Search results for: industrial wireless network (IWN)
6094 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN
Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu
Abstract:
Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.Keywords: DDoS detection, EMD, relative entropy, SDN
Procedia PDF Downloads 3406093 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station
Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner
Abstract:
A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.Keywords: radio base station, maintenance, classification, detection, deep learning, automation
Procedia PDF Downloads 2036092 Assessment of E-Readiness in Libraries of Public Sector Universities Khyber Pakhtunkhwa-Pakistan
Authors: Saeed Ullah Jan
Abstract:
This study has examined the e-readiness in libraries of public sector universities in Khyber Pakhtunkhwa. Efforts were made to evaluate the availability of human resources, electronic infrastructure, and network services and programs in the public sector university libraries. The population of the study was the twenty-seven public sector university libraries of Khyber Pakhtunkhwa. A quantitative approach was adopted, and a questionnaire-based survey was conducted to collect data from the librarian/in charge of public sector university libraries. The collected data were analyzed using Statistical Package for Social Sciences version 22 (SPSS). The mean score of the knowledge component interpreted magnitudes below three which indicates that the respondents are poorly or moderately satisfied regards knowledge of libraries. The satisfaction level of the respondents about the other components, such as electronic infrastructure, network services and programs, and enhancers of the networked world, was rated as average or below. The study suggested that major aspects of existing public-sector university libraries require significant transformation. For this purpose, the government should provide all the required resources and facilities to meet the population's informational and recreational demands. The Information Communication Technology (ICT) infrastructure of public university libraries needs improvement in terms of the availability of computer equipment, databases, network servers, multimedia projectors, digital cameras, uninterruptible power supply, scanners, and backup devices such as hard discs and Digital Video Disc/Compact Disc.Keywords: ICT-libraries, e-readiness-libraries, e-readiness-university libraries, e-readiness-Pakistan
Procedia PDF Downloads 906091 Smart Irrigation Systems and Website: Based Platform for Farmer Welfare
Authors: Anusha Jain, Santosh Vishwanathan, Praveen K. Gupta, Shwetha S., Kavitha S. N.
Abstract:
Agriculture has a major impact on the Indian economy, with the highest employment ratio than any sector of the country. Currently, most of the traditional agricultural practices and farming methods are manual, which results in farmers not realizing their maximum productivity often due to increasing in labour cost, inefficient use of water sources leading to wastage of water, inadequate soil moisture content, subsequently leading to food insecurity of the country. This research paper aims to solve this problem by developing a full-fledged web application-based platform that has the capacity to associate itself with a Microcontroller-based Automated Irrigation System which schedules the irrigation of crops based on real-time soil moisture content employing soil moisture sensors centric to the crop’s requirements using WSN (Wireless Sensor Networks) and M2M (Machine To Machine Communication) concepts, thus optimizing the use of the available limited water resource, thereby maximizing the crop yield. This robust automated irrigation system provides end-to-end automation of Irrigation of crops at any circumstances such as droughts, irregular rainfall patterns, extreme weather conditions, etc. This platform will also be capable of achieving a nationwide united farming community and ensuring the welfare of farmers. This platform is designed to equip farmers with prerequisite knowledge on tech and the latest farming practices in general. In order to achieve this, the MailChimp mailing service is used through which interested farmers/individuals' email id will be recorded and curated articles on innovations in the world of agriculture will be provided to the farmers via e-mail. In this proposed system, service is enabled on the platform where nearby crop vendors will be able to enter their pickup locations, accepted prices and other relevant information. This will enable farmers to choose their vendors wisely. Along with this, we have created a blogging service that will enable farmers and agricultural enthusiasts to share experiences, helpful knowledge, hardships, etc., with the entire farming community. These are some of the many features that the platform has to offer.Keywords: WSN (wireless sensor networks), M2M (M/C to M/C communication), automation, irrigation system, sustainability, SAAS (software as a service), soil moisture sensor
Procedia PDF Downloads 1316090 3D Interpenetrated Network Based on 1,3-Benzenedicarboxylate and 1,2-Bis(4-Pyridyl) Ethane
Authors: Laura Bravo-García, Gotzone Barandika, Begoña Bazán, M. Karmele Urtiaga, Luis M. Lezama, María I. Arriortua
Abstract:
Solid coordination networks (SCNs) are materials consisting of metal ions or clusters that are linked by polyfunctional organic ligands and can be designed to form tridimensional frameworks. Their structural features, as for example high surface areas, thermal stability, and in other cases large cavities, have opened a wide range of applications in fields like drug delivery, host-guest chemistry, biomedical imaging, chemical sensing, heterogeneous catalysis and others referred to greenhouse gases storage or even separation. In this sense, the use of polycarboxylate anions and dipyridyl ligands is an effective strategy to produce extended structures with the needed characteristics for these applications. In this context, a novel compound, [Cu4(m-BDC)4(bpa)2DMF]•DMF has been obtained by microwave synthesis, where m-BDC is 1,3-benzenedicarboxylate and bpa 1,2-bis(4-pyridyl)ethane. The crystal structure can be described as a three dimensional framework formed by two equal, interpenetrated networks. Each network consists of two different CuII dimers. Dimer 1 have two coppers with a square pyramidal coordination, and dimer 2 have one with a square pyramidal coordination and other with octahedral one, the last dimer is unique in literature. Therefore, the combination of both type of dimers is unprecedented. Thus, benzenedicarboxylate ligands form sinusoidal chains between the same type of dimers, and also connect both chains forming these layers in the (100) plane. These layers are connected along the [100] direction through the bpa ligand, giving rise to a 3D network with 10 Å2 voids in average. However, the fact that there are two interpenetrated networks results in a significant reduction of the available volume. Structural analysis was carried out by means of single crystal X-ray diffraction and IR spectroscopy. Thermal and magnetic properties have been measured by means of thermogravimetry (TG), X-ray thermodiffractometry (TDX), and electron paramagnetic resonance (EPR). Additionally, CO2 and CH4 high pressure adsorption measurements have been carried out for this compound.Keywords: gas adsorption, interpenetrated networks, magnetic measurements, solid coordination network (SCN), thermal stability
Procedia PDF Downloads 3256089 Impact of Unbalanced Urban Structure on the Traffic Congestion in Biskra, Algeria
Authors: Khaled Selatnia
Abstract:
Nowadays, the traffic congestion becomes increasingly a chronic problem. Sometimes, the cause is attributed to the recurrent road works that create barriers to the efficient movement. But congestion, which usually occurs in cities, can take diverse forms and magnitudes. The case study of Biskra city in Algeria and the diagnosis of its road network show that throughout all the micro regional system, the road network seems at first quite dense. However, this density although it is important, does not cover all areas. A major flow is concentrated in the axis Sidi Okba – Biskra – Tolga. The largest movement of people in the Wilaya (prefecture) revolves around these three centers and their areas of influence. Centers farthest from the trio are very poorly served. This fact leads us to ask questions about the extent of congestion in Biskra city and its relationship to the imbalance of the urban framework. The objective of this paper is to highlight the impact of the urban fact on the traffic congestion.Keywords: congestion, urban framework, regional, urban and regional studies
Procedia PDF Downloads 6266088 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle
Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores
Abstract:
This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino
Procedia PDF Downloads 1746087 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water
Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri
Abstract:
In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.Keywords: bubble diameter, heat flux, neural network, training algorithm
Procedia PDF Downloads 4476086 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System
Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu
Abstract:
The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter
Procedia PDF Downloads 2546085 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)
Authors: Mahacine Amrani
Abstract:
This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.Keywords: process performance, model, wavelets, Haar, Moroccan
Procedia PDF Downloads 3196084 Quantification of Uncertainties Related to the Implementation of Reverse Logistics Process
Authors: Dnaya Soukaina
Abstract:
It’s over six decades that Reverse logistics had appeared as a research area, and it is emerging again and again in the scientific fields. As reverse logistics presents real potential for value recovery and environmental impacts decrease, it’s still necessary to extend this concept more in the industrial and commercial field especially in developing countries. The process of reverse logistics is a progression of steps beginning with the customer and finishing with the organization or even the customer, however the issue is that this cycle must be adjustable to the organization concerned, in addition of legislative, operational, financial and social obstacles. Literature had demonstrated that there are many other uncertainties while the implementation of this process that vary in function of the sector concerned and the kind of activity. Besides, even if literature is developing this topic over the last years, reseraches about uncertainties quantification in reverse logistics process still being few. the paper has the objective to fill this gap, and carry out a study to identify sustainable strategies that can be adapted to different industrial or commercial sectors to facilitate the implementation of reverse logistics.Keywords: reverse logistics, implementation, unceratinties quantification, mathematical model
Procedia PDF Downloads 236083 A Hybrid Approach for Thread Recommendation in MOOC Forums
Authors: Ahmad. A. Kardan, Amir Narimani, Foozhan Ataiefard
Abstract:
Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC forums by applying social network analysis and association rule mining techniques. Initial results indicate that the proposed recommender system performs comparatively well with regard to limited available data from users' previous posts in the forum.Keywords: association rule mining, hybrid recommender system, massive open online courses, MOOCs, social network analysis
Procedia PDF Downloads 2966082 Medical Neural Classifier Based on Improved Genetic Algorithm
Authors: Fadzil Ahmad, Noor Ashidi Mat Isa
Abstract:
This study introduces an improved genetic algorithm procedure that focuses search around near optimal solution corresponded to a group of elite chromosome. This is achieved through a novel crossover technique known as Segmented Multi Chromosome Crossover. It preserves the highly important information contained in a gene segment of elite chromosome and allows an offspring to carry information from gene segment of multiple chromosomes. In this way the algorithm has better possibility to effectively explore the solution space. The improved GA is applied for the automatic and simultaneous parameter optimization and feature selection of artificial neural network in pattern recognition of medical problem, the cancer and diabetes disease. The experimental result shows that the average classification accuracy of the cancer and diabetes dataset has improved by 0.1% and 0.3% respectively using the new algorithm.Keywords: genetic algorithm, artificial neural network, pattern clasification, classification accuracy
Procedia PDF Downloads 4756081 Neuro-Connectivity Analysis Using Abide Data in Autism Study
Authors: Dulal Bhaumik, Fei Jie, Runa Bhaumik, Bikas Sinha
Abstract:
Human brain is an amazingly complex network. Aberrant activities in this network can lead to various neurological disorders such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and autism. fMRI has emerged as an important tool to delineate the neural networks affected by such diseases, particularly autism. In this paper, we propose mixed-effects models together with an appropriate procedure for controlling false discoveries to detect disrupted connectivities in whole brain studies. Results are illustrated with a large data set known as Autism Brain Imaging Data Exchange or ABIDE which includes 361 subjects from 8 medical centers. We believe that our findings have addressed adequately the small sample inference problem, and thus are more reliable for therapeutic target for intervention. In addition, our result can be used for early detection of subjects who are at high risk of developing neurological disorders.Keywords: ABIDE, autism spectrum disorder, fMRI, mixed-effects model
Procedia PDF Downloads 2916080 Growth and Development of Autorickshaws in Kolkata Municipal Corporation Area: Enigma to Planners
Authors: Lopamudra Bakshi Basu
Abstract:
Transport is one of the most important characteristic features of Indian cities. The physical and societal requirements determine the selection of a particular transport system along with the uniqueness of road networks. Kolkata has a mixed traffic of which Paratransit system plays a crucial role. It is an indispensable transport system in Kolkata mainly because of its size and service flexibility which has led to a unique network character. The paratransit system, mainly the autorickshaws, is the most favoured mode of transport in the city. Its fast movement and comfortability make it a vital transport system of the city. Since the inception of the autorickshaws in Kolkata in 1981, this mode has gained popularity and presently serves nearly 80 to 90 percent of the total passenger trips. This employment generating mode of transport has increased its number rapidly affecting the city’s traffic. Minimal check on their growth by the authority has led to traffic snarls along many streets of Kolkata. Indiscipline behavior, violation of traffic rules and rash driving make situations even worse. The rise in the number and increasing popularity of the autorickshaws make it an interesting study area. Autorickshaws as a paratransit mode play its role as a leader or a follower. However, it is informal in its planning and operations, which makes it a problem area for the city. The entire research work deals with the growth and expansion of the number of vehicles and the routes within the city. The development of transport system has been interesting in the city, which has been studied. The growth of the paratransit modes in the city has been rapid. The network pattern of the paratransit mode within Kolkata has been analysed.Keywords: growth, informal, network characteristics, paratransit, service flexibility
Procedia PDF Downloads 2406079 Applying the Fuzzy Analytic Network Process to Establish the Relative Importance of Knowledge Sharing Barriers
Authors: Van Dong Phung, Igor Hawryszkiewycz, Kyeong Kang, Muhammad Hatim Binsawad
Abstract:
Knowledge sharing (KS) is the key to creativity and innovation in any organizations. Overcoming the KS barriers has created new challenges for designing in dynamic and complex environment. There may be interrelations and interdependences among the barriers. The purpose of this paper is to present a review of literature of KS barriers and impute the relative importance of them through the fuzzy analytic network process that is a generalization of the analytical hierarchy process (AHP). It helps to prioritize the barriers to find ways to remove them to facilitate KS. The study begins with a brief description of KS barriers and the most critical ones. The FANP and its role in identifying the relative importance of KS barriers are explained. The paper, then, proposes the model for research and expected outcomes. The study suggests that the use of the FANP is appropriate to impute the relative importance of KS barriers which are intertwined and interdependent. Implications and future research are also proposed.Keywords: FANP, ANP, knowledge sharing barriers, knowledge sharing, removing barriers, knowledge management
Procedia PDF Downloads 3356078 Predicting National Football League (NFL) Match with Score-Based System
Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor
Abstract:
This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.Keywords: game prediction, NFL, football, artificial neural network
Procedia PDF Downloads 856077 The Relationship between Personal, Psycho-Social and Occupational Risk Factors with Low Back Pain Severity in Industrial Workers
Authors: Omid Giahi, Ebrahim Darvishi, Mahdi Akbarzadeh
Abstract:
Introduction: Occupational low back pain (LBP) is one of the most prevalent work-related musculoskeletal disorders in which a lot of risk factors are involved that. The present study focuses on the relation between personal, psycho-social and occupational risk factors and LBP severity in industrial workers. Materials and Methods: This research was a case-control study which was conducted in Kurdistan province. 100 workers (Mean Age ± SD of 39.9 ± 10.45) with LBP were selected as the case group, and 100 workers (Mean Age ± SD of 37.2 ± 8.5) without LBP were assigned into the control group. All participants were selected from various industrial units, and they had similar occupational conditions. The required data including demographic information (BMI, smoking, alcohol, and family history), occupational (posture, mental workload (MWL), force, vibration and repetition), and psychosocial factors (stress, occupational satisfaction and security) of the participants were collected via consultation with occupational medicine specialists, interview, and the related questionnaires and also the NASA-TLX software and REBA worksheet. Chi-square test, logistic regression and structural equation modeling (SEM) were used to analyze the data. For analysis of data, IBM Statistics SPSS 24 and Mplus6 software have been used. Results: 114 (77%) of the individuals were male and 86 were (23%) female. Mean Career length of the Case Group and Control Group were 10.90 ± 5.92, 9.22 ± 4.24, respectively. The statistical analysis of the data revealed that there was a significant correlation between the Posture, Smoking, Stress, Satisfaction, and MWL with occupational LBP. The odds ratios (95% confidence intervals) derived from a logistic regression model were 2.7 (1.27-2.24) and 2.5 (2.26-5.17) and 3.22 (2.47-3.24) for Stress, MWL, and Posture, respectively. Also, the SEM analysis of the personal, psycho-social and occupational factors with LBP revealed that there was a significant correlation. Conclusion: All three broad categories of risk factors simultaneously increase the risk of occupational LBP in the workplace. But, the risks of Posture, Stress, and MWL have a major role in LBP severity. Therefore, prevention strategies for persons in jobs with high risks for LBP are required to decrease the risk of occupational LBP.Keywords: industrial workers occupational, low back pain, occupational risk factors, psychosocial factors
Procedia PDF Downloads 2586076 Comparison of Fuel Cell Installation Methods at Large Commercial and Industrial Sites
Authors: Masood Sattari
Abstract:
Using fuel cell technology to generate electricity for large commercial and industrial sites is a growing segment in the fuel cell industry. The installation of these systems involves design, permitting, procurement of long-lead electrical equipment, and construction involving multiple utilities. The installation of each fuel cell system requires the same amount of coordination as the construction of a new structure requiring a foundation, gas, water, and electricity. Each of these components provide variables that can delay and possibly eliminate a new project. As the manufacturing process and efficiency of fuel cell systems improves, so must the installation methods to prevent a ‘bottle-neck’ in the installation phase of the deployment. Installation methodologies to install the systems vary among companies and this paper will examine the methodologies, describe the benefits and drawbacks for each, and provide guideline for the industry to improve overall installation efficiency.Keywords: construction, installation, methodology, procurement
Procedia PDF Downloads 1986075 A Research and Application of Feature Selection Based on IWO and Tabu Search
Authors: Laicheng Cao, Xiangqian Su, Youxiao Wu
Abstract:
Feature selection is one of the important problems in network security, pattern recognition, data mining and other fields. In order to remove redundant features, effectively improve the detection speed of intrusion detection system, proposes a new feature selection method, which is based on the invasive weed optimization (IWO) algorithm and tabu search algorithm(TS). Use IWO as a global search, tabu search algorithm for local search, to improve the results of IWO algorithm. The experimental results show that the feature selection method can effectively remove the redundant features of network data information in feature selection, reduction time, and to guarantee accurate detection rate, effectively improve the speed of detection system.Keywords: intrusion detection, feature selection, iwo, tabu search
Procedia PDF Downloads 5316074 Faults Diagnosis by Thresholding and Decision tree with Neuro-Fuzzy System
Authors: Y. Kourd, D. Lefebvre
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. This paper proposes a method of fault diagnosis based on a neuro-fuzzy hybrid structure. This hybrid structure combines the selection of threshold and decision tree. The validation of this method is obtained with the DAMADICS benchmark. In the first phase of the method, a model will be constructed that represents the normal state of the system to fault detection. Signatures of the faults are obtained with residuals analysis and selection of appropriate thresholds. These signatures provide groups of non-separable faults. In the second phase, we build faulty models to see the flaws in the system that cannot be isolated in the first phase. In the latest phase we construct the tree that isolates these faults.Keywords: decision tree, residuals analysis, ANFIS, fault diagnosis
Procedia PDF Downloads 6286073 Under the 'Umbrella' Project: A Volunteer-Mentoring Approach for Socially Disadvantaged University Students
Authors: Evridiki Zachopoulou, Vasilis Grammatikopoulos, Michail Vitoulis, Athanasios Gregoriadis
Abstract:
In the last ten years, the recent economic crisis in Greece has decreased the financial ability and strength of several families when it comes to supporting their children’s studies. As a result, the number of students who are significantly delaying or even dropping out of their university studies is constantly increasing. The students who are at greater risk for academic failure are those who are facing various problems and social disadvantages, like health problems, special needs, family poverty or unemployment, single-parent students, immigrant students, etc. The ‘Umbrella’ project is a volunteer-based initiative to tackle this problem at International Hellenic University. The main purpose of the project is to provide support to disadvantaged students at a socio-emotional, academic, and practical level in order to help them complete their undergraduate studies. More specifically, the ‘Umbrella’ project has the following goals: (a) to develop a consulting-supporting network based on volunteering senior students, called ‘i-mentors’. (b) to train the volunteering i-mentors and create a systematic and consistent support procedure for students at-risk, (c), to develop a service that, parallel to the i-mentor network will be ensuring opportunities for at-risk students to find a job, (d) to support students who are coping with accessibility difficulties, (e) to secure the sustainability of the ‘Umbrella’ project after the completion of the funding of the project. The innovation of the Umbrella project is in its holistic-person-centered approach that will be providing individualized support -via the i-mentors network- to any disadvantaged student that will come ‘under the Umbrella.’Keywords: peer mentoring, student support, socially disadvantaged students, volunteerism in higher education
Procedia PDF Downloads 2356072 Magnetomechanical Effects on MnZn Ferrites
Authors: Ibrahim Ellithy, Mauricio Esguerra, , Rewanth Radhakrishnan
Abstract:
In this study, the effects of hydrostatic stress on the magnetic properties of MnZn ferrite rings of different power grades, were measured and analyzed in terms of the magneto-mechanical effect on core losses was modeled via the Hodgdon-Esguerra hysteresis model. The results show excellent agreement with the model and a correlation between the permeability drop and the core loss increase in dependence of the material grade properties. These results emphasize the vulnerabilities of MnZn ferrites when subjected to mechanical perturbations, especially in real-world scenarios like under-road embedding for WPT.Keywords: hydrostatic stress, power ferrites, core losses, wireless power transfer
Procedia PDF Downloads 706071 Smart Helmet for Two-Wheelers
Authors: Ravi Nandu, Kuldeep Singh
Abstract:
A helmet is a protective layer that is worn in order to prevent head injury. Helmet is the most important safety gear for two wheeler riders. However, due to carelessness of people, less importance toward safety, lot of causalities is every year. According to National Crime Records Bureau (NCRB) two wheelers claimed 92 lives every day out of which most were due to helmetless drive. The system design will be such that without wearing the helmet the rider cannot start two wheelers. The helmet will be connected to vehicle key ignition systems which will be electronically controlled. The smart helmet will be having proximity sensor fitted inside it, which will act as our switch for ignition and further with wireless connection the helmet sensor circuit will be connected to the vehicle ignition system.Keywords: helmet, proximity sensor, microcontroller, head injury
Procedia PDF Downloads 3136070 Speech Emotion Recognition with Bi-GRU and Self-Attention based Feature Representation
Authors: Bubai Maji, Monorama Swain
Abstract:
Speech is considered an essential and most natural medium for the interaction between machines and humans. However, extracting effective features for speech emotion recognition (SER) is remains challenging. The present studies show that the temporal information captured but high-level temporal-feature learning is yet to be investigated. In this paper, we present an efficient novel method using the Self-attention (SA) mechanism in a combination of Convolutional Neural Network (CNN) and Bi-directional Gated Recurrent Unit (Bi-GRU) network to learn high-level temporal-feature. In order to further enhance the representation of the high-level temporal-feature, we integrate a Bi-GRU output with learnable weights features by SA, and improve the performance. We evaluate our proposed method on our created SITB-OSED and IEMOCAP databases. We report that the experimental results of our proposed method achieve state-of-the-art performance on both databases.Keywords: Bi-GRU, 1D-CNNs, self-attention, speech emotion recognition
Procedia PDF Downloads 1146069 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling
Procedia PDF Downloads 186068 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension
Authors: Obe Olumide Olayinka, Victor Balanica, Eugen Neagoe
Abstract:
The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.Keywords: neural network, hypertension, data set, training set, supervised learning
Procedia PDF Downloads 3946067 Low Power, Highly Linear, Wideband LNA in Wireless SOC
Authors: Amir Mahdavi
Abstract:
In this paper a highly linear CMOS low noise amplifier (LNA) for ultra-wideband (UWB) applications is proposed. The proposed LNA uses a linearization technique to improve second and third-order intercept points (IIP3). The linearity is cured by repealing the common-mode section of all intermodulation components from the cascade topology current with optimization of biasing current use symmetrical and asymmetrical circuits for biasing. Simulation results show that maximum gain and noise figure are 6.9dB and 3.03-4.1dB over a 3.1–10.6 GHz, respectively. Power consumption of the LNA core and IIP3 are 2.64 mW and +4.9dBm respectively. The wideband input impedance matching of LNA is obtained by employing a degenerating inductor (|S11|<-9.1 dB). The circuit proposed UWB LNA is implemented using 0.18 μm based CMOS technology.Keywords: highly linear LNA, low-power LNA, optimal bias techniques
Procedia PDF Downloads 2826066 The Role of Phytoremediation in Reclamation of Soil Pollution and Suitability of Certain Ornamental Plants to Phytoremediation
Authors: Bahriye Gülgün, Gökhan Balik, Şükrü Dursun, Kübra Yazici
Abstract:
The main reasons such as economic growth of society increase of the world population and rapid changes of industrialization cause the amount and the types of pollutants to increase over time. Soil pollution is the typical side effect of industrial activities. As a result of industrial activities, there are large amounts of heavy metal emission every year. Heavy metals are one of the highest pollution sources according to the soil pollution aspect. The usage of hyperaccumulator plants to clean heavy metal polluted soils and the selection of plants for phytoremediation gain importance recently. There are limited numbers of researches on the ornamental plant types of phytoremediation thus; researches on this subject are important. This research is prepared based on the ornamental plant types with phytoremediation abilities.Keywords: phytoremediation, ornamental plants, landscape reclamation, soil reclamation, environmental pollution
Procedia PDF Downloads 4116065 Performance of LTE Multicast Systems in the Presence of the Colored Noise Jamming
Authors: S. Malisuwan, J. Sivaraks, N. Madan, N. Suriyakrai
Abstract:
The ever going evolution of advanced wireless technologies makes it financially impossible for military operations to completely manufacture their own equipment. Therefore, Commercial-Off-The-Shelf (COTS) and Modified-Off-The-Shelf (MOTS) are being considered in military mission with low-cost modifications. In this paper, we focus on the LTE multicast systems for military communication systems under tactical environments with jamming condition. We examine the influence of the colored noise jamming on the performance of the LTE multicast systems in terms of the average throughput. The simulation results demonstrate the degradation of the average throughput for different dynamic ranges of the colored noise jamming versus average SNR.Keywords: performance, LTE, multicast, jamming, throughput
Procedia PDF Downloads 419