Search results for: shear Mechanical force (SMF)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6542

Search results for: shear Mechanical force (SMF)

4382 Convergence of Media in New Era

Authors: Mohamad Reza Asariha

Abstract:

The development and extension of modern communication innovations at an extraordinary speed has caused crucial changes in all financial, social, social and political areas of the world. The improvement of toady and cable innovations, in expansion to expanding the generation and dissemination needs of worldwide programs; the financial defense made it more appealing. The alter of the administration of mechanical economy to data economy and benefit economy in created nations brought approximately uncommon advancements within the standards of world exchange and as a result, it caused the extension of media organizations in outside measurements, and the advancement of financial speculations in many Asian nations, beside the worldwide demand for the utilization of media merchandise, made new markets, and the media both within the household scene of the nations and within the universal field. Universal and financial are of great significance and have and viable and compelling nearness within the condition of picking up, keeping up and expanding financial control and riches within the world. Moreover, mechanical progresses and mechanical joining are critical components in media auxiliary alter. This auxiliary alter took put beneath the impact of digitalization. That’s, the method that broke the boundaries between electronic media administrations. Until presently, the direction of mass media was totally subordinate on certain styles of data transmission that were for the most part utilized. Digitization made it conceivable for any content to be effortlessly transmitted through distinctive electronic transmission styles, and this media merging has had clear impacts on media approaches and the way mass media are controlled.

Keywords: media, digital era, digital ages, media convergence

Procedia PDF Downloads 56
4381 Numerical Simulation of Precast Concrete Panels for Airfield Pavement

Authors: Josef Novák, Alena Kohoutková, Vladimír Křístek, Jan Vodička

Abstract:

Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement.

Keywords: nonlinear analysis, numerical simulation, precast concrete, pavement

Procedia PDF Downloads 242
4380 Elaboration and Characterization of PP/TiO2 Composites

Authors: F. Z. Benabid, S. Kridi, F. Zouai, D. Benachour

Abstract:

The aim of present work is to characterize the PP/TiO2 blends as composites, and study the effect of TiO2 on properties of different compositions and the evaluation of the effectiveness of the method used for filler treatment. Nanocomposite samples were synthesized by molten route in an internal mixer. The TiO2 nanoparticles were treated with stearic acid in order to obtain a good dispersion, and the demonstration of the effectiveness of the treatment on the morphology and roughness of the nanofiller was established by microstructural analysis by FTIR and AFM. The various developed nanocomposite compositions were characterized by different methods; i.e. FTIR, XRD, SEM and optical microscopy. Rheological, dielectric and mechanical studies were also performed. The results showed a remarkable increase in the impact strength results which increased about 39% compared to neat PP. The rheological study showed an increase in the fluidity in all developed composite compositions, involved by the good dispersion of TiO2 particles.

Keywords: composites, PP, TiO2, comixing, mechanical treatment

Procedia PDF Downloads 261
4379 Mechanical and Biodegradability of Porous Poly-ε-Caprolactone/Polyethylene Glycol Copolymer-Reinforced Cellulose Nanofibers for Soft Tissue Engineering Applications

Authors: Mustafa Abu Ghalia, Mohammed Seddik

Abstract:

The design and development of a new class of biomaterial has gained particular interest in producing polymer scaffold for biomedical applications. Improving mechanical properties, biological and controlling pores scaffold are important factors to provide appropriate biomaterial for implement in soft tissue repair and regeneration. In this study, poly-ε-caprolactone (PCL) /polyethylene glycol (PEG) copolymer (80/20) incorporated with CNF scaffolds were made employing solvent casting and particulate leaching methods. Four mass percentages of CNF (1, 2.5, 5, and 10 wt.%) were integrated into the copolymer through a silane coupling agent. Mechanical properties were determined using Tensile Tester data acquisition to investigate the effect of porosity, pore size, and CNF contents. Tensile strength obtained for PCL/PEG- 5 wt.% CNF was 16 MPa, which drastically decreased after creating a porous structure to 7.1 MPa. The optimum parameters of the results were found to be 5 wt.% for CNF, 240 μm for pore size, and 83% for porosity. Scanning electron microscopy (SEM) micrograph reveals that consistent pore size and regular pore shape were accomplished after the addition of CNF-5 wt. % into PCL/PEG. The results of mass loss of PCL/PEG reinforced-CNF 1% have clearly enhanced to double values compared with PCL/PEG copolymer and three times with PCL/PEG scaffold-CNF 1%. In addition, all PCL/PEG reinforced and scaffold- CNF were partially disintegrated under composting conditions confirming their biodegradable behavior. This also provides a possible solution for the end life of these biomaterials.

Keywords: PCL/PEG, cellulose nanofibers, tissue engineering, biodegradation, compost polymers

Procedia PDF Downloads 45
4378 Heat and Mass Transfer Study of Supercooled Large Droplet Icing

Authors: Du Yanxia, Stephan E. Bansmer, Gui Yewei, Xiao Guangming, Yang Xiaofeng

Abstract:

The heat and mass transfer characteristics of icing coupled with film flow is studied and the coupled model of the thermal behavior with the flow simulation by single-step method is developed. The behavior of ice and water was analyzed. The results show that under supercooled large droplet (SLD) icing conditions, the film flow is an important phonomena in icing accretion process. The pressure gradient, gravity and shear stress are the main factors affecting the film flow on icing surface, which has important influence on the shape and rate of icing. To predict SLD ice accretion accurately, the heat and mass transfer of ice and film flow should be taken into account.

Keywords: SLD, aircraft, icing, heat and mass transfer

Procedia PDF Downloads 614
4377 Jute Based Biocomposites: The Future of Automobiles

Authors: D. P. Ray, L. Ammayappan, S. Debnath, R. K. Ghosh, D. Mondal, S. Dasgupta, S. Islam, S. Chakroborty, P. K. Ganguly, D. Nag

Abstract:

Nature being bountiful is generous enough to provide rich resources to mankind. These resources can be used as an alternative to synthetics, thereby reducing the chances of environmental pollution. Natural fibre based composites have emerged as a successful trend in recent automobile industry. Natural fibre based composites used in automobile industries not only reduces their fuel consumption but also do not pose any health hazards. In spite of the use of natural fibre based bio composite in automobile industries, its use is only being limited to interior products. However, its major drawbacks which contributed to limited scope in the field of industry are reduced durability and mechanical strength. Thereby, the use of natural fibre based bio composites as headliner in case of automobile industries is also not successfully deployed. Out of all the natural fibres available, jute can widely be used as automobile parts because of its easy availability, comparatively higher specific strength, lower density, low thermal conductivity and most importantly its non polluting and non abrasive nature. Various research outcomes in the field of jute based biocomposites for the use of automobile industries has not successfully being deployed due to certain inherent problem of the fibre. Jute being hydrophilic in nature is not readily adhered to the hydrophobic polyester resin. Therefore introduction of a chemical compatibilizer, in the preparation of jute based composites have been tested to enhance the mechanical and durable properties of the material to a greater extent. This present work therefore focuses on the synthesis of a suitable compatibilizer, acting as a chemical bridge between the polar jute fabric and the non polar resin matrix. This in turn results in imparting better interfacial bonding between the two, thereby inducing higher mechanical strength. These coupling treated fabrics are casted into composites and tested for their mechanical properties. The test reports show a remarkable change in all of its properties. The durability test was performed by soil burial test method.

Keywords: jute, automobile industry, biodegradability, chemical compatibilizer

Procedia PDF Downloads 441
4376 An Electromechanical Device to Use in Road Pavements to Convert Vehicles Mechanical Energy into Electrical Energy

Authors: Francisco Duarte, Adelino Ferreira, Paulo Fael

Abstract:

With the growing need for alternative energy sources, research into energy harvesting technologies has increased considerably in recent years. The particular case of energy harvesting on road pavements is a very recent area of research, with different technologies having been developed in recent years. However, none of them have presented high conversion efficiencies nor technical or economic viability. This paper deals with the development of a mechanical system to implement on a road pavement energy harvesting electromechanical device, to transmit energy from the device surface to an electrical generator. The main goal is to quantify the energy harvesting, transmission and conversion efficiency of the proposed system and compare it with existing systems. Conclusions about the system’s efficiency are presented.

Keywords: road pavement, energy harvesting, energy conversion, system modelling

Procedia PDF Downloads 310
4375 Effect of Hot Extrusion on the Mechanical and Corrosion Properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn Alloys for Medical Application

Authors: V. E. Bazhenov, A. V. Li, A. A. Komissarov, A. V. Koltygin, S. A. Tavolzhanskii, O. O. Voropaeva, A. M. Mukhametshina, A. A. Tokar, V. A. Bautin

Abstract:

Magnesium-based alloys are considered as effective materials in the development of biodegradable implants. The magnesium alloys containing Mg, Zn, Ca as an alloying element are the subject of the particular interest. These elements are the nutrients for the human body, which provide their high biocompatibility. In this work, we investigated the effect of severe plastic deformation (SPD) on the mechanical and corrosion properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn alloys containing from 2 to 4 wt.% Zn; 0.7 wt.% Ca and up to 1 wt.% Mn. Hot extrusion was used as a method of intensive plastic deformation. The temperature of hot extrusion was set to 220 °C and 300 °C. Metallographic analysis after hot extrusion shows that the grain size in the studied alloys depends on the deformation temperature. The grain size for all of investigated alloys is in the range from 3 to 7 microns, and 3 μm corresponds to the extrusion temperature of 220 °C. Analysis of mechanical properties after extrusion shows that extrusion at a temperature of 220 °C and alloying with Mn increase the strength characteristics and decrease the ductility of studied alloys. A slight anisotropy of properties in the longitudinal and transverse directions was also observed. Measurements of corrosion properties revealed that the addition of Mn to Mg-Zn-Ca alloys reduces the corrosion rate. On the other hand, increasing the Zn content in alloys increases the corrosion rate. The extrusion temperature practically does not affect the corrosion rate. Acknowledgement: The authors gratefully acknowledge the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No K2-2019-008), implemented by a governmental decree dated 16th of March 2013, N 211.

Keywords: biocompatibility, hot extrusion, magnesium alloys, severe plastic deformation, properties

Procedia PDF Downloads 93
4374 Theoretical Prediction of the Structural, Elastic, Electronic, Optical, and Thermal Properties of Cubic Perovskites CsXF3 (X = Ca, Sr, and Hg) under Pressure Effect

Authors: M. A. Ghebouli, A. Bouhemadou, H. Choutri, L. Louaila

Abstract:

Some physical properties of the cubic perovskites CsXF3 (X = Sr, Ca, and Hg) have been investigated using pseudopotential plane–wave (PP-PW) method based on the density functional theory (DFT). The calculated lattice constants within GGA (PBE) and LDA (CA-PZ) agree reasonably with the available experiment data. The elastic constants and their pressure derivatives are predicted using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus, Poisson’s ratio and Lamé’s constants for ideal polycrystalline aggregates. The analysis of B/G ratio indicates that CsXF3 (X = Ca, Sr, and Hg) are ductile materials. The thermal effect on the volume, bulk modulus, heat capacities CV, CP, and Debye temperature was predicted.

Keywords: perovskite, PP-PW method, elastic constants, electronic band structure

Procedia PDF Downloads 420
4373 A Fabrication Method for PEDOT: PSS Based Humidity Sensor

Authors: Nazia Tarannum, M. Ayaz Ahmad

Abstract:

The main goal of this article is to report some interesting features for the fabrication/design of PEDOT:PSS based humidity sensor. Here first we fabricated humidity sensor and then studied its electro-mechanical characteristics. In general the humidity plays an important role in various private and government sectors all over the world. Monitoring and controlling the humidity is a great task for the reliable operation of various systems. The PEDOT:PSS is very much promising humidity sensor and also is fabricated by performing various analyses. The interdigited electrode (IDE) has channel length 200 microns prepared by lithography. Lithography of IDE was done on PPR coated glass substrate using negative mask and exposing it with UV light for 10 secs via DSA. During the above said fabrication, we have taken account for the following steps: •Plasma ashing of IDE •Spincoating of PEDOT:PSS was done @3000 rpm on IDE substrace •Baked the substrace at 130 °C up to time limit 15 mins. •Resistance measurement using Labtracer 2.9 software via Keithley 2400source meter.

Keywords: fabrication method, PEDOT:PSS material, humidity sensor, electro-mechanical

Procedia PDF Downloads 335
4372 Study of the Morphological and Optical Properties of Nanometric NiO

Authors: Nassima Hamzaoui, Mostefa Ghamnia

Abstract:

Nanoscale thin films of pure and Mn-doped Nickel oxide (NiO) were prepared by dissolving nickel chloride hexahydrate (NiCl2, 6H2O) and manganese chloride tetrahydrate (MnCl2,4H2O) under experimental conditions. The resulting solution was stirred at room temperature for 30 OC minutes in order to obtain homogeneity. The solution was sprayed onto heated glass substrates. The films obtained were characterized by X-ray diffraction to verify crystallinity. Atomic force microscopy (AFM) reveals surface topographical structure. UV-visible spectroscopy shows good transparency of the NiO layers.

Keywords: films, NiO, AFM, X-ray diffraction

Procedia PDF Downloads 40
4371 The Analysis of Own Signals of PM Electrical Machines – Example of Eccentricity

Authors: Marcin Baranski

Abstract:

This article presents a vibration diagnostic method designed for permanent magnets (PM) traction motors. Those machines are commonly used in traction drives of electrical vehicles. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. This work presents: field-circuit model, results of static tests, results of calculations and simulations.

Keywords: electrical vehicle, permanent magnet, traction drive, vibrations, electrical machine, eccentricity

Procedia PDF Downloads 611
4370 Amrita Bose-Einstein Condensate Solution Formed by Gold Nanoparticles Laser Fusion and Atmospheric Water Generation

Authors: Montree Bunruanses, Preecha Yupapin

Abstract:

In this work, the quantum material called Amrita (elixir) is made from top-down gold into nanometer particles by fusing 99% gold with a laser and mixing it with drinking water using the atmospheric water (AWG) production system, which is made of water with air. The high energy laser power destroyed the four natural force bindings from gravity-weak-electromagnetic and strong coupling forces, where finally it was the purified Bose-Einstein condensate (BEC) states. With this method, gold atoms in the form of spherical single crystals with a diameter of 30-50 nanometers are obtained and used. They were modulated (activated) with a frequency generator into various matrix structures mixed with AWG water to be used in the upstream conversion (quantum reversible) process, which can be applied on humans both internally or externally by drinking or applying on the treated surfaces. Doing both space (body) and time (mind) will go back to the origin and start again from the coupling of space-time on both sides of time at fusion (strong coupling force) and push out (Big Bang) at the equilibrium point (singularity) occurs as strings and DNA with neutrinos as coupling energy. There is no distortion (purification), which is the point where time and space have not yet been determined, and there is infinite energy. Therefore, the upstream conversion is performed. It is reforming DNA to make it be purified. The use of Amrita is a method used for people who cannot meditate (quantum meditation). Various cases were applied, where the results show that the Amrita can make the body and the mind return to their pure origins and begin the downstream process with the Big Bang movement, quantum communication in all dimensions, DNA reformation, frequency filtering, crystal body forming, broadband quantum communication networks, black hole forming, quantum consciousness, body and mind healing, etc.

Keywords: quantum materials, quantum meditation, quantum reversible, Bose-Einstein condensate

Procedia PDF Downloads 53
4369 Analytical Technique for Definition of Internal Forces in Links of Robotic Systems and Mechanisms with Statically Indeterminate and Determinate Structures Taking into Account the Distributed Dynamical Loads and Concentrated Forces

Authors: Saltanat Zhilkibayeva, Muratulla Utenov, Nurzhan Utenov

Abstract:

The distributed inertia forces of complex nature appear in links of rod mechanisms within the motion process. Such loads raise a number of problems, as the problems of destruction caused by a large force of inertia; elastic deformation of the mechanism can be considerable, that can bring the mechanism out of action. In this work, a new analytical approach for the definition of internal forces in links of robotic systems and mechanisms with statically indeterminate and determinate structures taking into account the distributed inertial and concentrated forces is proposed. The relations between the intensity of distributed inertia forces and link weight with geometrical, physical and kinematic characteristics are determined in this work. The distribution laws of inertia forces and dead weight make it possible at each position of links to deduce the laws of distribution of internal forces along the axis of the link, in which loads are found at any point of the link. The approximation matrixes of forces of an element under the action of distributed inertia loads with the trapezoidal intensity are defined. The obtained approximation matrixes establish the dependence between the force vector in any cross-section of the element and the force vector in calculated cross-sections, as well as allow defining the physical characteristics of the element, i.e., compliance matrix of discrete elements. Hence, the compliance matrixes of an element under the action of distributed inertial loads of trapezoidal shape along the axis of the element are determined. The internal loads of each continual link are unambiguously determined by a set of internal loads in its separate cross-sections and by the approximation matrixes. Therefore, the task is reduced to the calculation of internal forces in a final number of cross-sections of elements. Consequently, it leads to a discrete model of elastic calculation of links of rod mechanisms. The discrete model of the elements of mechanisms and robotic systems and their discrete model as a whole are constructed. The dynamic equilibrium equations for the discrete model of the elements are also received in this work as well as the equilibrium equations of the pin and rigid joints expressed through required parameters of internal forces. Obtained systems of dynamic equilibrium equations are sufficient for the definition of internal forces in links of mechanisms, which structure is statically definable. For determination of internal forces of statically indeterminate mechanisms (in the way of determination of internal forces), it is necessary to build a compliance matrix for the entire discrete model of the rod mechanism, that is reached in this work. As a result by means of developed technique the programs in the MAPLE18 system are made and animations of the motion of the fourth class mechanisms of statically determinate and statically indeterminate structures with construction on links the intensity of cross and axial distributed inertial loads, the bending moments, cross and axial forces, depending on kinematic characteristics of links are obtained.

Keywords: distributed inertial forces, internal forces, statically determinate mechanisms, statically indeterminate mechanisms

Procedia PDF Downloads 206
4368 Calculation of Stress Intensity Factors in Rotating Disks Containing 3D Semi-Elliptical Cracks

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Initiation and propagation of cracks may cause catastrophic failures in rotating disks, and hence determination of fracture parameter in rotating disks under the different working condition is very important issue. In this paper, a comprehensive study of stress intensity factors in rotating disks containing 3D semi-elliptical cracks under the different working condition is investigated. In this regard, after verification of modeling and analytical procedure, the effects of mechanical properties, rotational velocity, and orientation of cracks on Stress Intensity Factors (SIF) in rotating disks under centrifugal loading are investigated. Also, the effects of using composite patch in reduction of SIF in rotating disks are studied. By that way, the effects of patching design variables like mechanical properties, thickness, and ply angle are investigated individually.

Keywords: stress intensity factor, semi-elliptical crack, rotating disk, finite element analysis (FEA)

Procedia PDF Downloads 348
4367 Fatigue Behavior of Dissimilar Welded Monel400 and SS316 by Frictions Stir Welding

Authors: Aboozar Aghaei

Abstract:

In the present work, the dissimilar Monel400 and SS316 were joined by friction stir welding (FSW). The applied rotating speed was 400 rpm, whereas the traverse speed varied between 50 and 150 mm/min. At a constant rotating speed, the sound welds were obtained at the welding speeds of 50 and 100 mm/min. However, a groove-like defect was formed when the welding speed exceeded 100 mm/min. The mechanical properties of the joints were evaluated using tensile and fatigue tests. The fatigue strength of dissimilar FSWed specimens was higher than that of both Monel400 and SS316. To study the failure behavior of FSWed specimens, the fracture surfaces were analyzed using a scanning electron microscope (SEM). The failure analysis indicates that different mechanisms may contribute to the fracture of welds. This was attributed to the dissimilar characteristics of dissimilar materials exhibiting different failure behaviors.

Keywords: frictions stir welding (FSW), stainless steel, mechanical properties, Monel400

Procedia PDF Downloads 65
4366 Free Vibration Analysis of Symmetric Sandwich Beams

Authors: Ibnorachid Zakaria, El Bikri Khalid, Benamar Rhali, Farah Abdoun

Abstract:

The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave like Euler-Bernoulli beams while the core layer like a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters for a clamped-clamped and simple supported-simple-supported beams. The effects of material properties and geometric parameters on the natural frequencies are also investigated.

Keywords: linear vibration, sandwich, shear deformation, Timoshenko zig-zag model

Procedia PDF Downloads 458
4365 Property and Inheritance Rights for Women Whose Husbands Disappeared during the Last War in Kosovo: Case Studies: Krusha e Vogël and Krusha e Madhe, Region of Prizren, Kosovo

Authors: Venera Goxha

Abstract:

Property and inheritance rights for women whose husbands were killed or disappeared during the last war in Kosovo is the purpose of this study, respectively, the access of these women to family real estate. The case study is about women whose husbands were killed or disappeared during the last war in Kosovo and who, on this occasion, earned the title of 'widow'.The research is conducted in the villages of Krusha e Vogël - Municipality of Prizren, and Krusha e Madhe - Municipality of Rahovec, one of the most suffered villages from the recent war in Kosovo. Krusha e Vogël, as a result of the recent war, has 113 male victims, or 70% of all men from the age of 13 to the age of 77, leaving widows and orphans. In the village of Krusha e Madhe, 243 Albanians were massacred by Serbs living in the same village, leaving widows and orphaned children alive. According to these data, most of the Krushian families, as heads of households, have surviving wives and widows. Therefore, being the head of the family and facing a mountain of challenges, such as economic, social, and cultural, the issue of how these women have approached the property and family heritage is considered. The equal right to property and inheritance is a right that is guaranteed to women with all legislation in force, starting from the Constitution of the Republic of Kosovo onwards. Article 7 of the Constitution of Kosovo and the subsequent legal framework recognizes the equality of women and the equal division of property between heirs, daughters, and sons. However, some of the legislation does not successfully reflect the current reality in Kosovo. All these ambiguities follow from the ‘patriarchal law’ of the Albanians in the time of the early Middle Ages, later known as the ‘Kanun of Lekë Dukagjini’. At the time it was written and applied, it weighted the law in force, but later over time, it passed into tradition, culture, and mentality. The Kanun of Lekë Dukagjini, in no context, has treated women equally to men. The female, according to the Kanun, was a working tool, a creature to be born, to work, to carry, to raise children, and to remain faithful to the husband even when the husband is not faithful.

Keywords: property rights, heritage, widows, code

Procedia PDF Downloads 47
4364 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher

Abstract:

The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with a burgers vector. The twinning mechanism of plastic strain is not observed in Ti-6Al-4V, therefore, it is not considered in the present modeling. Nine representative elementary volumes (REV) are generated with Voronoi tessellations. For each individual equiaxed grain, the own crystallographic orientation vis-à-vis the loading is taken into account. The meshing strategy is optimized in a way to eliminate the meshing effects and at the same time to allow calculating the individual grain size. The stress and strain fields are determined in each Gauss point of the mesh element. A post-treatment is used to calculate the local behavior (in each grain) and then by appropriate homogenization, the macroscopic behavior is calculated. The developed model is validated by comparing the numerical simulation results with an experimental data reported in the literature. It is observed that the present model is able to predict the global mechanical behavior of Ti-6Al-4V alloy and investigate the microstructural parameters' effects. According to the simulations performed on the generated volumes (REV), the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior. The average grains size influences also the Ti-6Al-4V mechanical proprieties, especially the yield stress; by decreasing of the average grains size, the yield strength increases according to Hall-Petch relationship. The grains sizes' distribution gives to the strain fields considerable heterogeneity. By increasing grain sizes, the scattering in the localization of plastic strain is observed, thus, in certain areas the stress concentrations are stronger than other regions.

Keywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy

Procedia PDF Downloads 112
4363 A Robust Theoretical Elastoplastic Continuum Damage T-H-M Model for Rock Surrounding a Wellbore

Authors: Nikolaos Reppas, Yilin Gui, Ben Wetenhall, Colin Davie

Abstract:

Injection of CO2 inside wellbore can induce different kind of loadings that can lead to thermal, hydraulic, and mechanical changes on the surrounding rock. A dual-porosity theoretical constitutive model will be presented for the stability analysis of the wellbore during CO2 injection. An elastoplastic damage response will be considered. A bounding yield surface will be presented considering damage effects on sandstone. The main target of the research paper is to present a theoretical constitutive model that can help industries to safely store CO2 in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elasto-plastic damage Thermo-Hydraulic-Mechanical theoretical model will be validated from existing experimental data for sandstone after simulating some scenarios by using FEM on MATLAB software.

Keywords: carbon capture and storage, rock mechanics, THM effects on rock, constitutive model

Procedia PDF Downloads 138
4362 Numerical Modelling of Hydrodynamic Drag and Supercavitation Parameters for Supercavitating Torpedoes

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

In this paper, supercavitationphenomena, and parameters are explained, and hydrodynamic design approaches are investigated for supercavitating torpedoes. In addition, drag force calculation methods ofsupercavitatingvehicles are obtained. Basically, conventional heavyweight torpedoes reach up to ~50 knots by classic hydrodynamic techniques, on the other hand super cavitating torpedoes may reach up to ~200 knots, theoretically. However, in order to reachhigh speeds, hydrodynamic viscous forces have to be reduced or eliminated completely. This necessity is revived the supercavitation phenomena that is implemented to conventional torpedoes. Supercavitation is a type of cavitation, after all, it is more stable and continuous than other cavitation types. The general principle of supercavitation is to separate the underwater vehicle from water phase by surrounding the vehicle with cavitation bubbles. This situation allows the torpedo to operate at high speeds through the water being fully developed cavitation. Conventional torpedoes are entitled as supercavitating torpedoes when the torpedo moves in a cavity envelope due to cavitator in the nose section and solid fuel rocket engine in the rear section. There are two types of supercavitation phase, these are natural and artificial cavitation phases. In this study, natural cavitation is investigated on the disk cavitators based on numerical methods. Once the supercavitation characteristics and drag reduction of natural cavitationare studied on CFD platform, results are verified with the empirical equations. As supercavitation parameters cavitation number (), pressure distribution along axial axes, drag coefficient (C_?) and drag force (D), cavity wall velocity (U_?) and dimensionless cavity shape parameters, which are cavity length (L_?/d_?), cavity diameter(d_ₘ/d_?) and cavity fineness ratio (〖L_?/d〗_ₘ) are investigated and compared with empirical results. This paper has the characteristics of feasibility study to carry out numerical solutions of the supercavitation phenomena comparing with empirical equations.

Keywords: CFD, cavity envelope, high speed underwater vehicles, supercavitating flows, supercavitation, drag reduction, supercavitation parameters

Procedia PDF Downloads 155
4361 Influence of Sodium Lauryl Ether Sulfate and Curing Temperature on Behaviors of Lightweight Kaolinite-Based Geopolymer

Authors: W. Sornlar, S. Supothina, A. Wannagon

Abstract:

Lightweight geopolymer can be prepared by using some foaming agents, such as metal powders or hydrogen peroxide; however, it is difficult to control the generated cell size due to the high reactivity of the system. This study aims to investigate the influence of Sodium Lauryl Ether Sulfate (SLES) foam addition and curing temperature on the physical, mechanical, thermal, and microstructure behaviors of the lightweight kaolinite-based geopolymer. To provide porous structure, the geopolymer paste was mixed with 0-15 wt% of SLES foam before casting into the mold. Testing and characterizations were carried out after 28 days. The results showed that SLES foam generated the regular and spherical macropores, which were well distributed in the geopolymer samples. The total porosity increased as SLES foam increased, similarly as the apparent porosity and water absorption. On the other hand, the bulk density and mechanical strength decreased as SLES foam increased. Curing temperature was studied simultaneously due to it strongly affects the mechanical strength of geopolymer. In this study, rising of curing temperature from 27 to 50°C (at 75% relative humidity) improved the compressive strength of samples but deteriorated after curing at 60°C. Among them, the composition of 15 wt% SLES foam (NF15) presented the highest porosity (70.51-72.89%), the lowest density (0.68-0.73 g/cm³), and very low thermal conductivity (0.172-0.197 W/mK). It had the proper compressive strength of 4.21-4.74 MPa that can be applied for the thermal insulation.

Keywords: lightweight, kaolinite-based geopolymer, curing temperature, foaming agent, thermal conductivity

Procedia PDF Downloads 171
4360 Polydimethylsiloxane Applications in Interferometric Optical Fiber Sensors

Authors: Zeenat Parveen, Ashiq Hussain

Abstract:

This review paper consists of applications of PDMS (polydimethylsiloxane) materials for enhanced performance, optical fiber sensors in acousto-ultrasonic, mechanical measurements, current applications, sensing, measurements and interferometric optical fiber sensors. We will discuss the basic working principle of fiber optic sensing technology, various types of fiber optic and the PDMS as a coating material to increase the performance. Optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high frequency signals i.e. ultrasonic/ultrasound, and other signals such as acoustic emission and impact induced dynamic strain. Optical fiber sensors have Industrial and civil engineering applications in mechanical measurements. Sometimes it requires different configurations and parameters of sensors. Optical fiber current sensors are based on Faraday Effect due to which we obtain better performance as compared to the conventional current transformer. Recent advancement and cost reduction has simulated interest in optical fiber sensing. Optical techniques are also implemented in material measurement. Fiber optic interferometers are used to sense various physical parameters including temperature, pressure and refractive index. There are four types of interferometers i.e. Fabry–perot, Mach-Zehnder, Michelson, and Sagnac. This paper also describes the future work of fiber optic sensors.

Keywords: fiber optic sensing, PDMS materials, acoustic, ultrasound, current sensor, mechanical measurements

Procedia PDF Downloads 372
4359 Fabrication of All-Cellulose Composites from End-of-Life Textiles

Authors: Behnaz Baghaei, Mikael Skrifvars

Abstract:

Sustainability is today a trend that is seen everywhere, with no exception for the textiles 31 industry. However, there is a rather significant downside regarding how the textile industry currently operates, namely the huge amount of end-of-life textiles coming along with it. Approximately 73% of the 53 million tonnes of fibres used annually for textile production is landfilled or incinerated, while only 12% is recycled as secondary products. Mechanical recycling of end-of-life textile fabrics into yarns and fabrics was before very common, but due to the low costs for virgin man-made fibres, the current textile material composition diversity, the fibre material quality variations and the high recycling costs this route is not feasible. Another way to decrease the ever-growing pile of textile waste is to repurpose the textile. If a feasible methodology can be found to reuse end-of life textiles as secondary market products including a manufacturing process that requires rather low investment costs, then this can be highly beneficial to counteract the increasing textile waste volumes. In structural composites, glass fibre textiles are used as reinforcements, but today there is a growing interest in biocomposites where the reinforcement and/or the resin are from a biomass resource. All-cellulose composites (ACCs) are monocomponent or single polymer composites, and they are entirely made from cellulose, ideally leading to a homogeneous biocomposite. Since the matrix and the reinforcement are both made from cellulose, and therefore chemically identical, they are fully compatible with each other which allow efficient stress transfer and adhesion at their interface. Apart from improving the mechanical performance of the final products, the recycling of the composites will be facilitated. This paper reports the recycling of end-of-life cellulose containing textiles by fabrication of all-cellulose composites (ACCs). Composite laminates were prepared by using an ionic liquid (IL) in a hot process, involving a partial dissolving of the cellulose fibres. Discharged denim fabrics were used as the reinforcement while dissolved cellulose from two different cellulose resources was used as the matrix phase. Virgin cotton staple fibres and recovered cotton from polyester/cotton (polycotton) waste fabrics were used to form the matrix phase. The process comprises the dissolving 6 wt.% cellulose solution in the ionic liquid 1-butyl-3-methyl imidazolium acetate ([BMIM][Ac]), this solution acted as a precursor for the matrix component. The denim fabrics were embedded in the cellulose/IL solution after which laminates were formed, which also involved removal of the IL by washing. The effect of reuse of the recovered IL was also investigated. The mechanical properties of the obtained ACCs were determined regarding tensile, impact and flexural properties. Mechanical testing revealed that there are no clear differences between the values measured for mechanical strength and modulus of the manufactured ACCs from denim/cotton-fresh IL, denim/recovered cotton-fresh IL and denim/cotton-recycled IL. This could be due to the low weight fraction of the cellulose matrix in the final ACC laminates and presumably the denim as cellulose reinforcement strongly influences and dominates the mechanical properties. Fabricated ACC composite laminates were further characterized regarding scanning electron microscopy.

Keywords: all-cellulose composites, denim fabrics, ionic liquid, mechanical properties

Procedia PDF Downloads 101
4358 Comparative Analysis of the Expansion Rate and Soil Erodibility Factor (K) of Some Gullies in Nnewi and Nnobi, Anambra State Southeastern Nigeria

Authors: Nzereogu Stella Kosi, Igwe Ogbonnaya, Emeh Chukwuebuka Odinaka

Abstract:

A comparative analysis of the expansion rate and soil erodibility of some gullies in Nnewi and Nnobi both of Nanka Formation were studied. The study involved an integration of field observations, geotechnical analysis, slope stability analysis, multivariate statistical analysis, gully expansion rate analysis, and determination of the soil erodibility factor (K) from Revised Universal Soil Loss Equation (RUSLE). Fifteen representative gullies were studied extensively, and results reveal that the geotechnical properties of the soil, topography, vegetation cover, rainfall intensity, and the anthropogenic activities in the study area were major factors propagating and influencing the erodibility of the soils. The specific gravity of the soils ranged from 2.45-2.66 and 2.54-2.78 for Nnewi and Nnobi, respectively. Grain size distribution analysis revealed that the soils are composed of gravel (5.77-17.67%), sand (79.90-91.01%), and fines (2.36-4.05%) for Nnewi and gravel (7.01-13.65%), sand (82.47-88.67%), and fines (3.78-5.02%) for Nnobi. The soils are moderately permeable with values ranging from 2.92 x 10-5 - 6.80 x 10-4 m/sec and 2.35 x 10-6 - 3.84 x 10⁻⁴m/sec for Nnewi and Nnobi respectively. All have low cohesion values ranging from 1–5kPa and 2-5kPa and internal friction angle ranging from 29-38° and 30-34° for Nnewi and Nnobi, respectively, which suggests that the soils have low shear strength and are susceptible to shear failure. Furthermore, the compaction test revealed that the soils were loose and easily erodible with values of maximum dry density (MDD) and optimum moisture content (OMC) ranging from 1.82-2.11g/cm³ and 8.20-17.81% for Nnewi and 1.98-2.13g/cm³ and 6.00-17.80% respectively. The plasticity index (PI) of the fines showed that they are nonplastic to low plastic soils and highly liquefiable with values ranging from 0-10% and 0-9% for Nnewi and Nnobi, respectively. Multivariate statistical analyses were used to establish relationship among the determined parameters. Slope stability analysis gave factor of safety (FoS) values in the range of 0.50-0.76 and 0.82-0.95 for saturated condition and 0.73-0.98 and 0.87-1.04 for unsaturated condition for both Nnewi and Nnobi, respectively indicating that the slopes are generally unstable to critically stable. The erosion expansion rate analysis for a fifteen-year period (2005-2020) revealed an average longitudinal expansion rate of 36.05m/yr, 10.76m/yr, and 183m/yr for Nnewi, Nnobi, and Nanka type gullies, respectively. The soil erodibility factor (K) are 8.57x10⁻² and 1.62x10-4 for Nnewi and Nnobi, respectively, indicating that the soils in Nnewi have higher erodibility potentials than those of Nnobi. From the study, both the Nnewi and Nnobi areas are highly prone to erosion. However, based on the relatively lower fine content of the soil, relatively lower topography, steeper slope angle, and sparsely vegetated terrain in Nnewi, soil erodibility and gully intensity are more profound in Nnewi than Nnobi.

Keywords: soil erodibility, gully expansion, nnewi-nnobi, slope stability, factor of safety

Procedia PDF Downloads 112
4357 Agarose Based Multifunctional Nanofibrous Bandages for Wound Healing Applications

Authors: Sachin Latiyan, T. S. Sampath Kumar, Mukesh Doble

Abstract:

Natural polymer based nanofibrous wound dressings have gained increased attention because of their high surface area, bioactivity, biodegradability and resemblance to extracellular matrix. Agarose (a natural polymer) have been used largely for angiogenesis, cartilage formation and wound healing applications. However, electrospinning of agarose is tedious thereby rendering limited studies on fabrication and evaluation of agarose based nanofibrous wound dressings. Thus, present study focuses on the fabrication of agarose (10% w/v)/ polyvinyl alcohol (12% w/v) based multifunctional nanofibrous scaffolds. Zinc citrate (1, 3 and 5% w/w of the polymer) was added as a potential antibacterial agent to combat wound infections. The fabricated scaffolds exhibit ~500% swelling (in phosphate buffer saline) with enhanced mechanical strength which is suitable for most of the wound healing applications. In vitro studies were found to reveal an increased migration and proliferation of L929 mouse fibroblasts with agarose blends w.r.t to the control. The fabricated dressings were found to be effective against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacterial strains. Hence, a multifunctional (as provides effective swelling and mechanical support along with antibacterial property), natural product based, eco-friendly scaffold was successfully fabricated to serve as a potential wound dressing material.

Keywords: antibacterial dressings, benign solvent, nanofibrous agarose, biocompatibility, enhanced swelling and mechanical strength, biopolymeric dressings

Procedia PDF Downloads 77
4356 Graphic Procession Unit-Based Parallel Processing for Inverse Computation of Full-Field Material Properties Based on Quantitative Laser Ultrasound Visualization

Authors: Sheng-Po Tseng, Che-Hua Yang

Abstract:

Motivation and Objective: Ultrasonic guided waves become an important tool for nondestructive evaluation of structures and components. Guided waves are used for the purpose of identifying defects or evaluating material properties in a nondestructive way. While guided waves are applied for evaluating material properties, instead of knowing the properties directly, preliminary signals such as time domain signals or frequency domain spectra are first revealed. With the measured ultrasound data, inversion calculation can be further employed to obtain the desired mechanical properties. Methods: This research is development of high speed inversion calculation technique for obtaining full-field mechanical properties from the quantitative laser ultrasound visualization system (QLUVS). The quantitative laser ultrasound visualization system (QLUVS) employs a mirror-controlled scanning pulsed laser to generate guided acoustic waves traveling in a two-dimensional target. Guided waves are detected with a piezoelectric transducer located at a fixed location. With a gyro-scanning of the generation source, the QLUVS has the advantage of fast, full-field, and quantitative inspection. Results and Discussions: This research introduces two important tools to improve the computation efficiency. Firstly, graphic procession unit (GPU) with large amount of cores are introduced. Furthermore, combining the CPU and GPU cores, parallel procession scheme is developed for the inversion of full-field mechanical properties based on the QLUVS data. The newly developed inversion scheme is applied to investigate the computation efficiency for single-layered and double-layered plate-like samples. The computation efficiency is shown to be 80 times faster than unparalleled computation scheme. Conclusions: This research demonstrates a high-speed inversion technique for the characterization of full-field material properties based on quantitative laser ultrasound visualization system. Significant computation efficiency is shown, however not reaching the limit yet. Further improvement can be reached by improving the parallel computation. Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results. The developed high speed computation scheme is ready for applications where full-field mechanical properties are needed in a nondestructive and nearly real-time way.

Keywords: guided waves, material characterization, nondestructive evaluation, parallel processing

Procedia PDF Downloads 187
4355 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock

Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,

Abstract:

Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.

Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure

Procedia PDF Downloads 388
4354 Design and Analysis of a Rear Bumper of an Automobile with a Hybrid Polymer Composite of Oil Palm Empty Fruit Bunch Fiber/Banana Fibres

Authors: S. O. Ologe, U. P. Anaidhuno, Duru C. A.

Abstract:

This research investigated the design and analysis of a rear bumper of an automobile with a hybrid polymer composite of OPEBF/Banana fibre. OPEBF/Banana fibre hybrid polymers composite is of low cost, lightweight, as well as possesses satisfactory mechanical properties. In this research work, hybrid composites have been developed using the hand layup technique based on the percentage combination of OPEBF/Banana fibre at 10:90, 20:80, 30:70, 40:60, 50:50. 60:40, 70:30. 20:80, 90:10, 95:5. The mechanical properties in the context of compressive strength of 65MPa, a flexural strength of 20MPa, and impact strength of 3.25Joule were observed, and the simulation analysis on the induction of 500N load at the factor of safety of 3 was observed to have displayed a good strength suitable for automobile bumper with the advantages of weight reduction.

Keywords: OPEBF, Banana, fibre, hybrid

Procedia PDF Downloads 95
4353 Fatigue Behavior of Dissimilar Welded Monel400 and SS316 by Friction Stir Welding

Authors: Aboozar Aghaei, Kamran Dehghani

Abstract:

In the present work, the dissimilar Monel400 and SS316 were joined by friction stir welding (FSW). The applied rotating speed was 400 rpm, whereas the traverse speed varied between 50 and 150 mm/min. At a constant rotating speed, the sound welds were obtained at the welding speeds of 50 and 100 mm/min. However, a groove-like defect was formed when the welding speed exceeded 100 mm/min. The mechanical properties of the joints were evaluated using tensile and fatigue tests. The fatigue strength of dissimilar FSWed specimens was higher than that of both Monel400 and SS316. To study the failure behavior of FSWed specimens, the fracture surfaces were analyzed using a scanning electron microscope (SEM). The failure analysis indicates that different mechanisms may contribute to the fracture of welds. This was attributed to the dissimilar characteristics of dissimilar materials exhibiting different failure behaviors.

Keywords: frictions stir welding, stainless steel, Monel400, mechanical properties

Procedia PDF Downloads 71