Search results for: scoring based risk assessment method
43396 Assessment of Human Factors Analysis and Classification System in Construction Accident Prevention
Authors: Zakari Mustapha, Clinton Aigbavboa, Wellington Didi Thwala
Abstract:
Majority of the incidents and accidents in complex high-risk systems that exist in the construction industry and other sectors have been attributed to unsafe acts of workers. The purpose of this paper was to asses Human Factors Analysis and Classification System (HFACS) in construction accident prevention. The study was conducted through the use of secondary data from journals, books and internet to achieve the objective of the study. The review of literature looked into details of different views from different scholars about HFACS framework in accidents investigations. It further highlighted on various sections or disciplines of accident occurrences in human performance within the construction. The findings from literature review showed that unsafe acts of a worker and unsafe working conditions are the two major causes of accident in the construction industry.Most significant factor in the cause of site accident in the construction industry is unsafe acts of a worker. The findings also show how the application of HFACS framework in the investigation of accident will lead to the identification of common trends. Further findings show that provision for the prevention of accident will be made based on past accident records to identify and prioritize where intervention is needed within the construction industry.Keywords: accident, construction, HFACS, unsafe acts
Procedia PDF Downloads 32543395 Research on the Calculation Method of Smartization Rate of Concrete Structure Building Construction
Authors: Hongyu Ye, Hong Zhang, Minjie Sun, Hongfang Xu
Abstract:
In the context of China's promotion of smart construction and building industrialization, there is a need for evaluation standards for the development of building industrialization based on assembly-type construction. However, the evaluation of smart construction remains a challenge in the industry's development process. This paper addresses this issue by proposing a calculation and evaluation method for the smartization rate of concrete structure building construction. The study focuses on examining the factors of smart equipment application and their impact on costs throughout the process of smart construction design, production, transfer, and construction. Based on this analysis, the paper presents an evaluation method for the smartization rate based on components. Furthermore, it introduces calculation methods for assessing the smartization rate of buildings. The paper also suggests a rapid calculation method for determining the smartization rate using Building Information Modeling (BIM) and information expression technology. The proposed research provides a foundation for the swift calculation of the smartization rate based on BIM and information technology. Ultimately, it aims to promote the development of smart construction and the construction of high-quality buildings in China.Keywords: building industrialization, high quality building, smart construction, smartization rate, component
Procedia PDF Downloads 7543394 Effectiveness of Weather Index Insurance for Smallholders in Ethiopia
Authors: Federica Di Marcantonio, Antoine Leblois, Wolfgang Göbel, Hervè Kerdiles
Abstract:
Weather-related shocks can threaten the ability of farmers to maintain their agricultural output and food security levels. Informal coping mechanisms (i.e. migration or community risk sharing) have always played a significant role in mitigating the negative effects of weather-related shocks in Ethiopia, but they have been found to be an incomplete strategy, particularly as a response to covariate shocks. Particularly, as an alternative to the traditional risk pooling products, an innovative form of insurance known as Index-based Insurance has received a lot of attention from researchers and international organizations, leading to an increased number of pilot initiatives in many countries. Despite the potential benefit of the product in protecting the livelihoods of farmers and pastoralists against climate shocks, to date there has been an unexpectedly low uptake. Using information from current pilot projects on index-based insurance in Ethiopia, this paper discusses the determinants of uptake that have so far undermined the scaling-up of the products, by focusing in particular on weather data availability, price affordability and willingness to pay. We found that, aside from data constraint issues, high price elasticity and low willingness to pay represent impediments to the development of the market. These results, bring us to rethink the role of index insurance as products for enhancing smallholders’ response to covariate shocks, and particularly for improving their food security.Keywords: index-based insurance, willingness to pay, satellite information, Ethiopia
Procedia PDF Downloads 40743393 A Good Start for Digital Transformation of the Companies: A Literature and Experience-Based Predefined Roadmap
Authors: Batuhan Kocaoglu
Abstract:
Nowadays digital transformation is a hot topic both in service and production business. For the companies who want to stay alive in the following years, they should change how they do their business. Industry leaders started to improve their ERP (Enterprise Resource Planning) like backbone technologies to digital advances such as analytics, mobility, sensor-embedded smart devices, AI (Artificial Intelligence) and more. Selecting the appropriate technology for the related business problem also is a hot topic. Besides this, to operate in the modern environment and fulfill rapidly changing customer expectations, a digital transformation of the business is required and change the way the business runs, affect how they do their business. Even the digital transformation term is trendy the literature is limited and covers just the philosophy instead of a solid implementation plan. Current studies urge firms to start their digital transformation, but few tell us how to do. The huge investments scare companies with blur definitions and concepts. The aim of this paper to solidify the steps of the digital transformation and offer a roadmap for the companies and academicians. The proposed roadmap is developed based upon insights from the literature review, semi-structured interviews, and expert views to explore and identify crucial steps. We introduced our roadmap in the form of 8 main steps: Awareness; Planning; Operations; Implementation; Go-live; Optimization; Autonomation; Business Transformation; including a total of 11 sub-steps with examples. This study also emphasizes four dimensions of the digital transformation mainly: Readiness assessment; Building organizational infrastructure; Building technical infrastructure; Maturity assessment. Finally, roadmap corresponds the steps with three main terms used in digital transformation literacy as Digitization; Digitalization; and Digital Transformation. The resulted model shows that 'business process' and 'organizational issues' should be resolved before technology decisions and 'digitization'. Companies can start their journey with the solid steps, using the proposed roadmap to increase the success of their project implementation. Our roadmap is also adaptable for relevant Industry 4.0 and enterprise application projects. This roadmap will be useful for companies to persuade their top management for investments. Our results can be used as a baseline for further researches related to readiness assessment and maturity assessment studies.Keywords: digital transformation, digital business, ERP, roadmap
Procedia PDF Downloads 17343392 Spexin and Fetuin A in Morbid Obese Children
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Spexin, expressed in central nervous system, has attracted much interest in feeding behavior, obesity, diabetes, energy metabolism and cardiovascular functions. Fetuin A is known as negative acute phase reactant synthesized in the liver. So far, it has become a major concern of many studies in numerous clinical states. The relationship between the concentrations of spexin as well as fetuin A and the risk for cardiovascular diseases (CVDs) were also investigated. Eosinophils, suggested to be associated with the development of CVDs, are introduced as early indicators of cardiometabolic complications. Patients with elevated platelet count, associated with hypercoagulable state in the body, are also more liable to CVDs. In this study, the aim is to examine the profiles of spexin and fetuin A concomitant with the course of variations detected in eosinophil as well as platelet counts in morbid obese children. Thirty-four children with normal-body mass index (N-BMI) and fifty-one morbid obese (MO) children participated in the study. Written-informed consent forms were obtained prior to the study. Institutional ethics committee approved the study protocol. Age- and sex-adjusted BMI percentile tables prepared by World Health Organization were used to classify healthy and obese children. Mean age ± SEM of the children were 9.3 ± 0.6 years and 10.7 ± 0.5 years in N-BMI and MO groups, respectively. Anthropometric measurements of the children were taken. Body mass index values were calculated from weight and height values. Blood samples were obtained after an overnight fasting. Routine hematologic and biochemical tests were performed. Within this context, fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) concentrations were measured. Homeostatic model assessment for insulin resistance (HOMA-IR) values were calculated. Spexin and fetuin A levels were determined by enzyme-linked immunosorbent assay. Data were evaluated from the statistical point of view. Statistically significant differences were found between groups in terms of BMI, fat mass index, INS, HOMA-IR and HDL-C. In MO group, all parameters increased as HDL-C decreased. Elevated concentrations in MO group were detected in eosinophils (p<0.05) and platelets (p>0.05). Fetuin A levels decreased in MO group (p>0.05). However, decrease was statistically significant in spexin levels for this group (p<0.05). In conclusion, these results have suggested that increases in eosinophils and platelets exhibit behavior as cardiovascular risk factors. Decreased fetuin A behaved as a risk factor suitable to increased risk for cardiovascular problems associated with the severity of obesity. Along with increased eosinophils, increased platelets and decreased fetuin A, decreased spexin was the parameter, which reflects best its possible participation in the early development of CVD risk in MO children.Keywords: cardiovascular diseases , eosinophils , fetuin A , pediatric morbid obesity , platelets , spexin
Procedia PDF Downloads 19543391 Street-Connected Youth: A Priority for Global HIV Prevention
Authors: Shorena Sadzaglishvili, Teona Gotsiridze, Ketevan Lekishvili, Darejan Javakhishvili, Alida Bouris
Abstract:
Globally, adolescents and young people experience high levels of HIV vulnerability and risk. Estimates suggest that AIDS-related deaths among young people are increasing, suggesting poor prioritization of adolescents in national plans for HIV testing and treatment services. HIV/AIDS is currently the sixth leading cause of death in people aged 10-24 years. Among young people, street connected youth are clearly distinguished as being among the most at risk for HIV infection. The present study recognizes the urgent need to scale up effective HIV responses that are tailored to the unique needs of street connected youth for the global HIV agenda and especially, the former Soviet country - Georgia, where 'street kids' are a new phenomenon and estimated to be about 2,500. During two months trained interviewers conducted individual semi-structured qualitative interviews with 22 key informants from the local governmental and nongovernmental service organizations, including psychologists, social workers, peer educators, mobile health workers, and managers. Informants discussed social network characteristics influencing street connected youth’s sexual risk behaviors. Data were analyzed using Dedoose. It was revealed that there are three types of homogeneous networks of street-connected youth aged 10-19 based on ethnical background: (1) Georgians; (2) migrant kids of Azeri-Kurdish origin, and (3) local Roma-Moldavian kids. These networks are distinguished with various HIV risk through both risky sexual and drug-related behaviors. In addition, there are several cases of HIV infection identified through reactive social services. Street connected youth do not have basic information about the HIV related sexual, alcohol and drug behaviors nor there are any systematic programs providing HIV testing and consultation for reducing the vulnerability of HIV infection. There is a need to systematically examine street-connected youth risk-taking behaviors by applying an integrated, multilevel framework to a population at great risk of HIV. Acknowledgment: This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) [#FR 17_31], Ilia State University.Keywords: street connected youth, social networks, HIV/AIDS, HIV testing
Procedia PDF Downloads 16743390 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box
Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar
Abstract:
To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection
Procedia PDF Downloads 13343389 Supply Chain Optimization through Vulnerability Control and Risk Prevention in Chicken Meat Use
Authors: Moise A. E., State G., Tudorache M., Custură I., Enea D. N., Osman (Defta) A., Drăgotoiu D.
Abstract:
This scientific paper explores risk management strategies in the food supply chain, with a focus on chicken raw materials, in the context of a company sourcing from the EU and non-EU. The aim of the paper is to adapt the requirements of international standards (IFS, BRC, QS, ITW, FSSC, ISO), proposing efficient methods to identify and remediate non-conformities and corrective and preventive actions. Defining the supply flow and acceptance steps promotes collaboration with suppliers to ensure the quality and safety of raw materials. To assess the risks of suppliers and raw materials, objective criteria are developed and vulnerabilities in the supply chain are analyzed, including the risk of fraud. Active monitoring of international alerts through RASFF helps to identify emerging risks quickly, and regular analysis of international trends and company performance enables continuous adaptation of risk management strategies. Implementing these measures strengthens food safety and consumer confidence in the final products supplied.Keywords: food supply chain, international standards, quality and safety of raw materials, RASFF
Procedia PDF Downloads 5243388 Impact of Data and Model Choices to Urban Flood Risk Assessments
Authors: Abhishek Saha, Serene Tay, Gerard Pijcke
Abstract:
The availability of high-resolution topography and rainfall information in urban areas has made it necessary to revise modeling approaches used for simulating flood risk assessments. Lidar derived elevation models that have 1m or lower resolutions are becoming widely accessible. The classical approaches of 1D-2D flow models where channel flow is simulated and coupled with a coarse resolution 2D overland flow models may not fully utilize the information provided by high-resolution data. In this context, a study was undertaken to compare three different modeling approaches to simulate flooding in an urban area. The first model used is the base model used is Sobek, which uses 1D model formulation together with hydrologic boundary conditions and couples with an overland flow model in 2D. The second model uses a full 2D model for the entire area with shallow water equations at the resolution of the digital elevation model (DEM). These models are compared against another shallow water equation solver in 2D, which uses a subgrid method for grid refinement. These models are simulated for different horizontal resolutions of DEM varying between 1m to 5m. The results show a significant difference in inundation extents and water levels for different DEMs. They are also sensitive to the different numerical models with the same physical parameters, such as friction. The study shows the importance of having reliable field observations of inundation extents and levels before a choice of model and data can be made for spatial flood risk assessments.Keywords: flooding, DEM, shallow water equations, subgrid
Procedia PDF Downloads 14443387 Using Machine Learning to Extract Patient Data from Non-standardized Sports Medicine Physician Notes
Authors: Thomas Q. Pan, Anika Basu, Chamith S. Rajapakse
Abstract:
Machine learning requires data that is categorized into features that models train on. This topic is important to the field of sports medicine due to the many tools it provides to physicians such as diagnosis support and risk assessment. Physician note that healthcare professionals take are usually unclean and not suitable for model training. The objective of this study was to develop and evaluate an advanced approach for extracting key features from sports medicine data without the need for extensive model training or data labeling. An LLM (Large Language Model) was given a narrative (Physician’s Notes) and prompted to extract four features (details about the patient). The narrative was found in a datasheet that contained six columns: Case Number, Validation Age, Validation Gender, Validation Diagnosis, Validation Body Part, and Narrative. The validation columns represent the accurate responses that the LLM attempts to output. With the given narrative, the LLM would output its response and extract the age, gender, diagnosis, and injured body part with each category taking up one line. The output would then be cleaned, matched, and added to new columns containing the extracted responses. Five ways of checking the accuracy were used: unclear count, substring comparison, LLM comparison, LLM re-check, and hand-evaluation. The unclear count essentially represented the extractions the LLM missed. This can be also understood as the recall score ([total - false negatives] over total). The rest of these correspond to the precision score ([total - false positives] over total). Substring comparison evaluated the validation (X) and extracted (Y) columns’ likeness by checking if X’s results were a substring of Y's findings and vice versa. LLM comparison directly asked an LLM if the X and Y’s results were similar. LLM Re-check prompted the LLM to see if the extracted results can be found in the narrative. Lastly, A selection of 1,000 random narratives was also selected and hand-evaluated to give an estimate of how well the LLM-based feature extraction model performed. With a selection of 10,000 narratives, the LLM-based approach had a recall score of roughly 98%. However, the precision scores of the substring comparison and LLM comparison models were around 72% and 76% respectively. The reason for these low figures is due to the minute differences between answers. For example, the ‘chest’ is a part of the ‘upper trunk’ however, these models cannot detect that. On the other hand, the LLM re-check and subset of hand-tested narratives showed a precision score of 96% and 95%. If this subset is used to extrapolate the possible outcome of the whole 10,000 narratives, the LLM-based approach would be strong in both precision and recall. These results indicated that an LLM-based feature extraction model could be a useful way for medical data in sports to be collected and analyzed by machine learning models. Wide use of this method could potentially increase the availability of data thus improving machine learning algorithms and supporting doctors with more enhanced tools. Procedia PDF Downloads 1743386 The Application of Hellomac Rockfall Alert System in Rockfall Barriers: An Explainer
Authors: Kinjal Parmar, Matteo Lelli
Abstract:
The usage of IoT technology as a rockfall alert system is relatively new. This paper explains the potential of such an alert system called HelloMac from Maccaferri which provides transportation infrastructure asset owners the way to effectively utilize their resources in the detection of boulder impacts on rockfall barriers. This would ensure a faster assessment of the impacted barrier and subsequently facilitates the implementation of remedial works in an effective and timely manner. In addition, the HelloMac can also be integrated with another warning system to alert vehicle users of the unseen dangers ahead. HelloMac is developed to work also in remote areas, where cell coverage is not available. User gets notified when a rockfall even occurs via mobile app, SMS and email. Using such alarming systems effectively, we can reduce the risk of rockfall hazard.Keywords: rockfall, barrier, HelloMac, rockfall alert system
Procedia PDF Downloads 5443385 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model
Authors: Xiang Zhang, David Rey, S. Travis Waller
Abstract:
Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.Keywords: parameter calibration, sequential quadratic programming, stochastic user equilibrium, traffic assignment, transportation planning
Procedia PDF Downloads 30443384 Factors Associated to Down Syndrome Causes in Patients of Cytogenetics Laboratory, Faculty of Medicine, Universitas Padjadjaran in 2014─2015
Authors: Bremmy Laksono, Nurul Qomarilla, Riksa Parikrama, Dyan K. Nugrahaeni, Willyanti Soewondo, Dadang S. H. Effendi, Eriska Rianti, Arlette S. Setiawan, Ine Sasmita, Risti S. Primanti, Erna Kurnikasari, Yunia Sribudiani
Abstract:
Down syndrome is a chromosomal abnormality of chromosome 21 which can appear in man or woman. Maternal age and paternal age, history of radiation are the common risk factors. This study was conducted to observe risk factors which related as causes of Down syndrome. In this case control study using purposive sampling technique, 84 respondents were chosen from Cell Culture and Cytogenetics Laboratory patients in Faculty of Medicine, Universitas Padjadjaran, Indonesia. They were used as study samples and divided into 42 Down syndrome cases and 42 control respondents. This study used univariate and bivariate analysis (chi-square). Samples population were West Java residents, the biggest province in Indonesia in number of population. The results showed maternal age, paternal age, history of radiation exposure and family history were not significantly related to Down syndrome baby. Moreover, all of those factors also did not contribute to the risk of having a child with Down syndrome in patients at Cell Culture and Cytogenetics Laboratory, Faculty of Medicine, Universitas Padjadjaran. Therefore, we should investigate other risk factors of Down syndrome in West Java population.Keywords: down syndrome, family history, maternal age, paternal age, risk factor
Procedia PDF Downloads 40843383 Vulnerability Assessment of Healthcare Interdependent Critical Infrastructure Coloured Petri Net Model
Authors: N. Nivedita, S. Durbha
Abstract:
Critical Infrastructure (CI) consists of services and technological networks such as healthcare, transport, water supply, electricity supply, information technology etc. These systems are necessary for the well-being and to maintain effective functioning of society. Critical Infrastructures can be represented as nodes in a network where they are connected through a set of links depicting the logical relationship among them; these nodes are interdependent on each other and interact with each at other at various levels, such that the state of each infrastructure influences or is correlated to the state of another. Disruption in the service of one infrastructure nodes of the network during a disaster would lead to cascading and escalating disruptions across other infrastructures nodes in the network. The operation of Healthcare Infrastructure is one such Critical Infrastructure that depends upon a complex interdependent network of other Critical Infrastructure, and during disasters it is very vital for the Healthcare Infrastructure to be protected, accessible and prepared for a mass casualty. To reduce the consequences of a disaster on the Critical Infrastructure and to ensure a resilient Critical Health Infrastructure network, knowledge, understanding, modeling, and analyzing the inter-dependencies between the infrastructures is required. The paper would present inter-dependencies related to Healthcare Critical Infrastructure based on Hierarchical Coloured Petri Nets modeling approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The model properties are being analyzed for the various state changes which occur when there is a disruption or damage to any of the Critical Infrastructure. The failure probabilities for the failure risk of interconnected systems are calculated by deriving a reachability graph, which is later mapped to a Markov chain. By analytically solving and analyzing the Markov chain, the overall vulnerability of the Healthcare CI HCPN model is demonstrated. The entire model would be integrated with Geographic information-based decision support system to visualize the dynamic behavior of the interdependency of the Healthcare and related CI network in a geographically based environment.Keywords: critical infrastructure interdependency, hierarchical coloured petrinet, healthcare critical infrastructure, Petri Nets, Markov chain
Procedia PDF Downloads 53043382 Development of a Roadmap for Assessment the Sustainability of Buildings in Saudi Arabia Using Building Information Modeling
Authors: Ibrahim A. Al-Sulaihi, Khalid S. Al-Gahtani, Abdullah M. Al-Sugair, Aref A. Abadel
Abstract:
Achieving environmental sustainability is one of the important issues considered in many countries’ vision. Green/Sustainable building is widely used terminology for describing a friendly environmental construction. Applying sustainable practices has a significant importance in various fields, including construction field that consumes an enormous amount of resource and causes a considerable amount of waste. The need for sustainability is increased in the regions that suffering from the limitation of natural resource and extreme weather conditions such as Saudi Arabia. Since buildings designs are getting sophisticated, the need for tools, which support decision-making for sustainability issues, is increasing, especially in the design and preconstruction stages. In this context, Building Information Modeling (BIM) can aid in performing complex building performance analyses to ensure an optimized sustainable building design. Accordingly, this paper introduces a roadmap towards developing a systematic approach for presenting the sustainability of buildings using BIM. The approach includes set of main processes including; identifying the sustainability parameters that can be used for sustainability assessment in Saudi Arabia, developing sustainability assessment method that fits the special circumstances in the Kingdom, identifying the sustainability requirements and BIM functions that can be used for satisfying these requirements, and integrating these requirements with identified functions. As a result, the sustainability-BIM approach can be developed which helps designers in assessing the sustainability and exploring different design alternatives at the early stage of the construction project.Keywords: green buildings, sustainability, BIM, rating systems, environment, Saudi Arabia
Procedia PDF Downloads 38043381 Proposals for the Practical Implementation of the Biological Monitoring of Occupational Exposure for Antineoplastic Drugs
Authors: Mireille Canal-Raffin, Nadege Lepage, Antoine Villa
Abstract:
Context: Most antineoplastic drugs (AD) have a potential carcinogenic, mutagenic and/or reprotoxic effect and are classified as 'hazardous to handle' by National Institute for Occupational Safety and Health Their handling increases with the increase of cancer incidence. AD contamination from workers who handle AD and/or care for treated patients is, therefore, a major concern for occupational physicians. As part of the process of evaluation and prevention of chemical risks for professionals exposed to AD, Biological Monitoring of Occupational Exposure (BMOE) is the tool of choice. BMOE allows identification of at-risk groups, monitoring of exposures, assessment of poorly controlled exposures and the effectiveness and/or wearing of protective equipment, and documenting occupational exposure incidents to AD. This work aims to make proposals for the practical implementation of the BMOE for AD. The proposed strategy is based on the French good practice recommendations for BMOE, issued in 2016 by 3 French learned societies. These recommendations have been adapted to occupational exposure to AD. Results: AD contamination of professionals is a sensitive topic, and the BMOE requires the establishment of a working group and information meetings within the concerned health establishment to explain the approach, objectives, and purpose of monitoring. Occupational exposure to AD is often discontinuous and 2 steps are essential upstream: a study of the nature and frequency of AD used to select the Biological Exposure Indice(s) (BEI) most representative of the activity; a study of AD path in the institution to target exposed professionals and to adapt medico-professional information sheet (MPIS). The MPIS is essential to gather the necessary elements for results interpretation. Currently, 28 urinary specific BEIs of AD exposure have been identified, and corresponding analytical methods have been published: 11 BEIs were AD metabolites, and 17 were AD. Results interpretation is performed by groups of homogeneous exposure (GHE). There is no threshold biological limit value of interpretation. Contamination is established when an AD is detected in trace concentration or in a urine concentration equal or greater than the limit of quantification (LOQ) of the analytical method. Results can only be compared to LOQs of these methods, which must be as low as possible. For 8 of the 17 AD BEIs, the LOQ is very low with values between 0.01 to 0.05µg/l. For the other BEIs, the LOQ values were higher between 0.1 to 30µg/l. Results restitution by occupational physicians to workers should be individual and collective. Faced with AD dangerousness, in cases of workers contamination, it is necessary to put in place corrective measures. In addition, the implementation of prevention and awareness measures for those exposed to this risk is a priority. Conclusion: This work is a help for occupational physicians engaging in a process of prevention of occupational risks related to AD exposure. With the current analytical tools, effective and available, the (BMOE) to the AD should now be possible to develop in routine occupational physician practice. The BMOE may be complemented by surface sampling to determine workers' contamination modalities.Keywords: antineoplastic drugs, urine, occupational exposure, biological monitoring of occupational exposure, biological exposure indice
Procedia PDF Downloads 14043380 The Effectiveness of Probiotics in the Treatment of Minimal Hepatic Encephalopathy Among Patients with Cirrhosis: An Expanded Meta-Analysis
Authors: Erwin Geroleo, Higinio Mappala
Abstract:
Introduction Overt Hepatic Encephalopathy (OHE) is the most dreaded outcome of liver cirrhosis. Aside from the triggering factors which are already known to precipitate OHE, there is growing evidence that an altered gut microbiota profile (dysbiosis) can also trigger OHE. MHE is the mildest form of hepatic encephalopathy(HE), affecting about one-third of patients with cirrhosis, and close 80% of patients with cirrhosis and manifests as abnormalities in central nervous system function. Since these symptoms are subclinical most patients are not being treated to prevent OHE. The gut microbiota have been evaluated by several studies as a therapeutic option for MHE, especially in decreasing the levels of ammonia, thus preventing progression to OHE Objectives This study aims to evaluate the efficacy of probiotics in terms of reduction of ammonia levels in patient with minimal hepatic encephalopathies and to determine if Probiotics has role in the prevention of progression to overt hepatic encephalopathy in adult patients with minimal hepatic encephalopathy (MHE) Methods and Analysis The literature search strategy was restricted to human studies in adults subjects from 2004 to 2022. The Jadad Score Calculation was utilized in the assessment of the final studies included in this study. Eight (8) studies were included. Cochrane’s Revman Web, the Fixed Effects model and the Ztest were all used in the overall analysis of the outcomes. A p value of less than 0.0005 was statistically significant. Results. These results show that Probiotics significantly lowers the level of Ammonia in Cirrhotic patients with OHE. It also shows that the use of Probiotics significantly prevents the progression of MHE to OHE. The overall risk of bias graph indicates low risk of publication bias among the studies included in the meta-analysis. Main findings This research found that plasma ammonia concentration was lower among participants treated with probiotics (p<0.00001).) Ammonia level of the probiotics group is lower by 13.96 μmol/ on the average. Overall risk of developing overt hepatic encephalopathy in the probiotics group is shown to be decreased by 15% as compared to the placebo group Conclusion The analysis showed that compared with placebo, probiotics can decrease serum ammonia, may improve MHE and may prevent OHE.Keywords: minimal hepatic encephalopathy, probiotics, liver cirrhosis, overt hepatic encephalopathy
Procedia PDF Downloads 5343379 Sociological Enquiry into Occupational Risks and Its Consequences among Informal Automobile Artisans in Osun State, Nigeria
Authors: Funmilayo Juliana Afolabi, Joke Haafkens, Paul De Beer
Abstract:
Globally, there is a growing concern on reducing workplace accidents in the informal sector. However, there is a dearth of study on the perception of the informal workers on occupational risks they are exposed to. The way a worker perceives the workplace risk will influence his/her risk tolerance and risk behavior. The aim of this paper, therefore, is to have an in-depth understanding of the way the artisans perceive the risks at their workplace and how it influences their risk tolerance and risk behavior. This will help in designing meaningful intervention for the artisans and it will assist the policy makers in formulating a policy that will help them. Methods: Forty-three artisans were purposely selected for the study; data were generated through observation of the workplace and work practices of the artisans and in-depth interview from automobile artisans (Panel beater, Mechanic, Vulcanizer, and Painters) in Osun State, Nigeria. The transcriptions were coded and analyzed using MAXQDA software. Results: The perceived occupational risks among the study groups are a danger of being run over by oncoming vehicles while working by the roadside, a risk of vehicle falling on workers while working under the vehicle, cuts, and burns, fire explosion, falls from height and injuries from bursting of tires. The identified risk factors are carelessness of the workers, pressure from customers, inadequate tools, preternatural forces, God’s will and lack of apprentices that will assist them in the workplace. Furthermore, the study revealed that artisans engage in risky behavior like siphoning fuel with mouth because of perception that fuel is good for expelling worms and will make them free from any stomach upset. Conclusions: The study concluded that risky behaviors are influenced by culture, beliefs, and perception of the artisans. The study, therefore, suggested proper health and safety education for the artisans.Keywords: automobile artisans, informal, occupational risks, Nigeria, sociological enquiry
Procedia PDF Downloads 19343378 Mapping the Intrinsic Vulnerability of the Quaternary Aquifer of the Eastern Mitidja (Northern Algeria)
Authors: Abida Haddouche, Ahmed Chrif Toubal
Abstract:
The Neogene basin of the Eastern Mitidja, object of the study area, represents potential water resources and especially groundwater reserves. This water is an important economic; this resource is highly sensitive which need protection and preservation. Unfortunately, these waters are exposed to various forms of pollution, whether from urban, agricultural, industrial or merely accidental. This pollution is a permanent risk of limiting resource. In this context, the work aims to evaluate the intrinsic vulnerability of the aquifer to protect and preserve the quality of this resource. It will focus on the disposal of water and land managers a cartographic document accessible to locate the areas where the water has a high vulnerability. Vulnerability mapping of the Easter Mitidja quaternary aquifer is performed by applying three methods (DRASTIC, DRIST, and GOD). Comparison and validation results show that the DRASTIC method is the most suitable method for aquifer vulnerability of the study area.Keywords: Aquifer of Mitidja, DRASTIC method, geographic information system (GIS), vulnerability mapping
Procedia PDF Downloads 38843377 Prevalence and Risk Factors of Musculoskeletal Disorders among School Teachers in Mangalore: A Cross Sectional Study
Authors: Junaid Hamid Bhat
Abstract:
Background: Musculoskeletal disorders are one of the main causes of occupational illness. Mechanisms and the factors like repetitive work, physical effort and posture, endangering the risk of musculoskeletal disorders would now appear to have been properly identified. Teacher’s exposure to work-related musculoskeletal disorders appears to be insufficiently described in the literature. Little research has investigated the prevalence and risk factors of musculoskeletal disorders in teaching profession. Very few studies are available in this regard and there are no studies evident in India. Purpose: To determine the prevalence of musculoskeletal disorders and to identify and measure the association of such risk factors responsible for developing musculoskeletal disorders among school teachers. Methodology: An observational cross sectional study was carried out. 500 school teachers from primary, middle, high and secondary schools were selected, based on eligibility criteria. A signed consent was obtained and a self-administered, validated questionnaire was used. Descriptive statistics was used to compute the statistical mean and standard deviation, frequency and percentage to estimate the prevalence of musculoskeletal disorders among school teachers. The data analysis was done by using SPSS version 16.0. Results: Results indicated higher pain prevalence (99.6%) among school teachers during the past 12 months. Neck pain (66.1%), low back pain (61.8%) and knee pain (32.0%) were the most prevalent musculoskeletal complaints of the subjects. Prevalence of shoulder pain was also found to be high among school teachers (25.9%). 52.0% subjects reported pain as disabling in nature, causing sleep disturbance (44.8%) and pain was found to be associated with work (87.5%). A significant association was found between musculoskeletal disorders and sick leaves/absenteeism. Conclusion: Work-related musculoskeletal disorders particularly neck pain, low back pain, and knee pain, is highly prevalent and risk factors are responsible for the development of same in school teachers. There is little awareness of musculoskeletal disorders among school teachers, due to work load and prolonged/static postures. Further research should concentrate on specific risk factors like repetitive movements, psychological stress, and ergonomic factors and should be carried out all over the country and the school teachers should be studied carefully over a period of time. Also, an ergonomic investigation is needed to decrease the work-related musculoskeletal disorder problems. Implication: Recall bias and self-reporting can be considered as limitations. Also, cause and effect inferences cannot be ascertained. Based on these results, it is important to disseminate general recommendations for prevention of work-related musculoskeletal disorders with regards to the suitability of furniture, equipment and work tools, environmental conditions, work organization and rest time to school teachers. School teachers in the early stage of their careers should try to adapt the ergonomically favorable position whilst performing their work for a safe and healthy life later. Employers should be educated on practical aspects of prevention to reduce musculoskeletal disorders, since changes in workplace and work organization and physical/recreational activities are required.Keywords: work related musculoskeletal disorders, school teachers, risk factors funding, medical and health sciences
Procedia PDF Downloads 28143376 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation
Authors: Carl van Walraven, Meltem Tuna
Abstract:
Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation
Procedia PDF Downloads 23943375 Improvement of the Reliability and the Availability of a Production System
Authors: Lakhoua Najeh
Abstract:
Aims of the work: The aim of this paper is to improve the reliability and the availability of a Packer production line of cigarettes based on two methods: The SADT method (Structured Analysis Design Technique) and the FMECA approach (Failure Mode Effects and Critically Analysis). The first method enables us to describe the functionality of the Packer production line of cigarettes and the second method enables us to establish an FMECA analysis. Methods: The methodology adopted in order to contribute to the improvement of the reliability and the availability of a Packer production line of cigarettes has been proposed in this paper, and it is based on the use of Structured Analysis Design Technique (SADT) and Failure mode, effects, and criticality analysis (FMECA) methods. This methodology consists of using a diagnosis of the existing of all of the equipment of a production line of a factory in order to determine the most critical machine. In fact, we use, on the one hand, a functional analysis based on the SADT method of the production line and on the other hand, a diagnosis and classification of mechanical and electrical failures of the line production by their criticality analysis based on the FMECA approach. Results: Based on the methodology adopted in this paper, the results are the creation and the launch of a preventive maintenance plan. They contain the different elements of a Packer production line of cigarettes; the list of the intervention preventive activities and their period of realization. Conclusion: The diagnosis of the existing state helped us to found that the machine of cigarettes used in the Packer production line of cigarettes is the most critical machine in the factory. Then this enables us in the one hand, to describe the functionality of the production line of cigarettes by SADT method and on the other hand, to study the FMECA machine in order to improve the availability and the performance of this machine.Keywords: production system, diagnosis, SADT method, FMECA method
Procedia PDF Downloads 14443374 Factors Associated with Condom Breakage among Female Sex Workers: Evidence from Behavioral Tracking Survey in Thane District of Maharashtra, India
Authors: Sukhvinder Kaur, Jayanta Bora, Ashok Agarwal, Sangeeta Kaul
Abstract:
Background: HIV and STI transmission can be prevented if condoms are used properly, but condom tear may lead to infections even if are used consistently. Studies reveal high rates of condom breakage among Female Sex Workers (FSWs). USAID PHFI-PIPPSE is piloting a prevention model among high risk groups at Thane district of Maharashtra, India by implementing prevention and advocacy efforts for such risk behaviors. The current analysis highlights the correlates of condom breakage among FSWs from Thane. Method: A Behavioral Tracking Survey was conducted in 2014-15 among 503 FSWs through probability-based two stage random sampling from 3,660 FSWs at 100 hotspots, to understand levels of high risk behaviors, awareness and exposure to prevention programs. Bi-variate and multivariate-logistic regression methods used to assess the association of condom breakage while having sex with age, STI occurrence, anal sex with clients and alcohol consumption. Only self-reported STIs (Genital sore/ulcer, yellowish/ greenish discharge from vagina with/without foul smell, lower abdominal pain without diarrhea/dysentery or menses) were considered. Major Findings: Results depicted FSWs who reported condom breakage while having sex with any type of partner (paying clients, non-paying partners and other than main partner husband/boyfriend) had significantly high number of STIs (42.3% vs 16.9 %, P, 0.000) and had started sexual relationship in <16 years of age (31.0% vs 16.4 %, P, 0.000). Multivariate analysis after controlling the age at sex, knowledge about HIV and literacy, highlighted significantly higher odds of condom breakage among FSWs who have reported currently suffering with STI [AOR 2.91, 95% CI 1.75 - 4.83; P, 0.000]; who had anal sex with their paying client [AOR 2.59, 95% CI 1.59 - 4.19; P, 0.000]; and who consumed alcohol in the last 12 months [AOR 1.89, 95% CI 1.01 - 3.53; P, 0.047]. Conclusion: Risky behavior like anal sex with paying clients and impact of alcohol while having sex are main factors for condom breakage among young sex workers; and condom breakage leads to STIs. Hence, program interventions should address measures for prevention of condom breakage for HIV/STI prevention.Keywords: female sex workers, condom breakage, anal sex, young sex workers
Procedia PDF Downloads 26343373 Impact Position Method Based on Distributed Structure Multi-Agent Coordination with JADE
Authors: YU Kaijun, Liang Dong, Zhang Yarong, Jin Zhenzhou, Yang Zhaobao
Abstract:
For the impact monitoring of distributed structures, the traditional positioning methods are based on the time difference, which includes the four-point arc positioning method and the triangulation positioning method. But in the actual operation, these two methods have errors. In this paper, the Multi-Agent Blackboard Coordination Principle is used to combine the two methods. Fusion steps: (1) The four-point arc locating agent calculates the initial point and records it to the Blackboard Module.(2) The triangulation agent gets its initial parameters by accessing the initial point.(3) The triangulation agent constantly accesses the blackboard module to update its initial parameters, and it also logs its calculated point into the blackboard.(4) When the subsequent calculation point and the initial calculation point are within the allowable error, the whole coordination fusion process is finished. This paper presents a Multi-Agent collaboration method whose agent framework is JADE. The JADE platform consists of several agent containers, with the agent running in each container. Because of the perfect management and debugging tools of the JADE, it is very convenient to deal with complex data in a large structure. Finally, based on the data in Jade, the results show that the impact location method based on Multi-Agent coordination fusion can reduce the error of the two methods.Keywords: impact monitoring, structural health monitoring(SHM), multi-agent system(MAS), black-board coordination, JADE
Procedia PDF Downloads 17943372 Perception of Risk toward Traffic Violence among Road Users in Makassar, Indonesia
Authors: Sulasmi Sudirman, Rachmadanty Mujah Hartika
Abstract:
Traffic violence is currently a big issue in Indonesia. However, the road users perceived risk that is caused by traffic violence is low. The lack of safety driving awareness is one of the factors that road users committed to traffic violence. There are several lists of common traffic violence in Indonesia such as lack of physical fitness, not wearing helmet, unfasten seatbelt, breaking through the traffic light, not holding a driving license, and some more violence. This research sought to explore the perception of road users toward traffic violence. The participants were road users in Makassar, Indonesia who were using cars and motorbikes. The method of the research was a qualitative approach by using a personal interview to collect data. The research showed that there three main ideas of perceiving traffic violence which are motives, environment that supported traffic violence, and reinforcement. The road users committed traffic violence had particular motive, for example, rushing. The road users committed to traffic violence when other road users and significant other did the same. The road users committed traffic violence when the police were not there to give a ticket. It can be concluded that the perception of road users toward traffic violence determined by internal aspect, the social aspect, and regulation.Keywords: perception, road users, traffic, violence
Procedia PDF Downloads 22443371 Societal Resilience Assessment in the Context of Critical Infrastructure Protection
Authors: Hannah Rosenqvist, Fanny Guay
Abstract:
Critical infrastructure protection has been an important topic for several years. Programmes such as the European Programme for Critical Infrastructure Protection (EPCIP), Critical Infrastructure Warning Information Network (CIWIN) and the European Reference Network for Critical Infrastructure Protection (ENR-CIP) have been the pillars to the work done since 2006. However, measuring critical infrastructure resilience has not been an easy task. This has to do with the fact that the concept of resilience has several definitions and is applied in different domains such as engineering and social sciences. Since June 2015, the EU project IMPROVER has been focusing on developing a methodology for implementing a combination of societal, organizational and technological resilience concepts, in the hope to increase critical infrastructure resilience. For this paper, we performed research on how to include societal resilience as a form of measurement of the context of critical infrastructure resilience. Because one of the main purposes of critical infrastructure (CI) is to deliver services to the society, we believe that societal resilience is an important factor that should be considered when assessing the overall CI resilience. We found that existing methods for CI resilience assessment focus mainly on technical aspects and therefore that is was necessary to develop a resilience model that take social factors into account. The model developed within the project IMPROVER aims to include the community’s expectations of infrastructure operators as well as information sharing with the public and planning processes. By considering such aspects, the IMPROVER framework not only helps operators to increase the resilience of their infrastructures on the technical or organizational side, but aims to strengthen community resilience as a whole. This will further be achieved by taking interdependencies between critical infrastructures into consideration. The knowledge gained during this project will enrich current European policies and practices for improved disaster risk management. The framework for societal resilience analysis is based on three dimensions for societal resilience; coping capacity, adaptive capacity and transformative capacity which are capacities that have been recognized throughout a widespread literature review in the field. A set of indicators have been defined that describe a community’s maturity within these resilience dimensions. Further, the indicators are categorized into six community assets that need to be accessible and utilized in such a way that they allow responding to changes and unforeseen circumstances. We conclude that the societal resilience model developed within the project IMPROVER can give a good indication of the level of societal resilience to critical infrastructure operators.Keywords: community resilience, critical infrastructure protection, critical infrastructure resilience, societal resilience
Procedia PDF Downloads 23343370 Effects of Local Ground Conditions on Site Response Analysis Results in Hungary
Authors: Orsolya Kegyes-Brassai, Zsolt Szilvágyi, Ákos Wolf, Richard P. Ray
Abstract:
Local ground conditions have a substantial influence on the seismic response of structures. Their inclusion in seismic hazard assessment and structural design can be realized at different levels of sophistication. However, response results based on more advanced calculation methods e.g. nonlinear or equivalent linear site analysis tend to show significant discrepancies when compared to simpler approaches. This project's main objective was to compare results from several 1-D response programs to Eurocode 8 design spectra. Data from in-situ site investigations were used for assessing local ground conditions at several locations in Hungary. After discussion of the in-situ measurements and calculation methods used, a comprehensive evaluation of all major contributing factors for site response is given. While the Eurocode spectra should account for local ground conditions based on soil classification, there is a wide variation in peak ground acceleration determined from 1-D analyses versus Eurocode. Results show that current Eurocode 8 design spectra may not be conservative enough to account for local ground conditions typical for Hungary.Keywords: 1-D site response analysis, multichannel analysis of surface waves (MASW), seismic CPT, seismic hazard assessment
Procedia PDF Downloads 24843369 Comprehensive Regional Drought Assessment Index
Authors: A. Zeynolabedin, M. A. Olyaei, B. Ghiasi
Abstract:
Drought is an inevitable part of the earth’s climate. It occurs regularly with no clear warning and without recognizing borders. In addition, its impact is cumulative and not immediately discernible. Iran is located in a semi-arid region where droughts occur periodically as natural hazard. Standardized Precipitation Index (SPI), Surface Water Supply Index (SWSI), and Palmer Drought Severity Index (PDSI) are three well-known indices which describe drought severity; each has its own advantages and disadvantages and can be used for specific types of drought. These indices take into account some factors such as precipitation, reservoir storage and discharge, temperature, and potential evapotranspiration in determining drought severity. In this paper, first all three indices are calculated in Aharchay river watershed located in northwestern part of Iran in East Azarbaijan province. Next, based on two other important parameters which are groundwater level and solar radiation, two new indices are defined. Finally, considering all five aforementioned indices, a combined drought index (CDI) is presented and calculated for the region. This combined index is based on all the meteorological, hydrological, and agricultural features of the region. The results show that the most severe drought condition in Aharchay watershed happened in Jun, 2004. The result of this study can be used for monitoring drought and prepare for the drought mitigation planning.Keywords: drought, GIS, intensity index, regional assessment, variation maps
Procedia PDF Downloads 25143368 Simon Says: What Should I Study?
Authors: Fonteyne Lot
Abstract:
SIMON (Study capacities and Interest Monitor is a freely accessible online self-assessment tool that allows secondary education pupils to evaluate their interests and capacities in order to choose a post-secondary major that maximally suits their potential. The tool consists of two broad domains that correspond with two general questions pupils ask: 'What study fields interest me?' and 'Am I capable to succeed in this field of study?'. The first question is addressed by a RIASEC-type interest inventory that links personal interests to post-secondary majors. Pupils are provided with a personal profile and an overview of majors with their degree of congruence. The output is dynamic: respondents can manipulate their score and they can compare their results to the profile of all fields of study. That way they are stimulated to explore the broad range of majors. To answer whether pupils are capable of succeeding in a preferred major, a battery of tests is provided. This battery comprises a range of factors that are predictive of academic success. Traditional predictors such as (educational) background and cognitive variables (mathematical and verbal skills) are included. Moreover, non-cognitive predictors of academic success (such as 'motivation', 'test anxiety', 'academic self-efficacy' and 'study skills') are assessed. These non-cognitive factors are generally not included in admission decisions although research shows they are incrementally predictive of success and are less discriminating. These tests inform pupils on potential causes of success and failure. More important, pupils receive their personal chances of success per major. These differential probabilities are validated through the underlying research on academic success of students. For example, the research has shown that we can identify 22 % of the failing students in psychology and educational sciences. In this group, our prediction is 95% accurate. SIMON leads more students to a suitable major which in turn alleviates student success and retention. Apart from these benefits, the instrument grants insight into risk factors of academic failure. It also supports and fosters the development of evidence-based remedial interventions and therefore gives way to a more efficient use of means.Keywords: academic success, online self-assessment, student retention, vocational choice
Procedia PDF Downloads 40743367 Automatic Identification of Pectoral Muscle
Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina
Abstract:
Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle
Procedia PDF Downloads 352