Search results for: score prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4151

Search results for: score prediction

1991 Framework for Detecting External Plagiarism from Monolingual Documents: Use of Shallow NLP and N-Gram Frequency Comparison

Authors: Saugata Bose, Ritambhra Korpal

Abstract:

The internet has increased the copy-paste scenarios amongst students as well as amongst researchers leading to different levels of plagiarized documents. For this reason, much of research is focused on for detecting plagiarism automatically. In this paper, an initiative is discussed where Natural Language Processing (NLP) techniques as well as supervised machine learning algorithms have been combined to detect plagiarized texts. Here, the major emphasis is on to construct a framework which detects external plagiarism from monolingual texts successfully. For successfully detecting the plagiarism, n-gram frequency comparison approach has been implemented to construct the model framework. The framework is based on 120 characteristics which have been extracted during pre-processing the documents using NLP approach. Afterwards, filter metrics has been applied to select most relevant characteristics and then supervised classification learning algorithm has been used to classify the documents in four levels of plagiarism. Confusion matrix was built to estimate the false positives and false negatives. Our plagiarism framework achieved a very high the accuracy score.

Keywords: lexical matching, shallow NLP, supervised machine learning algorithm, word n-gram

Procedia PDF Downloads 359
1990 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG

Procedia PDF Downloads 183
1989 Strengthening Bridge Piers by Carbon Fiber Reinforced Polymer (CFRP): A Case Study for Thuan Phuoc Suspension Bridge in Vietnam

Authors: Lan Nguyen, Lam Cao Van

Abstract:

Thuan Phuoc is a suspension bridge built in Danang city, Vietnam. Because this bridge locates near the estuary, its structure has degraded rapidly. Many cracks have currently occurred on most of the concrete piers of the curved approach spans. This paper aims to present the results of diagnostic analysis of causes for cracks as well as some calculations for strengthening piers by carbon fiber reinforced polymer (CFRP). Besides, it describes how to use concrete nonlinear analysis software ATENA to diagnostically analyze cracks, strengthening designs. Basing on the results of studying the map of distributing crack on Thuan Phuoc bridge’s concrete piers is analyzed by the software ATENA is suitable for the real conditions and CFRP would be the best solution to strengthen piers in a sound and fast way.

Keywords: ATENA, bridge pier strengthening, carbon fiber reinforced polymer (CFRP), crack prediction analysis

Procedia PDF Downloads 242
1988 Application of a Hybrid Modified Blade Element Momentum Theory/Computational Fluid Dynamics Approach for Wine Turbine Aerodynamic Performances Prediction

Authors: Samah Laalej, Abdelfattah Bouatem

Abstract:

In the field of wind turbine blades, it is complicated to evaluate the aerodynamic performances through experimental measurements as it requires a lot of computing time and resources. Therefore, in this paper, a hybrid BEM-CFD numerical technique is developed to predict power and aerodynamic forces acting on the blades. Computational fluid dynamics (CFD) simulation was conducted to calculate the drag and lift forces through Ansys software using the K-w model. Then an enhanced BEM code was created to predict the power outputs generated by the wind turbine using the aerodynamic properties extracted from the CFD approach. The numerical approach was compared and validated with experimental data. The power curves calculated from this hybrid method were in good agreement with experimental measurements for all velocity ranges.

Keywords: blade element momentum, aerodynamic forces, wind turbine blades, computational fluid dynamics approach

Procedia PDF Downloads 67
1987 The Possibility of Increase UFA in Milk by Adding of Canola Seed in Holstein Dairy Cow Diets

Authors: H. Mansoori Yarahmadi, A. Aghazadeh, K. Nazeradl

Abstract:

This study was done to evaluate the effects of feeding canola seed for enrichment of UFA and milk performance of early lactation dairy cows. Twelve multi parous Holstein cows (635.3±18 kg BW and 36±9 DIM) were assigned to 1 of 3 treatments: 1- Control (CON) without canola seed, 2- 7.5% raw canola seed (CUT), and 3- 7.5% Heat-treated canola seed (CHT) of the total ration. Diets contained same crude protein, but varied in net energy. Diets were composed by basis of corn silage and alfalfa. Cows were milked twice daily for 4 wk. The inclusion of canola seed did not alter DM intake, weight gain, or body condition score of cows. Milk fat from CHT cows had greater proportions of UFA and MUFA (P < 0.05). Feeding CUT increased PUFA without significant difference. Milk fat from CHT had a greater proportion of C18 UFA and tended to have a higher proportion of other UFA. FCM milk yields, milk fat and protein percentages and total yield of these components were similar between treatments. Milk urea nitrogen was lower in cows fed CON and CHT. Feeding canola seed to lactating dairy cows resulted in milk fat with higher proportions of healthful fatty acids without adverse affecting milk yield or milk composition.

Keywords: canola seed, fatty acid, dairy cow, milk

Procedia PDF Downloads 599
1986 Performance Evaluation of an Inventive Co2 Gas Separation Inorganic Ceramic Membrane System

Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Oyoh Kechinyere, Edward Gobina

Abstract:

Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The challenges to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper therefore evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.

Keywords: carbon dioxide, gas separation, inorganic ceramic membrane, permselectivity

Procedia PDF Downloads 345
1985 Circular Bio-economy of Copper and Gold from Electronic Wastes

Authors: Sadia Ilyas, Hyunjung Kim, Rajiv R. Srivastava

Abstract:

Current work has attempted to establish the linkages between circular bio-economy and recycling of copper and gold from urban mine by applying microbial activities instead of the smelter and chemical technologies. Thereafter, based on the potential of microbial approaches and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on circular bio-economy indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO₂ emissions and 24 million m³ water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste urban mine under the umbrella concept of circular bio-economy.

Keywords: urban mining, biobleaching, circular bio-economy, environmental impact

Procedia PDF Downloads 159
1984 A Comparison of Efficacy of Two Drugs Combinations of 0.0625% Levobupivacaine with Fentanyl and 0.1% Ropivacaine with Fentanyl for Postoperative Analgesia after Cytoreductive Surgery with Hyperthermic Intraperotineal Chemotherapy (Crs + Hipec)

Authors: Vishal Bhatnagar

Abstract:

The objective of this study is to compare the efficacy of epidural analgesia of two amide local anesthetics, ropivacaine and levobupivacaine, with fentanyl for postoperative analgesia in major abdominal surgery CRS+HIPEC. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS+HIPEC) are done for primary peritoneal malignancies or peritoneal spread of malignant neoplasm. CRS and HIPEC are considered one of the most painful surgery among all major abdominal surgeries. Poorly managed postoperative pain elevates stress, increases anxiety, causes prolonged Hospital stay, increases opioid requirement and side effects, increases the cost of treatment and psychological effects on patient and family. It affects the quality of life of patients. The epidural technique provides better postoperative analgesia, earlier recovery of bowel function, fewer side effects, higher patient satisfaction, and an improvement in life quality in the postoperative days after abdominal surgery than other analgesic techniques.

Keywords: HIPEC, postoperative analgesia, cytoreductive surgery, VAS score, rescue analgesia

Procedia PDF Downloads 43
1983 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets

Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi

Abstract:

Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.

Keywords: data sets, recommendation system, utility item sets, frequent item sets mining

Procedia PDF Downloads 295
1982 Using Discriminant Analysis to Forecast Crime Rate in Nigeria

Authors: O. P. Popoola, O. A. Alawode, M. O. Olayiwola, A. M. Oladele

Abstract:

This research work is based on using discriminant analysis to forecast crime rate in Nigeria between 1996 and 2008. The work is interested in how gender (male and female) relates to offences committed against the government, against other properties, disturbance in public places, murder/robbery offences and other offences. The data used was collected from the National Bureau of Statistics (NBS). SPSS, the statistical package was used to analyse the data. Time plot was plotted on all the 29 offences gotten from the raw data. Eigenvalues and Multivariate tests, Wilks’ Lambda, standardized canonical discriminant function coefficients and the predicted classifications were estimated. The research shows that the distribution of the scores from each function is standardized to have a mean O and a standard deviation of 1. The magnitudes of the coefficients indicate how strongly the discriminating variable affects the score. In the predicted group membership, 172 cases that were predicted to commit crime against Government group, 66 were correctly predicted and 106 were incorrectly predicted. After going through the predicted classifications, we found out that most groups numbers that were correctly predicted were less than those that were incorrectly predicted.

Keywords: discriminant analysis, DA, multivariate analysis of variance, MANOVA, canonical correlation, and Wilks’ Lambda

Procedia PDF Downloads 471
1981 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule

Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.

Keywords: instance selection, data reduction, MapReduce, kNN

Procedia PDF Downloads 255
1980 Fuzzy Logic Based Fault Tolerant Model Predictive MLI Topology

Authors: Abhimanyu Kumar, Chirag Gupta

Abstract:

This work presents a comprehensive study on the employment of Model Predictive Control (MPC) for a three-phase voltage-source inverter to regulate the output voltage efficiently. The inverter is modeled via the Clarke Transformation, considering a scenario where the load is unknown. An LC filter model is developed, demonstrating its efficacy in Total Harmonic Distortion (THD) reduction. The system, when implemented with fault-tolerant multilevel inverter topologies, ensures reliable operation even under fault conditions, a requirement that is paramount with the increasing dependence on renewable energy sources. The research also integrates a Fuzzy Logic based fault tolerance system which identifies and manages faults, ensuring consistent inverter performance. The efficacy of the proposed methodology is substantiated through rigorous simulations and comparative results, shedding light on the voltage prediction efficiency and the robustness of the model even under fault conditions.

Keywords: total harmonic distortion, fuzzy logic, renewable energy sources, MLI

Procedia PDF Downloads 135
1979 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 147
1978 Modelling and Optimisation of Floating Drum Biogas Reactor

Authors: L. Rakesh, T. Y. Heblekar

Abstract:

This study entails the development and optimization of a mathematical model for a floating drum biogas reactor from first principles using thermal and empirical considerations. The model was derived on the basis of mass conservation, lumped mass heat transfer formulations and empirical biogas formation laws. The treatment leads to a system of coupled nonlinear ordinary differential equations whose solution mapped four-time independent controllable parameters to five output variables which adequately serve to describe the reactor performance. These equations were solved numerically using fourth order Runge-Kutta method for a range of input parameter values. Using the data so obtained an Artificial Neural Network with a single hidden layer was trained using Levenberg-Marquardt Damped Least Squares (DLS) algorithm. This network was then fine-tuned for optimal mapping by varying hidden layer size. This fast forward model was then employed as a health score generator in the Bacterial Foraging Optimization code. The optimal operating state of the simplified Biogas reactor was thus obtained.

Keywords: biogas, floating drum reactor, neural network model, optimization

Procedia PDF Downloads 144
1977 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 84
1976 A Pilot Study on the Short Term Effects of Paslop Dance Exercise on Core Strength, Balance and Flexibility

Authors: Wilawan Kanhachon, Yodchai Boonprakob, Uraiwon Chatchawan, Junichiro Yamauchi

Abstract:

Introduction: Paslop is a traditional dance from Laos, which is popular in Laos and northeastern of Thailand. This unique type of Paslop dancing is to control body movement with the song. While dancing to the beat, dancers should contract their abdomen and back muscle all the time. Paslop may be a good alternative to improve strengthening, balance and flexibility. Objective: To investigate the effects of Paslop dance exercise on core strength, balance, and flexibility. Methods: Seven healthy participants (age, 20.57±1.13 yrs; height, 162.29±6.16 cm; body mass, 58.14±7.03 kg; mean± S.D.) were volunteered to perform the 45-minute Paslop dance exercise in three times a week for 8 weeks. Before, during and after the exercise period, core strength, balance and flexibility were measured with the pressure biofeedback unit (PBU), one-leg stance test (OLST), and sit and reach test (SAR), respectively. Result: PBU score for core strength increased from 2.12 mmHg in baseline to 6.34 mmHg at the 4th week and 10.10 mmHg at the 8th week after the Paslop dance training, while OLST and SAR did not change. Conclusion: The study demonstrates that 8-week Paslop dancing exercise can improve the core strength.

Keywords: balance, core strength, flexibility, Paslop

Procedia PDF Downloads 382
1975 Nurses' and Patients’ Perception about Care: A Comparative Study

Authors: Evangelia Kotrotsiou, Mairy Gouva, Theodosios Paralikas, Maria Fiaka, Styliani Kotrotsiou, Maria Malliarou

Abstract:

The purpose of this research is to investigate the way nurses perceive the care provided in comparison to the way patients perceive it, taking into account existing literature. As far as the sample of research is concerned, it has come from the population of nurses working in the General Hospital of Thessaloniki, St. Paul and the patients of its surgical clinic. In the present study, the sample consists of 100 nurses and 88 patients. The questionnaire used was the Caring Nurse-Patient Interactions Scale: 23-Item Version, created by Cossette et al. (2006). In the case of both patients and nurses, a high score was observed in relational care in the case of the frequency of nursing care in daily practice, as well as the satisfaction of providing nursing care. Overall, patients rated higher clinical care in the case of the frequency of nursing care in daily practice, as well as the satisfaction of the clinical care they were given. On the other hand, nurses rated higher comfort care in the case of the frequency of nursing care in everyday practice, as well as relational care in the area of the importance of nursing care in everyday practice.

Keywords: nursing care, patient needs, patient satisfaction, care giving

Procedia PDF Downloads 398
1974 An Improved Amplified Sway Method for Semi-Rigidly Jointed Sway Frames

Authors: Abdul Hakim Chikho

Abstract:

A simple method of calculating satisfactory of the effect of instability on the distribution of in-plane bending moments in unbraced semi-rigidly multistory steel framed structures is presented in this paper. This method, which is a modified form of the current amplified sway method of BS5950: part1:2000, uses an approximate load factor at elastic instability in each storey of a frame which in turn dependent up on the axial loads acting in the columns. The calculated factors are then used to represent the geometrical deformations due to the presence of axial loads, acting in that storey. Only a first order elastic analysis is required to accomplish the calculation. Comparison of the prediction of the proposed method and the current BS5950 amplified sway method with an accurate second order elastic computation shows that the proposed method leads to predictions which are markedly more accurate than the current approach of BS5950.

Keywords: improved amplified sway method, steel frames, semi-rigid connections, secondary effects

Procedia PDF Downloads 87
1973 Prediction of Permeability of Frozen Unsaturated Soil Using Van Genuchten Model and Fredlund-Xing Model in Soil Vision

Authors: Bhavita S. Dave, Jaimin Vaidya, Chandresh H. Solanki, Atul K.

Abstract:

To measure the permeability of a soil specimen, one of the basic assumptions of Darcy's law is that the soil sample should be saturated. Unlike saturated soils, the permeability of unsaturated soils cannot be found using conventional methods as it does not follow Darcy's law. Many empirical models, such as the Van Genuchten Model and Fredlund-Xing Model were suggested to predict permeability value for unsaturated soil. Such models use data from the soil-freezing characteristic curve to find fitting parameters for frozen unsaturated soils. In this study, soil specimens were subjected to 0, 1, 3, and 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and its soil freezing characteristic curves were formulated for all F-T cycles. Changes in fitting parameters and relative permeability with subsequent F-T cycles are presented in this paper for both models.

Keywords: frozen unsaturated soil, Fredlund Xing model, soil-freezing characteristic curve, Van Genuchten model

Procedia PDF Downloads 190
1972 Systematic Review of Quantitative Risk Assessment Tools and Their Effect on Racial Disproportionality in Child Welfare Systems

Authors: Bronwen Wade

Abstract:

Over the last half-century, child welfare systems have increasingly relied on quantitative risk assessment tools, such as actuarial or predictive risk tools. These tools are developed by performing statistical analysis of how attributes captured in administrative data are related to future child maltreatment. Some scholars argue that attributes in administrative data can serve as proxies for race and that quantitative risk assessment tools reify racial bias in decision-making. Others argue that these tools provide more “objective” and “scientific” guides for decision-making instead of subjective social worker judgment. This study performs a systematic review of the literature on the impact of quantitative risk assessment tools on racial disproportionality; it examines methodological biases in work on this topic, summarizes key findings, and provides suggestions for further work. A search of CINAHL, PsychInfo, Proquest Social Science Premium Collection, and the ProQuest Dissertations and Theses Collection was performed. Academic and grey literature were included. The review includes studies that use quasi-experimental methods and development, validation, or re-validation studies of quantitative risk assessment tools. PROBAST (Prediction model Risk of Bias Assessment Tool) and CHARMS (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) were used to assess the risk of bias and guide data extraction for risk development, validation, or re-validation studies. ROBINS-I (Risk of Bias in Non-Randomized Studies of Interventions) was used to assess for bias and guide data extraction for the quasi-experimental studies identified. Due to heterogeneity among papers, a meta-analysis was not feasible, and a narrative synthesis was conducted. 11 papers met the eligibility criteria, and each has an overall high risk of bias based on the PROBAST and ROBINS-I assessments. This is deeply concerning, as major policy decisions have been made based on a limited number of studies with a high risk of bias. The findings on racial disproportionality have been mixed and depend on the tool and approach used. Authors use various definitions for racial equity, fairness, or disproportionality. These concepts of statistical fairness are connected to theories about the reason for racial disproportionality in child welfare or social definitions of fairness that are usually not stated explicitly. Most findings from these studies are unreliable, given the high degree of bias. However, some of the less biased measures within studies suggest that quantitative risk assessment tools may worsen racial disproportionality, depending on how disproportionality is mathematically defined. Authors vary widely in their approach to defining and addressing racial disproportionality within studies, making it difficult to generalize findings or approaches across studies. This review demonstrates the power of authors to shape policy or discourse around racial justice based on their choice of statistical methods; it also demonstrates the need for improved rigor and transparency in studies of quantitative risk assessment tools. Finally, this review raises concerns about the impact that these tools have on child welfare systems and racial disproportionality.

Keywords: actuarial risk, child welfare, predictive risk, racial disproportionality

Procedia PDF Downloads 55
1971 Comparison of Solar Radiation Models

Authors: O. Behar, A. Khellaf, K. Mohammedi, S. Ait Kaci

Abstract:

Up to now, most validation studies have been based on the MBE and RMSE, and therefore, focused only on long and short terms performance to test and classify solar radiation models. This traditional analysis does not take into account the quality of modeling and linearity. In our analysis we have tested 22 solar radiation models that are capable to provide instantaneous direct and global radiation at any given location Worldwide. We introduce a new indicator, which we named Global Accuracy Indicator (GAI) to examine the linear relationship between the measured and predicted values and the quality of modeling in addition to long and short terms performance. Note that the quality of model has been represented by the T-Statistical test, the model linearity has been given by the correlation coefficient and the long and short term performance have been respectively known by the MBE and RMSE. An important founding of this research is that the use GAI allows avoiding default validation when using traditional methodology that might results in erroneous prediction of solar power conversion systems performances.

Keywords: solar radiation model, parametric model, performance analysis, Global Accuracy Indicator (GAI)

Procedia PDF Downloads 354
1970 Knowledge of Strategies to Teach Reading Components Among Teachers of Hard of Hearing Students

Authors: Khalid Alasim

Abstract:

This study investigated Saudi Arabian elementary school teachers’ knowledge of strategies to teach reading components to hard-of-hearing students. The study focused on four of the five reading components the National Reading Panel (NPR, 2000) identified: phonemic awareness; phonics; vocabulary, and reading comprehension, and explored the relationship between teachers’ demographic characteristics and their knowledge of the strategies as well. An explanatory sequential mixed methods design was used that included two phases. The quantitative phase examined the knowledge of these Arabic reading components among 89 elementary school teachers of hard-of-hearing students, and the qualitative phase consisted of interviews with 10 teachers. The results indicated that the teachers have a great deal of knowledge (above the mean score) of strategies to teach reading components. Specifically, teachers’ knowledge of strategies to teach the vocabulary component was the highest. The results also showed no significant association between teachers’ demographic characteristics and their knowledge of strategies to teach reading components. The qualitative analysis revealed two themes: 1) teachers’ lack of basic knowledge of strategies to teach reading components, and 2) the absence of in-service courses and training programs in reading for teachers.

Keywords: knowledge, reading, components, hard-of-hearing, phonology, vocabulary

Procedia PDF Downloads 81
1969 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.

Keywords: inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness

Procedia PDF Downloads 334
1968 The Healthcare Costs of BMI-Defined Obesity among Adults Who Have Undergone a Medical Procedure in Alberta, Canada

Authors: Sonia Butalia, Huong Luu, Alexis Guigue, Karen J. B. Martins, Khanh Vu, Scott W. Klarenbach

Abstract:

Obesity is associated with significant personal impacts on health and has a substantial economic burden on payers due to increased healthcare use. A contemporary estimate of the healthcare costs associated with obesity at the population level are lacking. This evidence may provide further rationale for weight management strategies. Methods: Adults who underwent a medical procedure between 2012 and 2019 in Alberta, Canada were categorized into the investigational cohort (had body mass index [BMI]-defined class 2 or 3 obesity based on a procedure-associated code) and the control cohort (did not have the BMI procedure-associated code); those who had bariatric surgery were excluded. Characteristics were presented and healthcare costs ($CDN) determined over a 1-year observation period (2019/2020). Logistic regression and a generalized linear model with log link and gamma distribution were used to assess total healthcare costs (comprised of hospitalizations, emergency department visits, ambulatory care visits, physician visits, and outpatient prescription drugs); potential confounders included age, sex, region of residence, and whether the medical procedure was performed within 6-months before the observation period in the partial adjustment, and also the type of procedure performed, socioeconomic status, Charlson Comorbidity Index (CCI), and seven obesity-related health conditions in the full adjustment. Cost ratios and estimated cost differences with 95% confidence intervals (CI) were reported; incremental cost differences within the adjusted models represent referent cases. Results: The investigational cohort (n=220,190) was older (mean age: 53 standard deviation [SD]±17 vs 50 SD±17 years), had more females (71% vs 57%), lived in rural areas to a greater extent (20% vs 14%), experienced a higher overall burden of disease (CCI: 0.6 SD±1.3 vs 0.3 SD±0.9), and were less socioeconomically well-off (material/social deprivation was lower [14%/14%] in the most well-off quintile vs 20%/19%) compared with controls (n=1,955,548). Unadjusted total healthcare costs were estimated to be 1.77-times (95% CI: 1.76, 1.78) higher in the investigational versus control cohort; each healthcare resource contributed to the higher cost ratio. After adjusting for potential confounders, the total healthcare cost ratio decreased, but remained higher in the investigational versus control cohort (partial adjustment: 1.57 [95% CI: 1.57, 1.58]; full adjustment: 1.21 [95% CI: 1.20, 1.21]); each healthcare resource contributed to the higher cost ratio. Among urban-dwelling 50-year old females who previously had non-operative procedures, no procedures performed within 6-months before the observation period, a social deprivation index score of 3, a CCI score of 0.32, and no history of select obesity-related health conditions, the predicted cost difference between those living with and without obesity was $386 (95% CI: $376, $397). Conclusions: If these findings hold for the Canadian population, one would expect an estimated additional $3.0 billion per year in healthcare costs nationally related to BMI-defined obesity (based on an adult obesity rate of 26% and an estimated annual incremental cost of $386 [21%]); incremental costs are higher when obesity-related health conditions are not adjusted for. Results of this study provide additional rationale for investment in interventions that are effective in preventing and treating obesity and its complications.

Keywords: administrative data, body mass index-defined obesity, healthcare cost, real world evidence

Procedia PDF Downloads 109
1967 The Role of Artificial Intelligence in Concrete Constructions

Authors: Ardalan Tofighi Soleimandarabi

Abstract:

Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.

Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability

Procedia PDF Downloads 20
1966 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks

Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi

Abstract:

Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.

Keywords: ionic liquid, neural networks, VLE, dilute solution

Procedia PDF Downloads 301
1965 Mapping Network Connection of Personality Traits and Psychiatric Symptoms in Chinese Adolescents

Authors: Yichao Lv, Minmin Cai, Yanqiang Tao, Xinyuan Zou, Chao Zhang, Xiangping Liu

Abstract:

Objective: This study aims to explore the network structure of personality traits and mental health and identify key factors for effective intervention strategies. Methods: All participants (N = 6,067; 3,368 females) underwent the Eysenck Personality Scale (EPQ) to measure personality traits and the Symptom Self-rating Scale (SCL-90) to measure psychiatric symptoms. Using the mean value of the SCL-90 total score plus one standard deviation as the cutoff, 854 participants (14.08%; 528 females) were categorized as individuals exhibiting potential psychological symptoms and were included in the follow-up network analysis. The structure and bridge centrality of the network for dimensions of EPQ and SCL-90 were estimated. Results: Between the EPQ and SCL-90, psychoticism (P), extraversion (E), and neuroticism (N) showed the strongest positive correlations with somatization (Som), interpersonal sensitivity (IS), and hostility (Hos), respectively. Extraversion (E), somatization (Som), and anxiety (Anx) were identified as the most important bridge factors influencing the overall network. Conclusions: This study explored the network structure and complex connections between mental health and personality traits from a network perspective, providing potential targets for intervening in adolescent personality traits and mental health.

Keywords: EPQ, SCL-90, Chinese adolescents, network analysis

Procedia PDF Downloads 49
1964 Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin

Authors: José Leandro Melgar Néris, Claudinéia Brazil, Luciane Teresa Salvi, Isabel Cristina Damin

Abstract:

The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins.

Keywords: climate change, climatic model, dry events, precipitation projections

Procedia PDF Downloads 146
1963 Effects of Convective Momentum Transport on the Cyclones Intensity: A Case Study

Authors: José Davi Oliveira De Moura, Chou Sin Chan

Abstract:

In this study, the effect of convective momentum transport (CMT) on the life of cyclone systems and their organization is analyzed. A case of strong precipitation, in the southeast of Brazil, was simulated using Eta model with two kinds of convective parameterization: Kain-Fritsch without CMT and Kain-fritsch with CMT. Reanalysis data from CFSR were used to compare Eta model simulations. The Wind, mean sea level pressure, rain and temperature are included in analysis. The rain was evaluated by Equitable Threat Score (ETS) and Bias Index; the simulations were compared among themselves to detect the influence of CMT displacement on the systems. The result shows that CMT process decreases the intensity of meso cyclones (higher pressure values on nuclei) and change the positions and production of rain. The decrease of intensity in meso cyclones should be caused by the dissolution of momentum from lower levels from up levels. The rain production and rain distribution were altered because the displacement of the larger systems scales was changed. In addition, the inclusion of CMT process is very important to improve the simulation of life time of meteorological systems.

Keywords: convection, Kain-Fritsch, momentum, parameterization

Procedia PDF Downloads 325
1962 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting Title

Authors: Gangmin Li, Fan Yang

Abstract:

Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behaviour data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.

Keywords: personalized recommendation, generative user modelling, user intention identification, large language models, chain-of-thought prompting

Procedia PDF Downloads 57