Search results for: virus detection
1884 Conspiracy Theories and the Right to Believe
Authors: Zwelenkani Mdlalose
Abstract:
From the moment Covid 19 was declared a pandemic it became clear that conspiracy theories would significantly impact our response to the crisis that the virus was to become. Central to the interest in conspiracy theories evoked by a pandemic is a more general concern for the impact they have on society and social harmony. The specific brand of Conspiracy Theory that is in question is not any and all theories about conspiracies but rather those conspiracy theories which contradict official accounts. For example, where the official account on the terrorist attacks of September 11 2001 is of a conspiracy involving 19 militants associated with the Islamic extremist group al-Qaeda against targets in the United States, the nature of conspiracy theory under study is the one contradicting this official account to the extent that its attributes the attacks not to al-Qaeda militants but to actors in the United States government itself. The study is not an investigation into the truth value of conspiracy theories but rather an attempt at observing the essential qualities of the type of belief that is belief in conspiracy theories compared to belief in official accounts provided by authoritative sources such as governments, experts and mainstream media. These qualities include the psychological, epistemic and socio-political foundations on which belief in conspiracy theories are established. Based on a foundational understanding of the sort of belief that are beliefs in conspiracy theories, we may then extrapolate implied ethical demands on both authoritative bodies and actors as well as believers in conspiracy theories. For example: in their unofficial ‘non-factual’ status, is there not some violation of epistemic right in the same way we observe in cases where people are prejudiced because of their religious beliefs? In other words, is there an epistemic injustice suffered by believers in conspiracy theories in the way their beliefs are rejected as illegitimate? Conversely, to what extent do believers bear an epistemic responsibility in their adoption of their beliefs in conspiracy theories. From this position, perhaps we can then develop responses to the problem that foster greater social harmony even in the midst of suspicion and distrust.Keywords: conspiracy theories, subjugated knowledge, epistemic injustice, epistemic responsibility
Procedia PDF Downloads 1021883 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 731882 Fe Modified Tin Oxide Thin Film Based Matrix for Reagentless Uric Acid Biosensing
Authors: Kashima Arora, Monika Tomar, Vinay Gupta
Abstract:
Biosensors have found potential applications ranging from environmental testing and biowarfare agent detection to clinical testing, health care, and cell analysis. This is driven in part by the desire to decrease the cost of health care and to obtain precise information more quickly about the health status of patient by the development of various biosensors, which has become increasingly prevalent in clinical testing and point of care testing for a wide range of biological elements. Uric acid is an important byproduct in human body and a number of pathological disorders are related to its high concentration in human body. In past few years, rapid growth in the development of new materials and improvements in sensing techniques have led to the evolution of advanced biosensors. In this context, metal oxide thin film based matrices due to their bio compatible nature, strong adsorption ability, high isoelectric point (IEP) and abundance in nature have become the materials of choice for recent technological advances in biotechnology. In the past few years, wide band-gap metal oxide semiconductors including ZnO, SnO₂ and CeO₂ have gained much attention as a matrix for immobilization of various biomolecules. Tin oxide (SnO₂), wide band gap semiconductor (Eg =3.87 eV), despite having multifunctional properties for broad range of applications including transparent electronics, gas sensors, acoustic devices, UV photodetectors, etc., it has not been explored much for biosensing purpose. To realize a high performance miniaturized biomolecular electronic device, rf sputtering technique is considered to be the most promising for the reproducible growth of good quality thin films, controlled surface morphology and desired film crystallization with improved electron transfer property. Recently, iron oxide and its composites have been widely used as matrix for biosensing application which exploits the electron communication feature of Fe, for the detection of various analytes using urea, hemoglobin, glucose, phenol, L-lactate, H₂O₂, etc. However, to the authors’ knowledge, no work is being reported on modifying the electronic properties of SnO₂ by implanting with suitable metal (Fe) to induce the redox couple in it and utilizing it for reagentless detection of uric acid. In present study, Fe implanted SnO₂ based matrix has been utilized for reagentless uric acid biosensor. Implantation of Fe into SnO₂ matrix is confirmed by energy-dispersive X-Ray spectroscopy (EDX) analysis. Electrochemical techniques have been used to study the response characteristics of Fe modified SnO₂ matrix before and after uricase immobilization. The developed uric acid biosensor exhibits a high sensitivity to about 0.21 mA/mM and a linear variation in current response over concentration range from 0.05 to 1.0 mM of uric acid besides high shelf life (~20 weeks). The Michaelis-Menten kinetic parameter (Km) is found to be relatively very low (0.23 mM), which indicates high affinity of the fabricated bioelectrode towards uric acid (analyte). Also, the presence of other interferents present in human serum has negligible effect on the performance of biosensor. Hence, obtained results highlight the importance of implanted Fe:SnO₂ thin film as an attractive matrix for realization of reagentless biosensors towards uric acid.Keywords: Fe implanted tin oxide, reagentless uric acid biosensor, rf sputtering, thin film
Procedia PDF Downloads 1811881 Entry Inhibitors Are Less Effective at Preventing Cell-Associated HIV-2 Infection than HIV-1
Authors: A. R. Diniz, P. Borrego, I. Bártolo, N. Taveira
Abstract:
Cell-to-cell transmission plays a critical role in the spread of HIV-1 infection in vitro and in vivo. Inhibition of HIV-1 cell-associated infection by antiretroviral drugs and neutralizing antibodies (NAbs) is more difficult compared to cell-free infection. Limited data exists on cell-associated infection by HIV-2 and its inhibition. In this work, we determined the ability of entry inhibitors to inhibit HIV-1 and HIV-2 cell-to cell fusion as a proxy to cell-associated infection. We developed a method in which Hela-CD4-cells are first transfected with a Tat expressing plasmid (pcDNA3.1+/Tat101) and infected with recombinant vaccinia viruses expressing either the HIV-1 (vPE16: from isolate HTLV-IIIB, clone BH8, X4 tropism) or HIV-2 (vSC50: from HIV-2SBL/ISY, R5 and X4 tropism) envelope glycoproteins (M.O.I.=1 PFU/cell).These cells are added to TZM-bl cells. When cell-to-cell fusion (syncytia) occurs the Tat protein diffuses to the TZM-bl cells activating the expression of a reporter gene (luciferase). We tested several entry inhibitors including the fusion inhibitors T1249, T20 and P3, the CCR5 antagonists MVC and TAK-779, the CXCR4 antagonist AMD3100 and several HIV-2 neutralizing antibodies (Nabs). All compounds inhibited HIV-1 and HIV-2 cell fusion albeit to different levels. Maximum percentage of HIV-2 inhibition (MPI) was higher for fusion inhibitors (T1249- 99.8%; P3- 95%, T20-90%) followed by co-receptor antagonists (MVC- 63%; TAK-779- 55%; AMD3100- 45%). NAbs from HIV-2 infected patients did not prevent cell fusion up to the tested concentration of 4μg/ml. As for HIV-1, MPI reached 100% with TAK-779 and T1249. For the other antivirals, MPIs were: P3-79%; T20-75%; AMD3100-61%; MVC-65%.These results are consistent with published data. Maraviroc had the lowest IC50 both for HIV-2 and HIV-1 (IC50 HIV-2= 0.06 μM; HIV-1=0.0076μM). Highest IC50 were observed with T20 for HIV-2 (3.86μM) and with TAK-779 for HIV-1 (12.64μM). Overall, our results show that entry inhibitors in clinical use are less effective at preventing Env mediated cell-to-cell-fusion in HIV-2 than in HIV-1 which suggests that cell-associated HIV-2 infection will be more difficult to inhibit compared to HIV-1. The method described here will be useful to screen for new HIV entry inhibitors.Keywords: cell-to-cell fusion, entry inhibitors, HIV, NAbs, vaccinia virus
Procedia PDF Downloads 3091880 Metagenomics-Based Molecular Epidemiology of Viral Diseases
Authors: Vyacheslav Furtak, Merja Roivainen, Olga Mirochnichenko, Majid Laassri, Bella Bidzhieva, Tatiana Zagorodnyaya, Vladimir Chizhikov, Konstantin Chumakov
Abstract:
Molecular epidemiology and environmental surveillance are parts of a rational strategy to control infectious diseases. They have been widely used in the worldwide campaign to eradicate poliomyelitis, which otherwise would be complicated by the inability to rapidly respond to outbreaks and determine sources of the infection. The conventional scheme involves isolation of viruses from patients and the environment, followed by their identification by nucleotide sequences analysis to determine phylogenetic relationships. This is a tedious and time-consuming process that yields definitive results when it may be too late to implement countermeasures. Because of the difficulty of high-throughput full-genome sequencing, most such studies are conducted by sequencing only capsid genes or their parts. Therefore the important information about the contribution of other parts of the genome and inter- and intra-species recombination to viral evolution is not captured. Here we propose a new approach based on the rapid concentration of sewage samples with tangential flow filtration followed by deep sequencing and reconstruction of nucleotide sequences of viruses present in the samples. The entire nucleic acids content of each sample is sequenced, thus preserving in digital format the complete spectrum of viruses. A set of rapid algorithms was developed to separate deep sequence reads into discrete populations corresponding to each virus and assemble them into full-length consensus contigs, as well as to generate a complete profile of sequence heterogeneities in each of them. This provides an effective approach to study molecular epidemiology and evolution of natural viral populations.Keywords: poliovirus, eradication, environmental surveillance, laboratory diagnosis
Procedia PDF Downloads 2811879 Revealing Thermal Degradation Characteristics of Distinctive Oligo-and Polisaccharides of Prebiotic Relevance
Authors: Attila Kiss, Erzsébet Némedi, Zoltán Naár
Abstract:
As natural prebiotic (non-digestible) carbohydrates stimulate the growth of colon microflora and contribute to maintain the health of the host, analytical studies aiming at revealing the chemical behavior of these beneficial food components came to the forefront of interest. Food processing (especially baking) may lead to a significant conversion of the parent compounds, hence it is of utmost importance to characterize the transformation patterns and the plausible decomposition products formed by thermal degradation. The relevance of this work is confirmed by the wide-spread use of these carbohydrates (fructo-oligosaccharides, cyclodextrins, raffinose and resistant starch) in the food industry. More and more functional foodstuffs are being developed based on prebiotics as bioactive components. 12 different types of oligosaccharides have been investigated in order to reveal their thermal degradation characteristics. Different carbohydrate derivatives (D-fructose and D-glucose oligomers and polymers) have been exposed to elevated temperatures (150 °C 170 °C, 190 °C, 210 °C, and 220 °C) for 10 min. An advanced HPLC method was developed and used to identify the decomposition products of carbohydrates formed as a consequence of thermal treatment. Gradient elution was applied with binary solvent elution (acetonitrile, water) through amine based carbohydrate column. Evaporative light scattering (ELS) proved to be suitable for the reliable detection of the UV/VIS inactive carbohydrate degradation products. These experimental conditions and applied advanced techniques made it possible to survey all the formed intermediers. Change in oligomer distribution was established in cases of all studied prebiotics throughout the thermal treatments. The obtained results indicate increased extent of chain degradation of the carbohydrate moiety at elevated temperatures. Prevalence of oligomers with shorter chain length and even the formation of monomer sugars (D-glucose and D-fructose) might be observed at higher temperatures. Unique oligomer distributions, which have not been described previously are revealed in the case of each studied, specific carbohydrate, which might result in various prebiotic activities. Resistant starches exhibited high stability when being thermal treated. The degradation process has been modeled by a plausible reaction mechanism, in which proton catalyzed degradation and chain cleavage take place.Keywords: prebiotics, thermal degradation, fructo-oligosaccharide, HPLC, ELS detection
Procedia PDF Downloads 3051878 Factors Influencing the General Public Intention to Be Vaccinated: A Case of Botswana
Authors: Meng Qing Feng, Otsile Morake
Abstract:
Background: Successful implementation of the COVID-19 vaccination ensures the prevention of virus infection. Postponement and refusal of the vaccination will threaten public health, which is now common among the general public across the world. In addition, an acceptance of the COVID-19 vaccine appears as a decisive factor in controlling the COVID-19 pandemic. Purpose: This study's objective is to explore the factors influencing the public intention to be vaccinated (ITBV). Design/methodology/approach: The web-based survey included socio-demographics and questions related to the theory of planned behavior (TPB) and the health belief model (HBM). An online survey was administered using Google Form to collect data from participants of Botswana. The sample included 339 participants, half-half of the participants were female. Data analysis was run using the Statistical Package for the Social Sciences (SPSS). Findings: The study results highlight that perceived severity, perceived barriers, health motivation, and attitude have a positive and significant effect on ITBV, while perceived susceptibility, benefits, subjective norms, and perceived behavior control do not affect ITBV. Among all of the predictors, perceived barriers have the most significant influence on ITBV. Conclusion: Theoretically, this research stated that both HBM and TPB are effective in predicting and explaining the general public ITBV. Practically, this study offers insights to the government and health departments to arrange and launch health awareness programs and provide a better guide to vaccination so that doubts about vaccine confidence and the level of uncertainty can be decreased.Keywords: COVID-19, Omicron, intention to be COVID-19 vaccine, health behavior model, theory of planned behavior, Botswana
Procedia PDF Downloads 941877 The Culex Pipiens Niche: Assessment with Climatic and Physiographic Variables via a Geographic Information System
Authors: Maria C. Proença, Maria T. Rebelo, Marília Antunes, Maria J. Alves, Hugo Osório, Sofia Cunha, João Casaca
Abstract:
Using a geographic information system (GIS), the relations between a georeferenced data set of Culex pipiens sl. mosquitoes collected in Portugal mainland during seven years (2006-2012) and meteorological and physiographic parameters such as: air relative humidity, air temperature (minima, maxima and mean daily temperatures), daily total rainfall, altitude, land use/land cover and proximity to water bodies are evaluated. Focus is on the mosquito females; the characterization of its habitat is the key for the planning of chirurgical non-aggressive prophylactic countermeasures to avoid ambient degradation. The GIS allow for the spatial determination of the zones were the mosquito mean captures has been above average; using the meteorological values at these coordinates, the limits of each parameter are identified/computed. The meteorological parameters measured at the net of weather stations all over the country are averaged by month and interpolated to produce raster maps that can be segmented according to the thresholds obtained for each parameter. The intersection of the maps obtained for each month show the evolution of the area favorable to the species through the mosquito season, which is from May to October at these latitudes. In parallel, mean and above average captures were related to the physiographic parameters. Three levels of risk could be identified for each parameter, using above average captures as an index. The results were applied to the suitability meteorological maps of each month. The Culex pipiens critical niche is delimited, reflecting the critical areas and the level of risk for transmission of the pathogens to which they are competent vectors (West Nile virus, iridoviruses, rheoviruses and parvoviruses).Keywords: Culex pipiens, ecological niche, risk assessment, risk management
Procedia PDF Downloads 5441876 System Detecting Border Gateway Protocol Anomalies Using Local and Remote Data
Authors: Alicja Starczewska, Aleksander Nawrat, Krzysztof Daniec, Jarosław Homa, Kacper Hołda
Abstract:
Border Gateway Protocol is the main routing protocol that enables routing establishment between all autonomous systems, which are the basic administrative units of the internet. Due to the poor protection of BGP, it is important to use additional BGP security systems. Many solutions to this problem have been proposed over the years, but none of them have been implemented on a global scale. This article describes a system capable of building images of real-time BGP network topology in order to detect BGP anomalies. Our proposal performs a detailed analysis of BGP messages that come into local network cards supplemented by information collected by remote collectors in different localizations.Keywords: BGP, BGP hijacking, cybersecurity, detection
Procedia PDF Downloads 771875 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1181874 Characterization of β-Lactamases Resistance amongst Acinetobacter Baumannii Isolated from Clinical Samples, Egypt
Authors: Amal Saafan, Kareem Al Sofy, Sameh AbdelGhani, Magdy Amin
Abstract:
Background: Acinetobacter spp. resistance towards β-lactam antibiotics is mediated mainly by different classes of β-lactamases production; detection of some genes responsible for production of β-lactamases is the objective of the study. Methods: One hundred fifty bacterial isolates were recovered from blood, sputum, and urine specimens from different hospitals in Egypt. Sixty-nine isolate were identified as Acinetobacter baumannii using traditional biochemical tests, CHROM agar, MicroScan and PCR amplification of blaoxa-51like gene. Acinetobacterbaumannii isolates were grouped into carbapenem resistant group (GP1), cefotaxime, ceftazidime and cefoxitin resistant group (GP2) and carbapenem and cephalosporin non-resistant group (GP3). Carbapenemase activity was screened using modified Hodge test (MHT) for GP1.Metallo-β-lactamases screening was performed for MHT positive isolates using double disk synergy test (DDST) and combined disk test (CDT). Amp C activity was screened using Amp C disk test with Tris-EDTA, DDST, and CDT for GP2. Finally, PCR amplification of blaoxa-51like, blaoxa-23like, blaIMP-like, blaVIM-like, and blaADC-like genes was performed for isolates that showed, at least, two positive results of three for both AmpC and carbapenemases phenotypic screening tests (obvious activity), in addition to GP3 (for comparison). Detection of blaoxa-51like and blaADC-like genes preceded by ISAba1 was also performed. Results: Antibiogram of 69 pure Acinetobacter baumannii isolates resulted in 57, 64, and 2 isolates enrolled into GP1, GP2, and GP3, respectively. Carbapenemase activity was shown by 49(85.9%) isolate using MHT. Metallo-β-lactamases screening revealed 32(65.3%) and 35(71.4%) using DDST and CDT, respectively.AmpC activity was shown by 43(67.2%) and 50 (78.1%) isolates using AmpC disk test with Tris-EDTA, and both DDST and CDT, respectively. Twenty-seven isolates showed obvious activity, all of them (100%) were harboring blaoxa-51like and blaADC-like genes, while blaoxa-23like, blaIMP-like andblaVIM-like genes were harbored by 23(85.2%), 9 (33.%) and no isolate respectively. Only 12 (44.4%) isolates harbored blaoxa-51like and blaADC-like genes preceded by ISAba1. GP3 isolates showed only positive blaoxa-51like and blaADC-like genes. Conclusion: It is not possible to correlate resistance with presence of blaoxa-51like and blaADC-like genes and presence of ISAba1 was immediate as transcriptional promoter. A blaoxa-23like gene played an important role in carbapenem resistance when compared with blaIMP-like and blaVIM-like gene.Keywords: acinetobacter, beta-lactams, resistance, antimicrobial agents
Procedia PDF Downloads 3451873 A Fundamental Study for Real-Time Safety Evaluation System of Landing Pier Using FBG Sensor
Authors: Heungsu Lee, Youngseok Kim, Jonghwa Yi, Chul Park
Abstract:
A landing pier is subjected to safety assessment by visual inspection and design data, but it is difficult to check the damage in real-time. In this study, real - time damage detection and safety evaluation methods were studied. As a result of structural analysis of the arbitrary landing pier structure, the inflection point of deformation and moment occurred at 10%, 50%, and 90% of pile length. The critical value of Fiber Bragg Grating (FBG) sensor was set according to the safety factor, and the FBG sensor application method for real - time safety evaluation was derived.Keywords: FBG sensor, harbor structure, maintenance, safety evaluation system
Procedia PDF Downloads 2181872 Microfluidic Lab on Chip Platform for the Detection of Arthritis Markers from Synovial Organ on Chip by Miniaturizing Enzyme-Linked ImmunoSorbent Assay Protocols
Authors: Laura Boschis, Elena D. Ozzello, Enzo Mastromatteo
Abstract:
Point of care diagnostic finds growing interest in medicine and agri-food because of faster intervention and prevention. EliChip is a microfluidic platform to perform Point of Care immunoenzymatic assay based on ready-to-use kits and a portable instrument to manage fluidics and read reliable quantitative results. Thanks to miniaturization, analyses are faster and more sensible than conventional ELISA. EliChip is one of the crucial assets of the Europen-founded Flamingo project for in-line measuring inflammatory markers.Keywords: lab on chip, point of care, immunoenzymatic analysis, synovial arthritis
Procedia PDF Downloads 1871871 Predicting Student Performance Based on Coding Behavior in STEAMplug
Authors: Giovanni Gonzalez Araujo, Michael Kyrilov, Angelo Kyrilov
Abstract:
STEAMplug is a web-based innovative educational platform which makes teaching easier and learning more effective. It requires no setup, eliminating the barriers to entry, allowing students to focus on their learning throughreal-world development environments. The student-centric tools enable easy collaboration between peers and teachers. Analyzing user interactions with the system enables us to predict student performance and identify at-risk students, allowing early instructor intervention.Keywords: plagiarism detection, identifying at-Risk Students, education technology, e-learning system, collaborative development, learning and teaching with technology
Procedia PDF Downloads 1511870 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis
Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante
Abstract:
The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.Keywords: dynamic analysis, long short-term memory, prediction, sepsis
Procedia PDF Downloads 1251869 Solid Health Care Waste Management Practice in Ethiopia
Authors: Yeshanew Ayele Tiruneh, L. M. Modiba, S. M. Zuma
Abstract:
Introduction- Healthcare waste is any waste generated by health care facilities, considered potentially hazardous to health. Solid health care waste is categorised into infectious and non-infectious wastes. Infectious waste is material suspected to contain pathogens. The non-infectious waste includes wastes that have not been in contact with infectious agents, hazardous chemicals, or radioactive substances. The purpose is to assess solid health care waste (SHCW) management practice toward developing guidelines. The setting is all health facilities found in Hossaena town. A mixed-method study design used. For the qualitative part, small purposeful samples were considered and large samples for the quantitative phase. Both samples were taken from the same population. Result - 17(3.1%) of health facility workers have hand washing facilities. 392 (72.6%) of the participants agree on the availability of one or more of personal protective equipment (PPE) in the facility ‘’the reason for the absence of some of the PPEs like boots, goggles, and shortage of disposable gloves are owing to cost inflation from time to time and sometimes absent from the market’’. The observational finding shows that colour coded waste bins are available at 23 (9.6%) of the rooms. Majority of the sharp container used in the health facility are reusable in the contrary to the health care waste management standards and most of them are plastic buckets and easily cleanable. All of the health facility infectious waste are collected transported and deposed daily. Regarding the preventive vaccination nearly half of the the fahealth facility workers wer vaccinated for Hep B virus. Conclusion- Hand washing facilities, personal protective equipment’s and preventive vaccinations are not easily available for health workers. Solid waste segregation practices are poor and these practices showed that SWMP is below the acceptable level.Keywords: health care waste, waste management, disposal, private health facilities
Procedia PDF Downloads 731868 Enteropathogenic Viruses Associated with Acute Gastroenteritis among Under 5-Years Children in Africa: A Systematic Review and Meta-Analysis
Authors: Cornelius Arome Omatola, Ropo Ebenezer Ogunsakin, Anyebe Bernard Onoja, Martin-Luther Oseni Okolo, Joseph Abraham-Oyiguh, Kehinde Charles Mofolorunso, Phoebe Queen Akoh, Omebije Patience Adejo, Joshua Idakwo, Therisa Ojomideju Okeme, Danjuma Muhammed, David Moses Adaji, Sunday Ocholi Samson, Ruth Aminu, Monday Eneojo Akor
Abstract:
Gastroenteritis viruses are the leading etiologic agents of diarrhea in children worldwide. We present data from thirty-three (33) eligible studies published between 2003 and 2023 from African countries bearing the brunt of the virus-associated diarrheal mortality. Random effects meta-analysis with proportion, subgroups, and meta-regression analyses were employed. Overall, rotavirus with estimated pooled prevalence of 31.0% (95% CI 24.0–39.0) predominated in all primary care visits and hospitalizations, followed by norovirus, adenovirus, sapovirus, astrovirus, and aichivirus with pooled prevalence estimated at 15.0% (95% CI 12.0–20.0), 10% (95% CI 6-15), 4.0% (95% CI 2.0–6.0), 4% (95% CI 3-6), and 2.3% (95% CI 1-3), respectively. Predominant rotavirus genotype was G1P[8] (38%), followed by G3P[8] (11.7%), G9P[8] (8.7%), and G2P[4] (7.1%); although, unusual genotypes were also observed, including G3P[6] (2.7%), G8P[6] (1.7%), G1P[6] (1.5%), G10P[8] (0.9%), G8P[4] (0.5%), and G4P[8] (0.4%). The genogroup II norovirus predominated over the genogroup I-associated infections (84.6%, 613/725 vs 14.9%, 108/725), with the GII.4 (79.3%) being the most prevalent circulating genotype. In conclusion, this review showed that rotavirus remains the leading driver of viral diarrhea requiring health care visits and hospitalization among under-five years children in Africa. Thus, improved rotavirus vaccination in the region and surveillance to determine the residual burden of rotavirus and the evolving trend of other enteric viruses are needed for effective control and management of cases.Keywords: enteric viruses, rotavirus, norovirus, adenovirus, astrovirus, gastroenteritis
Procedia PDF Downloads 941867 A Middleware Management System with Supporting Holonic Modules for Reconfigurable Management System
Authors: Roscoe McLean, Jared Padayachee, Glen Bright
Abstract:
There is currently a gap in the technology covering the rapid establishment of control after a reconfiguration in a Reconfigurable Manufacturing System. This gap involves the detection of the factory floor state and the communication link between the factory floor and the high-level software. In this paper, a thin, hardware-supported Middleware Management System (MMS) is proposed and its design and implementation are discussed. The research found that a cost-effective localization technique can be combined with intelligent software to speed up the ramp-up of a reconfigured system. The MMS makes the process more intelligent, more efficient and less time-consuming, thus supporting the industrial implementation of the RMS paradigm.Keywords: intelligent systems, middleware, reconfigurable manufacturing, management system
Procedia PDF Downloads 6751866 Automating and Optimization Monitoring Prognostics for Rolling Bearing
Authors: H. Hotait, X. Chiementin, L. Rasolofondraibe
Abstract:
This paper presents a continuous work to detect the abnormal state in the rolling bearing by studying the vibration signature analysis and calculation of the remaining useful life. To achieve these aims, two methods; the first method is the classification to detect the degradation state by the AOM-OPTICS (Acousto-Optic Modulator) method. The second one is the prediction of the degradation state using least-squares support vector regression and then compared with the linear degradation model. An experimental investigation on ball-bearing was conducted to see the effectiveness of the used method by applying the acquired vibration signals. The proposed model for predicting the state of bearing gives us accurate results with the experimental and numerical data.Keywords: bearings, automatization, optimization, prognosis, classification, defect detection
Procedia PDF Downloads 1201865 Simulation and Characterization of Stretching and Folding in Microchannel Electrokinetic Flows
Authors: Justo Rodriguez, Daming Chen, Amador M. Guzman
Abstract:
The detection, treatment, and control of rapidly propagating, deadly viruses such as COVID-19, require the development of inexpensive, fast, and accurate devices to address the urgent needs of the population. Microfluidics-based sensors are amongst the different methods and techniques for detection that are easy to use. A micro analyzer is defined as a microfluidics-based sensor, composed of a network of microchannels with varying functions. Given their size, portability, and accuracy, they are proving to be more effective and convenient than other solutions. A micro analyzer based on the concept of “Lab on a Chip” presents advantages concerning other non-micro devices due to its smaller size, and it is having a better ratio between useful area and volume. The integration of multiple processes in a single microdevice reduces both the number of necessary samples and the analysis time, leading the next generation of analyzers for the health-sciences. In some applications, the flow of solution within the microchannels is originated by a pressure gradient, which can produce adverse effects on biological samples. A more efficient and less dangerous way of controlling the flow in a microchannel-based analyzer is applying an electric field to induce the fluid motion and either enhance or suppress the mixing process. Electrokinetic flows are characterized by no less than two non-dimensional parameters: the electric Rayleigh number and its geometrical aspect ratio. In this research, stable and unstable flows have been studied numerically (and when possible, will be experimental) in a T-shaped microchannel. Additionally, unstable electrokinetic flows for Rayleigh numbers higher than critical have been characterized. The flow mixing enhancement was quantified in relation to the stretching and folding that fluid particles undergo when they are subjected to supercritical electrokinetic flows. Computational simulations were carried out using a finite element-based program while working with the flow mixing concepts developed by Gollub and collaborators. Hundreds of seeded massless particles were tracked along the microchannel from the entrance to exit for both stable and unstable flows. After post-processing, their trajectories, the folding and stretching values for the different flows were found. Numerical results show that for supercritical electrokinetic flows, the enhancement effects of the folding and stretching processes become more apparent. Consequently, there is an improvement in the mixing process, ultimately leading to a more homogenous mixture.Keywords: microchannel, stretching and folding, electro kinetic flow mixing, micro-analyzer
Procedia PDF Downloads 1261864 Enhancing Security and Privacy Protocols in Telehealth: A Comprehensive Approach across IoT/Fog/Cloud Environments
Authors: Yunyong Guo, Man Wang, Bryan Guo, Nathan Guo
Abstract:
This paper introduces an advanced security and privacy model tailored for Telehealth systems, emphasizing end-to-end protection across IoT, Fog, and Cloud components. The proposed model integrates encryption, key management, intrusion detection, and privacy-preserving measures to safeguard patient data. A comprehensive simulation study evaluates the model's effectiveness in scenarios such as unauthorized access, physical breaches, and insider threats. Results indicate notable success in detecting and mitigating threats yet underscore areas for refinement. The study contributes insights into the intricate balance between security and usability in Telehealth environments, setting the stage for continued advancements.Keywords: cloud, enhancing security, fog, IoT, telehealth
Procedia PDF Downloads 781863 Integration of Magnetoresistance Sensor in Microfluidic Chip for Magnetic Particles Detection
Authors: Chao-Ming Su, Pei-Sheng Wu, Yu-Chi Kuo, Yin-Chou Huang, Tan-Yueh Chen, Jefunnie Matahum, Tzong-Rong Ger
Abstract:
Application of magnetic particles (MPs) has been applied in biomedical field for many years. There are lots of advantages through this mediator including high biocompatibility and multi-diversified bio-applications. However, current techniques for evaluating the quantity of the magnetic-labeled sample assays are rare. In this paper, a Wheatstone bridge giant magnetoresistance (GMR) sensor integrated with a homemade detecting system was fabricated and used to quantify the concentration of MPs. The homemade detecting system has shown high detecting sensitivity of 10 μg/μl of MPs with optimized parameter vertical magnetic field 100 G, horizontal magnetic field 2 G and flow rate 0.4 ml/min.Keywords: magnetic particles, magnetoresistive sensors, microfluidics, biosensor
Procedia PDF Downloads 3991862 Urdu Text Extraction Method from Images
Authors: Samabia Tehsin, Sumaira Kausar
Abstract:
Due to the vast increase in the multimedia data in recent years, efficient and robust retrieval techniques are needed to retrieve and index images/ videos. Text embedded in the images can serve as the strong retrieval tool for images. This is the reason that text extraction is an area of research with increasing attention. English text extraction is the focus of many researchers but very less work has been done on other languages like Urdu. This paper is focusing on Urdu text extraction from video frames. This paper presents a text detection feature set, which has the ability to deal up with most of the problems connected with the text extraction process. To test the validity of the method, it is tested on Urdu news dataset, which gives promising results.Keywords: caption text, content-based image retrieval, document analysis, text extraction
Procedia PDF Downloads 5161861 Imaging of Underground Targets with an Improved Back-Projection Algorithm
Authors: Alireza Akbari, Gelareh Babaee Khou
Abstract:
Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.Keywords: algorithm, back-projection, GPR, remote sensing
Procedia PDF Downloads 4521860 Detection of Chaos in General Parametric Model of Infectious Disease
Authors: Javad Khaligh, Aghileh Heydari, Ali Akbar Heydari
Abstract:
Mathematical epidemiological models for the spread of disease through a population are used to predict the prevalence of a disease or to study the impacts of treatment or prevention measures. Initial conditions for these models are measured from statistical data collected from a population since these initial conditions can never be exact, the presence of chaos in mathematical models has serious implications for the accuracy of the models as well as how epidemiologists interpret their findings. This paper confirms the chaotic behavior of a model for dengue fever and SI by investigating sensitive dependence, bifurcation, and 0-1 test under a variety of initial conditions.Keywords: epidemiological models, SEIR disease model, bifurcation, chaotic behavior, 0-1 test
Procedia PDF Downloads 3251859 Nanoimprinted-Block Copolymer-Based Porous Nanocone Substrate for SERS Enhancement
Authors: Yunha Ryu, Kyoungsik Kim
Abstract:
Raman spectroscopy is one of the most powerful techniques for chemical detection, but the low sensitivity originated from the extremely small cross-section of the Raman scattering limits the practical use of Raman spectroscopy. To overcome this problem, Surface Enhanced Raman Scattering (SERS) has been intensively studied for several decades. Because the SERS effect is mainly induced from strong electromagnetic near-field enhancement as a result of localized surface plasmon resonance of metallic nanostructures, it is important to design the plasmonic structures with high density of electromagnetic hot spots for SERS substrate. One of the useful fabrication methods is using porous nanomaterial as a template for metallic structure. Internal pores on a scale of tens of nanometers can be strong EM hotspots by confining the incident light. Also, porous structures can capture more target molecules than non-porous structures in a same detection spot thanks to the large surface area. Herein we report the facile fabrication method of porous SERS substrate by integrating solvent-assisted nanoimprint lithography and selective etching of block copolymer. We obtained nanostructures with high porosity via simple selective etching of the one microdomain of the diblock copolymer. Furthermore, we imprinted of the nanocone patterns into the spin-coated flat block copolymer film to make three-dimensional SERS substrate for the high density of SERS hot spots as well as large surface area. We used solvent-assisted nanoimprint lithography (SAIL) to reduce the fabrication time and cost for patterning BCP film by taking advantage of a solvent which dissolves both polystyrenre and poly(methyl methacrylate) domain of the block copolymer, and thus block copolymer film was molded under the low temperature and atmospheric pressure in a short time. After Ag deposition, we measured Raman intensity of dye molecules adsorbed on the fabricated structure. Compared to the Raman signals of Ag coated solid nanocone, porous nanocone showed 10 times higher Raman intensity at 1510 cm(-1) band. In conclusion, we fabricated porous metallic nanocone arrays with high density electromagnetic hotspots by templating nanoimprinted diblock copolymer with selective etching and demonstrated its capability as an effective SERS substrate.Keywords: block copolymer, porous nanostructure, solvent-assisted nanoimprint, surface-enhanced Raman spectroscopy
Procedia PDF Downloads 6251858 Humoral and Cellular Immune Responses to Major Human Cytomegalovirus Antigens in Mice Model
Authors: S. Essa, H. Safar, R. Raghupathy
Abstract:
Human cytomegalovirus (CMV) continues to be a source of severe complications to immunologically immature and immune-compromised hosts. Effective CMV vaccine that diminishes CMV disease in transplant patients and avoids congenital infection remains of high importance as no approved vaccines exist. Though the exact links of defense mechanisms are unidentified, viral-specific antibodies and Th1/Th2 cytokine responses have been involved in controlling viral infections. CMV envelope glycoprotein B (UL55/gB), the matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and the assembly protein UL80a/pp38 are known to be targets of antiviral immune responses. In this study, mice were immunized with five HCMV antigens (UL32/pp150, UL80a/pp38, UL99/pp28, and UL83/pp65), and serum samples were collected and evaluated for eliciting viral-specific antibody responses. Moreover, Splenocytes were collected, stimulated, and assessed for cytokine responses. The results demonstrated a CMV-antigen-specific antibody response to pp38 and pp65 (E/C >2.0). The highest titers were detected with pp38 (average E/C 16.275) followed by pp65 (average E/C 7.72). Compared to control cells, splenocytes from PP38 antigen immunized mice gave a significantly higher concentration of GM-CSF, IFN-γ, IL-2 IL-4, IL-5, and IL-17A (P<0.05). Also, splenocytes from pp65 antigen immunized mice resulted in a significantly higher concentration of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF- α. The designation of target CMV peptides by identifying viral-specific antibodies and cytokine responses is vital for understanding the protective immune mechanisms during CMV infection and identifying appropriate viral antigens to develop novel vaccines.Keywords: hepatitis C virus, peripheral blood mononuclear cells, neutrophils, cytokines
Procedia PDF Downloads 1391857 Quality and Shelf life of UHT Milk Produced in Tripoli, Libya
Authors: Faozia A. S. Abuhtana, Yahia S. Abujnah, Said O. Gnann
Abstract:
Ultra High Temperature (UHT) processed milk is widely distributed and preferred in numerous countries all over the world due its relatively high quality and long shelf life. Because of the notable high consumption rate of UHT in Libya in addition to negligible studies related to such product on the local level, this study was designed to assess the shelf life of locally produced as well as imported reconstituted sterilized whole milk samples marketed in Tripoli, Libya . Four locally produced vs. three imported brands were used in this study. All samples were stored at room temperature (25± 2C ) for 8 month long period, and subjected to physical, chemical, microbiological and sensory tests. These tests included : measurement of pH, specific gravity, percent acidity, and determination of fat, protein and melamine content. Microbiological tests included total aerobic count, total psychotropic bacteria, total spore forming bacteria and total coliform counts. Results indicated no detection of microbial growth of any type during the study period, in addition to no detection of melamine in all samples. On the other hand, a gradual decline in pH accompanied with gradual increase in % acidity of both locally produced and imported samples was observed. Such changes in both pH and % acidity reached their lowest and highest values respectively during the 24th week of storage. For instance pH values were (6.40, 6.55, 6.55, 6.15) and (6.30, 6.50, 6.20) for local and imported brands respectively. On the other hand, % acidity reached (0.185, 0181, 0170, 0183) and (0180, 0.180, 0.171) at the 24th week for local and imported brands respectively. Similar pattern of decline was also observed in specific gravity, fat and protein content in some local and imported samples especially at later stages of the study. In both cases, some of the recorded pH values, % acidity, sp. gravity and fat content were in violation of the accepted limits set by Libyan standard no. 356 for sterilized milk. Such changes in pH, % acidity and other UHT sterilized milk constituents during storage were coincided with a gradual decrease in the degree of acceptance of the stored milk samples of both types as shown by sensory scores recorded by the panelists. In either case degree of acceptance was significantly low at late stages of storage and most milk samples became relatively unacceptable after the 18th and 20th week for both untrained and trained panelists respectively.Keywords: UHT milk, shelf life, quality, gravity, bacteria
Procedia PDF Downloads 3381856 The Effect of the COVID-19 on Alzheimer’s Disease
Authors: Ayşe Defne Öz, Özlem Bozkurt
Abstract:
Alzheimer's Disease (AD) is counted as one of the most important global health problems and the main cause of dementia. The term dementia refers to a wide spectrum of disorders characterized by global, chronic, and generally irreversible cognitive deterioration. It is estimated that %60 % to 80 of the cases of dementia are because of AD. Alzheimer's is a slowly progressive brain disease. The reason for AD is unknown to the author's best knowledge, yet it is one of the topics that is most researched. AD shows the histopathologically abnormal accumulation of the protein beta-amyloid (plague) outside neurons and twisted strands of the protein tau (tangles) inside neurons in the brain. These changes are accompanied by damage to the brain tissue and the death of neurons. AD causes people to have difficulty remembering names or conversations. Some of the later symptoms are difficulty in talking and walking. Alzheimer's Disease is elevated by the illness and mortality of COVID-19. COVID-19 has affected many lives globally and had profound effects on human lives. COVID-19 is caused by SARS-CoV-2, which is a virus that attacks the respiratory and central nervous system and has neuroinvasive potential. More than %80 of COVID-19 patients have ageusia or anosmia, representing the pathognomic features of the disease. Patients with dementia are frail, and with the COVID-19 pandemic, including isolation, cognitive decline may exacerbate. Furthermore, patients with AD can be unable to follow the directions, such as covering their mouth and nose while coughing and can live in nursing homes which makes them more open to being infected. As COVID-19 is highly infectious and its management requires isolation and quarantine, the need for caregivers for AD management conflicts with that of COVID-19 and adds an extra burden on AD patients, caregivers, families, society, and the economy. Due to the entry of SARS-CoV-2 into the central nervous system, inflammation caused by COVID-19, prolonged hospitalization, and delirium, it has been reported that COVID-19 causes many neurological disorders and predisposition to AD.Keywords: Alzheimer's disease, COVID-19, dementia, SARS-CoV-2
Procedia PDF Downloads 761855 Acrylic Microspheres-Based Microbial Bio-Optode for Nitrite Ion Detection
Authors: Siti Nur Syazni Mohd Zuki, Tan Ling Ling, Nina Suhaity Azmi, Chong Kwok Feng, Lee Yook Heng
Abstract:
Nitrite (NO2-) ion is used prevalently as a preservative in processed meat. Elevated levels of nitrite also found in edible bird’s nests (EBNs). Consumption of NO2- ion at levels above the health-based risk may cause cancer in humans. Spectrophotometric Griess test is the simplest established standard method for NO2- ion detection, however, it requires careful control of pH of each reaction step and susceptible to strong oxidants and dyeing interferences. Other traditional methods rely on the use of laboratory-scale instruments such as GC-MS, HPLC and ion chromatography, which cannot give real-time response. Therefore, it is of significant need for devices capable of measuring nitrite concentration in-situ, rapidly and without reagents, sample pretreatment or extraction step. Herein, we constructed a microspheres-based microbial optode for visual quantitation of NO2- ion. Raoutella planticola, the bacterium expressing NAD(P)H nitrite reductase (NiR) enzyme has been successfully extracted by microbial technique from EBN collected from local birdhouse. The whole cells and the lipophilic Nile Blue chromoionophore were physically absorbed on the photocurable poly(n-butyl acrylate-N-acryloxysuccinimide) [poly (nBA-NAS)] microspheres, whilst the reduced coenzyme NAD(P)H was covalently immobilized on the succinimide-functionalized acrylic microspheres to produce a reagentless biosensing system. Upon the NiR enzyme catalyzes the oxidation of NAD(P)H to NAD(P)+, NO2- ion is reduced to ammonium hydroxide, and that a colour change from blue to pink of the immobilized Nile Blue chromoionophore is perceived as a result of deprotonation reaction increasing the local pH in the microspheres membrane. The microspheres-based optosensor was optimized with a reflectance spectrophotometer at 639 nm and pH 8. The resulting microbial bio-optode membrane could quantify NO2- ion at 0.1 ppm and had a linear response up to 400 ppm. Due to the large surface area to mass ratio of the acrylic microspheres, it allows efficient solid state diffusional mass transfer of the substrate to the bio-recognition phase, and achieve the steady state response as fast as 5 min. The proposed optical microbial biosensor requires no sample pre-treatment step and possesses high stability as the whole cell biocatalyst provides protection to the enzymes from interfering substances, hence it is suitable for measurements in contaminated samples.Keywords: acrylic microspheres, microbial bio-optode, nitrite ion, reflectometric
Procedia PDF Downloads 448