and thus suppresses recombination between photogenerated electrons and holes. This method can thus be considered as an excellent strategy to enhance photocatalytic activity of organic decomposition in addition to the commonly applied noble metal doping method.Keywords: CO2 reduction, NaNbO3, nanowires, g-C3N4
Procedia PDF Downloads 1995115 Highly Efficient in Vitro Regeneration of Swertia chirayita (Roxb. ex Fleming) Karsten: A Critically Endangered Medicinal Plant
Authors: Mahendran Ganesan, Sanjeet Kumar Verma, Zafar Iqbal, Ashish Chandran, Zakir Husain, Shama Afroz, Sana Shahid, Laiq Ur Rahman
Abstract:
Highly efficient in vitro regeneration system has been developed for Swertia chirayita (Roxb. ex Fleming) H. Karst, a high prized traditional medicinal plant to treat numerous ailments such as liver disorders, malaria and diabetes and are reported to have a wide spectrum of pharmacological properties. Its medicinal usage is well-documented in Indian pharmaceutical codex, the British and the American pharmacopeias, and in different traditional medicine such as the Ayurveda, Unani and Siddha medical systems. Nodal explants were cultured on MS medium supplemented with various phytohormones for multiple shoot induction. The nodal segments failed to respond in growth regulator free medium. All the concentrations of BAP, Kin and TDZ facilitated shoot bud break and multiple shoot induction. Among the various cytokinins tested, BAP was found to be more effective with respect to initiation and subsequent development of shoots. Of the various concentrations BAP tested, BAP at 4.0 mg/L showed the higher average number of shoot regeneration (10.80 shoots per explant). Kin at 4 mg/L and TDZ at 4 mg/L induced 5.70 and 04.5+0 shoots per explant, respectively. Further increase in concentration did not favour an increase in the number of shoots. However, these shoots failed to elongate further. Hence, addition of GA₃ (1 mg/L) was added to the above medium. This treatment resulted in the elongation of shoots (2.50 cm) and a further increase in the number of microshoots (34.20 shoots/explant). Roots were also induced in the same medium containing BAP (4 mg/L) + GA₃ (1 mg/L) + NAA (0.5 mg/L). In vitro derived plantlets with well-developed roots were transferred to the potting media containing garden soil: sand: vermicompost (2:1:1). Plantlets were covered with a polyethylene bag and irrigated with water. The pots were maintained at 25 ± 2ºC, and then the polyethylene cover was gradually loosened, thus dropping the humidity (65–70%). This procedure subsequently resulted in in vitro hardening of the plantlet.Keywords: micropropagation, nodal explant, plant growth regulators, Swertia chirayita
Procedia PDF Downloads 1205114 Optimization of the Drinking Water Treatment Process Improvement of the Treated Water Quality by Using the Sludge Produced by the Water Treatment Plant
Authors: M. Derraz, M. Farhaoui
Abstract:
Problem statement: In the water treatment processes, the coagulation and flocculation processes produce sludge according to the level of the water turbidity. The aluminum sulfate is the most common coagulant used in water treatment plants of Morocco as well as many countries. It is difficult to manage Sludge produced by the treatment plant. However, it can be used in the process to improve the quality of the treated water and reduce the aluminum sulfate dose. Approach: In this study, the effectiveness of sludge was evaluated at different turbidity levels (low, medium, and high turbidity) and coagulant dosage to find optimal operational conditions. The influence of settling time was also studied. A set of jar test experiments was conducted to find the sludge and aluminum sulfate dosages in order to improve the produced water quality for different turbidity levels. Results: Results demonstrated that using sludge produced by the treatment plant can improve the quality of the produced water and reduce the aluminum sulfate using. The aluminum sulfate dosage can be reduced from 40 to 50% according to the turbidity level (10, 20, and 40 NTU). Conclusions/Recommendations: Results show that sludge can be used in order to reduce the aluminum sulfate dosage and improve the quality of treated water. The highest turbidity removal efficiency is observed within 6 mg/l of aluminum sulfate and 35 mg/l of sludge in low turbidity, 20 mg/l of aluminum sulfate and 50 mg/l of sludge in medium turbidity and 20 mg/l of aluminum sulfate and 60 mg/l of sludge in high turbidity. The turbidity removal efficiency is 97.56%, 98.96%, and 99.47% respectively for low, medium and high turbidity levels.Keywords: coagulation process, coagulant dose, sludge reuse, turbidity removal
Procedia PDF Downloads 2385113 Suburban Large Residential Area Development Strategy with an Example of Liangzhu Culture Village in Hangzhou
Authors: Liang Fang
Abstract:
The development of the large suburban residential area is a product of the leap development during the rapid urbanization process in China. On the process of the large-scale development of large settlements in a short time, various problems arose in the suburban residential area, such as spatial layout being disorder, basic facilities construction lagging behind and being unreasonable, residential neighborhood space and street culture missing. Aimed at the contradictions mentioned above, exploring a way is imminent to construct appropriate residential area. We select a typical Liangzhu Culture Village in Hangzhou and put forward functional composite residential area of fine development strategy, along which business promotes and assists community autonomy and then a good community culture is constructed. All in all, the development and construction mode, contributing to an all-people and full-time participation, is beneficial to create a harmonious community of sustainable development, which gives good implication to a single enterprise development city real estate projects.Keywords: community autonomy, development and construction mode, functional composite, suburban large residential area
Procedia PDF Downloads 3585112 Effect of Kenaf Fibres on Starch-Grafted-Polypropylene Biopolymer Properties
Authors: Amel Hamma, Allesandro Pegoretti
Abstract:
Kenaf fibres, with two aspect ratios, were melt compounded with two types of biopolymers named starch grafted polypropylene, and then blends compression molded to form plates of 1 mm thick. Results showed that processing induced variation of fibres length which is quantified by optical microscopy observations. Young modulus, stress at break and impact resistance values of starch-grafted-polypropylenes were remarkably improved by kenaf fibres for both matrixes and demonstrated best values when G906PJ were used as matrix. These results attest the good interfacial bonding between the matrix and fibres even in the absence of any interfacial modification. Vicat Softening Point and storage modules were also improved due to the reinforcing effect of fibres. Moreover, short-term tensile creep tests have proven that kenaf fibres remarkably improve the creep stability of composites. The creep behavior of the investigated materials was successfully modeled by the four parameters Burgers model.Keywords: creep behaviour, kenaf fibres, mechanical properties, starch-grafted-polypropylene
Procedia PDF Downloads 2325111 Preceramic Polymers Formulations for Potential Additive Manufacturing
Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao
Abstract:
Three preceramic polymer formulations for potential use in 3D printing technologies were investigated. The polymeric precursors include an allyl hydrido polycarbosilane (SMP-10), SMP-10/1,6-dexanediol diacrylate (HDDA) mixture, and polydimethylsiloxane (PDMS). The rheological property of the polymeric precursors, including the viscosity within a wide shear rate range was compared to determine the applicability in additive manufacturing technology. The structural properties of the polymeric solutions and their photocureability were investigated using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Moreover, thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were utilized to study polymeric to ceramic conversion for versatile precursors. The prepared precursor resin proved to have outstanding photo-curing properties and the ability to transform to the silicon carbide phase at temperatures as low as 850 °C. The obtained ceramic was fully dense with nearly linear shrinkage and a shiny, smooth surface after pyrolysis. Furthermore, after pyrolysis to 1350 °C and TGA analysis, PDMS polymer showed the highest onset decomposition temperature and the lowest retained weight (52 wt%), while SMP.10/HDDA showed the lowest onset temperature and ceramic yield (71.7 wt%). In terms of crystallography, the ceramic matrix composite appeared to have three coexisting phases, including silicon carbide, and silicon oxycarbide. The results are very promising to fabricate ceramic materials working at high temperatures with complex geometries.Keywords: preceramic polymer, silicon carbide, photocuring, allyl hydrido polycarbosilane, SMP-10
Procedia PDF Downloads 1245110 Finite Element and Experimental Investigation on Vibration Analysis of Laminated Composite Plates
Authors: Azad Mohammed Ali Saber, Lanja Saeed Omer
Abstract:
The present study deals with numerical method (FE) and experimental investigations on the vibration behavior of carbon fiber-polyester laminated plates. Finite element simulation is done using APDL (Ansys Parametric Design Language) macro codes software version 19. Solid185 layered structural element, including eight nodes, is adopted in this analysis. The experimental work is carried out using (Hand Layup method) to fabricate different layers and orientation angles of composite laminate plates. Symmetric samples include four layers (00/900)s and six layers (00/900/00)s, (00/00/900)s. Antisymmetric samples include one layer (00), (450), two layers (00/900), (-450/450), three layers (00/900/00), four layers (00/900)2, (-450/450)2, five layers (00/900)2.5, and six layers (00/900)3, (-450/450)3. An experimental investigation is carried out using a modal analysis technique with a Fast Fourier Transform Analyzer (FFT), Pulse platform, impact hammer, and accelerometer to obtain the frequency response functions. The influences of different parameters such as the number of layers, aspect ratio, modulus ratio, ply orientation, and different boundary conditions on the dynamic behavior of the CFRPs are studied, where the 1st, 2nd, and 3rd natural frequencies are observed to be the minimum for cantilever boundary condition (CFFF) and the maximum for full clamped boundary condition (CCCC). Experimental results show that the natural frequencies of laminated plates are significantly reliant on the type of boundary conditions due to the restraint effect at the edges. Good agreement is achieved among the finite element and experimental results. All results indicate that any increase in aspect ratio causes a decrease in the natural frequency of the CFRPs plate, while any increase in the modulus ratio or number of layers causes an increase in the fundamental natural frequency of vibration.Keywords: vibration, composite materials, finite element, APDL ANSYS
Procedia PDF Downloads 435109 Estimating the Effect of Fluid in Pressing Process
Authors: A. Movaghar, R. A. Mahdavinejad
Abstract:
To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.Keywords: pressing, notch, matrix, flow function, vortex
Procedia PDF Downloads 2905108 Fabrication, Testing and Machinability Evaluation of Glass Fiber Reinforced Epoxy Composites
Authors: S. S. Panda, Arkesh Chouhan, Yogesh Deshpande
Abstract:
The present paper deals with designing and fabricating an apparatus for the speedy and accurate manufacturing of fiber reinforced composite lamina of different orientation, thickness and stacking sequences for testing. Properties derived through an analytical approach are verified through measuring the elastic modulus, ultimate tensile strength, flexural modulus and flexural strength of the samples. The 00 orientation ply looks stiffer compared to the 900 ply. Similarly, the flexural strength of 00 ply is higher than to the 900 ply. Sample machinability has been studied by conducting numbers of drilling based on Taguchi Design experiments. Multi Responses (Delamination and Damage grading) is obtained using the desirability approach and optimum cutting condition (spindle speed, feed and drill diameter), at which responses are minimized is obtained thereafter. Delamination increases nonlinearly with the increase in spindle speed. Similarly, the influence of the drill diameter on delamination is higher than the spindle speed and feed rate.Keywords: delamination, FRP composite, Taguchi design, multi response optimization
Procedia PDF Downloads 272