Search results for: growth dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9048

Search results for: growth dynamics

6888 Evaluation of Growth Performance and Survival Rate of African Catfish (Clarias gariepinus) Fed with Graded Levels of Egg Shell Substituted Ration

Authors: A. Bello-Olusoji, M. O. Sodamola, Y. A. Adejola, D. D Akinbola

Abstract:

An eight (8) weeks study was carried out on Four hundred and five (405) African catfish (Clarias gariepinus) juveniles to examine the effect of graded levels of egg shell on their growth performance and survival rates. They were acclimatized for two (2) weeks after which they were weighed and allotted into five dietary treatments of three (3) replicates each and 27 fishes per replicate making a total number of eighty-one (81) fishes per treatment. The dietary treatments contained 0, 25, 50, 75 and 100(%) egg shell inclusion from treatment one to treatment five respectively. Parameter on daily feed intake, weekly weight gain, and daily mortalities were recorded. The result of the experiment indicated that treatment four (4) with 75% inclusion of egg shell was the best in terms of weight gain and survival rates and was significantly different (P<0.05) when compared with the other treatments. For Catfish farming to remain viable in the nearest future, lower feed cost and increased profit are required; it is therefore recommended that diets of African catfish (Clarias gariepinus) be supplemented with well processed egg shell at 75% level of inclusion to achieve this.

Keywords: African catfish, egg shell, performance, performance, survival rate, weight gain

Procedia PDF Downloads 386
6887 The Art of Resilience in the Case of Skopje

Authors: Kristina Nikolovska

Abstract:

Social movements have become common in the Post Yugoslav cities. Consequently, the wave of activism has been considerably present in Skopje. Starting from 2009 the activist wave in Skopje emerged with the notion of the city. Diversity of initiatives appeared in the city in order to defend places that have been contested by the urban development project SK2014. The activist wave diffused into many different initiatives and diversity of issues. The result was unification in one massive movement in 2016, called 'The Colourful Revolution'. The paper explores the scope of activism in Skopje, with taking into consideration the influence of the spatial transformation, the project SK2014. Moreover, it examines the processes of spatiality into shaping the contention in Skopje, focusing on interdisciplinary and comprehensive approaches. Except the diversity of theoretical framework mainly founded on contentious politics theory and space elaboration from different perspectives, the study is founded on field work based on conducted interviews. Using an interdisciplinary approach and focusing on three main dimensions, the research contributes to understand the dynamics of the activist wave and importance of spatial processes in the creation of the contention in Skopje. Moreover, it elaborates the characteristics, possible effects, and reflections of the cycles of protests in Skopje. The main results of the research showed that dynamics of space is important in the creation of the activist wave in Skopje, moreover space context can give explanation about how opportunities diffuse and transformative power is created. The study contributed into deeper understanding of the importance of spatiality in contentious politics, it showed that in general contentions politics can benefit from deeper analyses of place specificity. Finally, the thesis opposes the traditional linear understanding of social movements, and proposes more dynamic, comprehensive, and sensitive elaboration.

Keywords: contentious politics, place, Skopje, SK2014, social movements, space

Procedia PDF Downloads 229
6886 Advancing Phenological Understanding of Plants/Trees Through Phenocam Digital Time-lapse Images

Authors: Siddhartha Khare, Suyash Khare

Abstract:

Phenology, a crucial discipline in ecology, offers insights into the seasonal dynamics of organisms within natural ecosystems and the underlying environmental triggers. Leveraging the potent capabilities of digital repeat photography, PhenoCams capture invaluable data on the phenology of crops, plants, and trees. These cameras yield digital imagery in Red Green Blue (RGB) color channels, and some advanced systems even incorporate Near Infrared (NIR) bands. This study presents compelling case studies employing PhenoCam technology to unravel the phenology of black spruce trees. Through the analysis of RGB color channels, a range of essential color metrics including red chromatic coordinate (RCC), green chromatic coordinate (GCC), blue chromatic coordinate (BCC), vegetation contrast index (VCI), and excess green index (ExGI) are derived. These metrics illuminate variations in canopy color across seasons, shedding light on bud and leaf development. This, in turn, facilitates a deeper understanding of phenological events and aids in delineating the growth periods of trees and plants. The initial phase of this study addresses critical questions surrounding the fidelity of continuous canopy greenness records in representing bud developmental phases. Additionally, it discerns which color-based index most accurately tracks the seasonal variations in tree phenology within evergreen forest ecosystems. The subsequent section of this study delves into the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology. This is achieved through a fortnightly comparative analysis of the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). By employing PhenoCam technology and leveraging advanced color metrics, this study significantly advances our comprehension of black spruce tree phenology, offering valuable insights for ecological research and management.

Keywords: phenology, remote sensing, phenocam, color metrics, NDVI, GCC

Procedia PDF Downloads 60
6885 Application of Crude Palm Oil Liquid Sludge Sewage On Maize (Zea mays. L) as Re-Cycle Possibility to Fertilizer

Authors: Hasan Basri Jumin, Henni Rosneti, Agusnimar

Abstract:

Crude palm oil liquid sludge sewage was treated to maize with 400 cc/plant could be increased mean relative growth rates, net assimilation rate, leaf area and dry weight of seed. There are indicated that 400 cc / plant treated to maize significantly increase the average of mean relative growth rates into 0.32 g.day-1. Net assimilation rates increase from 13.5 mg.m-2.day-1 into 34.5 mg.m-2.day-1, leaf area at 50 days after planting increase from 1419 cm-2 into 2458 cm-2 and dry weight of seed from 38 g per plant into 43 g per plant. Crude palm oil liquid sludge waste chemical analysis indicated that, there are no exceed threshold content of dangerous metals and biology effects. Cadmium content as heavy metal is lower than threshold of human healthy tolerance. Therefore, it has no syndrome effect to human health. Biological oxygen demands and chemical oxygen demands as indicators for micro-organism activities, there are under the threshold of human healthy tolerance.

Keywords: crude-palm-oil, fertilizer, liquid-sludge, maize, pollutant, waste

Procedia PDF Downloads 566
6884 Antimicrobial Activity of Different Essential Oils in Synergy with Amoxicillin against Clinical Isolates of Methicillin-Resistant Staphylococcus aureus

Authors: Naheed Niaz, Nimra Naeem, Bushra Uzair, Riffat Tahira

Abstract:

Antibacterial activity of different traditional plants essential oils against clinical isolates of Methicillin-resistant Staphylococcus aureus (MRSA) through disk diffusion method was evaluated. All the tested essential oils, in different concentrations, inhibited growth of S. aureus to varying degrees. Cinnamon and Thyme essential oils were observed to be the “best” against test pathogen. Even at lowest concentration of these essential oils i.e. 25 µl/ml, clear zone of inhibition was recorded 9+0.085mm and 8+0.051mm respectively, and at higher concentrations there was a total reduction in growth of MRSA. The study also focused on analyzing the synergistic effects of essential oils in combination with amoxicillin. Results showed that oregano and pennyroyal mint essential oils which were not very effective alone turned out to be strong synergistic enhancers. The activity increased with increase in concentration of the essential oils. It may be concluded from present results that cinnamon and thyme essential oils could be used as potential antimicrobial source for the treatment of infections caused by Methicillin-resistant Staphylococcus aureus (MRSA).

Keywords: Staphylococcus aureus, essential oils, antibiotics, combination therapy, minimum inhibitory concentration

Procedia PDF Downloads 447
6883 Application of Computational Fluid Dynamics in the Analysis of Water Flow in Rice Leaves

Authors: Marcio Mesquita, Diogo Henrique Morato de Moraes, Henrique Fonseca Elias de Oliveira, Rilner Alves Flores, Mateus Rodrigues Ferreira, Dalva Graciano Ribeiro

Abstract:

This study aimed to analyze the movement of water in irrigated and non-irrigated rice (Oryza sativa L.) leaves, from the xylem to the stomata, through numerical simulations. Through three-dimensional modeling, it was possible to determine how the spacing of parenchyma cells and the permeability of these cells influence the apoplastic flow and the opening of the stomata. The thickness of the cuticle and the number of vascular bundles are greater in plants subjected to water stress, indicating an adaptive response of plants to environments with water deficit. In addition, numerical simulations revealed that the opening of the stomata, the permeability of the parenchyma cells and the cell spacing have significant impacts on the energy loss and the speed of water movement. It was observed that a more open stoma facilitates water flow, decreasing the resistance and energy required for transport, while higher levels of permeability reduce energy loss, indicating that a more permeable tissue allows for more efficient water transport. Furthermore, it was possible to note that stomatal aperture, parenchyma permeability and cell spacing are crucial factors in the efficient water management of plants, especially under water stress conditions. These insights are essential for the development of more effective agricultural management strategies and for the breeding of plant varieties that are more resistant to adverse growing conditions. Computed fluid dynamics has allowed us to overcome the limitations of conventional techniques by providing a means to visualize and understand the complex hydrodynamic processes within the vascular system of plants.

Keywords: numerical modeling, vascular anatomy, vascular hydrodynamics, xylem, Oryza sativa L.

Procedia PDF Downloads 17
6882 Financial Sources and Instruments for Public Grants and Financial Facilities of SMEs in Eu

Authors: Simeon Karafolas, Maciej Woźniak

Abstract:

Mostly of public financing programs at national and regional level are funded from European Union sources. EU can participate directly to a national and regional program (example LEADER initiative, URBAN…) or indirectly by funding regional or national funds. Funds from European Union are provided from EU multiannual financial framework form which the annual budget is programmed. The adjusted program 2007-2013 of the EU considered commitments of almost 1 trillion Euros for the EU-28 countries. Provisions of the new program 2014-2020 consider commitments of more than 1 trillion Euros. Sustainable growth, divided to Cohesion and Competitiveness for Growth an Employment, is one of the two principal categories; the other is the preservation and management of natural resources. Through this financing process SMEs benefited of EU and public sources by receiving grants for their investments. Most of the financial instruments are available indirectly through the national financial intermediaries. Part of them is managed by the European Investment Fund. The paper focuses on the public financing to SMEs by examining case studies on divers forms of public help. It tries to distinguish the efficiency of the examined good practices and therefore try to have some conclusions on the possibility of application to other regions.

Keywords: DIFASS, grants, SMEs, public financing

Procedia PDF Downloads 308
6881 The Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum Durum Desf)

Authors: L. Meksem Amara, M. Ferfar, N. Meksem, M. R. Djebar

Abstract:

The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants. In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalase, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.

Keywords: sulfonylurea, triticum durum, oxydative stress, toxicity

Procedia PDF Downloads 413
6880 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 217
6879 Comparison of Filamentous Fungus (Monascus purpureus)Growth in Submerged and Solid State Culture

Authors: Shafieeh Mansoori, Fatemeh Yazdian, Ashrafsadat Hatamian, Majid Azizi

Abstract:

Monascus purpureus, which has a special metabolite with many therapeutic and medicinal properties including antioxidant, antibiotic, anti-hypercholesterolemia, and immunosuppressive properties, is a traditional Chinese fermentation fungus and is used as a natural dietary supplement. Production of desired metabolites actually determined by optimized growth which is supported by some factors such as substrates and Monascus strains type, moisture content of the fermentation mixture, aeration, and control of contamination issues. In this experiment, M. purpureus PTCC5305 was cultured in both the liquid and solid culture medium. The former medium contain YMP (yeast extract, maltose and peptone), PGC (peptone, glucose complex), and GYP (glucose, yeast extract and peptone) medium. After 8 days, the best medium for the cell production was PGC agar medium on solid culture with 0.28 g dry weight of cell mass whereas the best liquid culture was GYP medium with 3.5 g/l dry weight of cell mass. The lowest cell production was on YMP agar with 0.1 g dry weight of cell mass and then YMP medium with 2.5 g/l dry cell weight.

Keywords: Monascus purpureus, solid state fermentation, submerged culture, Chinese fermentation fungus

Procedia PDF Downloads 407
6878 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach

Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi

Abstract:

Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.

Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems

Procedia PDF Downloads 292
6877 Modelling and Simulation of a Commercial Thermophilic Biogas Plant

Authors: Jeremiah L. Chukwuneke, Obiora E. Anisiji, Chinonso H. Achebe, Paul C. Okolie

Abstract:

This paper developed a mathematical model of a commercial biogas plant for urban area clean energy requirement. It identified biodegradable waste materials like domestic/city refuse as economically viable alternative source of energy. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analyses were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500 m3 power gas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of bio gas production is essentially a function of the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.

Keywords: energy and mass conservation, specific growth rate, thermophilic bacteria, temperature, rate of bio gas production

Procedia PDF Downloads 442
6876 Controlled Growth of Au Hierarchically Ordered Crystals Architectures for Electrochemical Detection of Traces of Molecules

Authors: P. Bauer, K. Mougin, V. Vignal, A. Buch, P. Ponthiaux, D. Faye

Abstract:

Nowadays, noble metallic nanostructures with unique morphology are widely used as new sensors due to their fascinating optical, electronic and catalytic properties. Among various shapes, dendritic nanostructures have attracted much attention because of their large surface-to-volume ratio, high sensitivity and special texture with sharp tips and nanoscale junctions. Several methods have been developed to fabricate those specific structures such as electrodeposition, photochemical way, seed-mediated growth or wet chemical method. The present study deals with a novel approach for a controlled growth pattern-directed organisation of Au flower-like crystals (NFs) deposited onto stainless steel plates to achieve large-scale functional surfaces. This technique consists in the deposition of a soft nanoporous template on which Au NFs are grown by electroplating and seed-mediated method. Size, morphology, and interstructure distance have been controlled by a site selective nucleation process. Dendritic Au nanostructures have appeared as excellent Raman-active candidates due to the presence of very sharp tips of multi-branched Au nanoparticles that leads to a large local field enhancement and a good SERS sensitivity. In addition, these structures have also been used as electrochemical sensors to detect traces of molecules present in a solution. A correlation of the number of active sites on the surface and the current charge by both colorimetric method and cyclic voltammetry of gold structures have allowed a calibration of the system. This device represents a first step for the fabrication of MEMs platform that could ultimately be integrated into a lab-on-chip system. It also opens pathways to several technologically large-scale nanomaterials fabrication such as hierarchically ordered crystal architectures for sensor applications.

Keywords: dendritic, electroplating, gold, template

Procedia PDF Downloads 186
6875 Comparison of Allelopathic Activity of Some Edible Mushroom and Wild Mushroom in Japan

Authors: Asma Osivand, Hossein Mardani, Hiroshi Araya, Yoshiharu Fujii

Abstract:

Wild mushrooms have always been considered as valuable source of bioactive compounds, while edible mushrooms have been known for their importance as food source. However, their interaction with plants through chemicals that could lead to find new biochemical have not been well undertaken. A special bioassay method (Sandwich method) was applied to compare eight common edible mushrooms (Pleurotus eryngii, Pleurotus citrinopileatus, Pleurotus ostreatus, Lentinula edodes, Grifola frondosa, Flammulina velutipes, Hypsizygus tessellatus and Pholiota namako) with some wild species (Ganoderma appelanatum, Amanita pantherina, Artomyces pyxidatus, Morchella conica, Tricholosporum porphyrophyllum, Trametes hirsuta) for their phytotoxicity against lettuce. Among all tested edible mushrooms, application of 5 mg of P. ostreatus showed stronger allelopathic activity by inhibiting the growth of radicle and hypocotyl of lettuce by 84% and 63% respectively. Moreover, same amount of T. porphyrophyllum exerted 77% and 67% growth inhibition on radicle and hypocotyl of lettuce. In general, biochemicals contributed in tested mushrooms could be the main cause for their inhibitory activity and could lead to find new allelochemicals.

Keywords: allelopathy, interaction, mushroom, phytotoxicity, Pleurotus sp., sandwich method

Procedia PDF Downloads 292
6874 Biology and Life Fertility of the Cabbage Aphid, Brevicoryne brassicae (L) on Cauliflower Cultivars

Authors: Mandeep Kaur, K. C. Sharma, P. L. Sharma, R. S. Chandel

Abstract:

Cauliflower is an important vegetable crop grown throughout the world and is attacked by a large number of insect pests at various stages of the crop growth. Amongst them, the cabbage aphid, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae) is an important insect pest. Continued feeding by both nymphs and adults of this aphid causes yellowing, wilting and stunting of plants. Amongst various management practices, the use of resistant cultivars is important and can be an effective method of reducing the population of this aphid. So it is imperative to know the complete record on various biological parameters and life table on specific cultivars. The biology and life fertility of the cabbage aphid were studied on five cauliflower cultivars viz. Megha, Shweta, K-1, PSB-1 and PSBK-25 under controlled temperature conditions of 20 ± 2°C, 70 ± 5% relative humidity and 16:8 h (Light: Dark) photoperiods. For studying biology; apterous viviparous adults were picked up from the laboratory culture of all five cauliflower cultivars after rearing them at least for two generations and placed individually on the desired plants of cauliflower cultivars grown in pots with ten replicates of each. Daily record on the duration of nymphal period, adult longevity, mortality in each stage and the total number of progeny produced per female was made. This biological data were further used to construct life fertility table on each cultivar. Statistical analysis showed that there was a significant difference ( P  < 0.05) between the different growth stages and the mean number of laid nymphs. The maximum and minimum growth periods were observed on Shweta and Megha (at par with K-1) cultivars, respectively. The maximum number of nymphs were laid on Shweta cultivar (26.40 nymphs per female) and minimum on Megha (at par with K-1) cultivar (15.20 nymphs per female). The true intrinsic rate of increase (rm) was found to be maximum on Shweta (0.233 nymphs/female/day) followed by PSB K-25 (0.207 nymphs/female/day), PSB-1 (0.203 nymphs/female/day), Megha (0.166 nymphs/female/day) and K-1 (0.153 nymphs/female/day). The finite rate of natural increase (λ) was also found to be in the order: K-1 < Megha < PSB-1 < PSBK-25 < Shweta whereas the doubling time (DT) was in the order of K-1 >Megha> PSB-1 >PSBk-25> Shweta. The aphids reared on the K-1 cultivar had the lowest values of rm & λ and the highest value of DT whereas on Shweta cultivar the values of rm & λ were the highest and the lowest value of DT. So on the basis of these studies, K-1 cultivar was found to be the least suitable and the Shweta cultivar was the most suitable for the cabbage aphid population growth. Although the cauliflower cultivars used in different parts of the world may be different yet the results of the present studies indicated that the application of cultivars affecting multiplication rate and reproductive parameters could be a good solution for the management of the cabbage aphid.

Keywords: biology, cauliflower, cultivars, fertility

Procedia PDF Downloads 184
6873 Potentiostatic Electrodeposition of Cu₂O Films as P-Type Electrode at Room Temperature

Authors: M. M. Moharam, E. M. Elsayed, M. M. Rashad

Abstract:

Single phase Cu₂O films have been prepared via an electrodeposition technique onto ITO glass substrates at room temperature. Likewise, Cu₂O films were deposited using a potentiostatic process from an alkaline electrolyte containing copper (II) nitrate and 1M sodium citrate. Single phase Cu₂O films were electrodeposited at a cathodic deposition potential of 500mV for a reaction period of 90 min, and pH of 12 to yield a film thickness of 0.49 µm. The mechanism for nucleation of Cu₂O films was found to vary with deposition potential. Applying the Scharifker and Hills model at -500 and -600 mV to describe the mechanism of nucleation for the electrochemical reaction, the nucleation mechanism consisted of a mix between instantaneous and progressive growth mechanisms at -500 mV, while above -600 mV the growth mechanism was instantaneous. Using deposition times from 30 to 90 min at -500 mV deposition potential, pure Cu2O films with different microstructures were electrodeposited. Changing the deposition time from 30 to 90 min varied the microstructure from cubic to more complex polyhedra. The transmittance of electrodeposited Cu₂O films ranged from 20-70% in visible range, and samples exhibited a 2.4 eV band gap. The electrical resistivity for electrodeposited Cu₂O films was found to decrease with increasing deposition time from 0.854 x 105 Ω-cm at 30 min to 0.221 x 105 Ω-cm at 90 min without any thermal treatment following the electrodeposition process.

Keywords: Cu₂O, electrodeposition, film thickness, characterization, optical properties

Procedia PDF Downloads 212
6872 Accelerating Sustainable Urban Transition Through Green Technology Innovation and Clean Energy to Achieve Net Zero Emissions

Authors: Emma Serwaa Obobisa

Abstract:

Urbanization has become the focus for challenging goals relating to environmental performance, such as carbon neutrality. Green technological innovation and clean energy are considered the prominent factors in reducing emissions and achieving sustainable cities. Through the application of a fixed effect model, generalized method of moments, and quantile-on-quantile regression, this study explores the role of green technology innovation and clean energy in accelerating the sustainable urban transition towards net zero emissions in developing countries while controlling for nonrenewable energy consumption, and economic growth. The long-run results show that green technology innovation and renewable energy consumption reduce CO₂ emissions from urban residential buildings. In contrast, economic growth and nonrenewable energy consumption increase CO₂ emissions. This study proposes a consistent technique for encouraging green technological innovation and renewable energy projects in developing countries where the role of innovation in achieving carbon neutrality is still understudied.

Keywords: green technology innovation, renewable energy, urbanization, net zero emissions

Procedia PDF Downloads 34
6871 Effect of Bacillus subtilis Pb6 on Growth and Gut Microflora in Clostridium perfringens Challenged Broilers

Authors: A. Khalique, T. Naseem, N. Haque, Z. Rasool

Abstract:

The objective of current study was to investigate the effect of Bacillus subtilis PB6 (CloSTAT) as a probiotic in broilers. The corn-soybean based diet was divided into four treatment groups; T1 (basal diet with no probiotic and no Clostridium perfringens); T2 (basal diet challenged with C. perfringens without probiotic); T3 (basal diet challenged with C. perfringens having 0.05% probiotic); T4 (basal diet challenged with C. perfringens having 0.1% probiotic). Every treatment group had four replicates with 24 birds each. Body weight and feed intake were measured on weekly basis, while ileal bacterial count was recorded on day-28 following Clostridium perfringens challenge. The 0.1% probiotic treatment showed 7.2% increase in average feed intake (P=0.05) and 8% increase in body weight compared to T2. In 0.1% treatment body weight was 5% higher than T3 (P=0.02). It was also observed that 0.1% treatment had improved feed conversion ratio (1.77) on 6th week. No effect of treatment was observed on mortality and ileal bacterial count. The current study indicated that 0.1% use of probiotic had positive response in C. perfringens challenged broilers.

Keywords: Bacillus subtilis PB6, antibiotic growth promoters, Clostridium perfringens, broilers

Procedia PDF Downloads 270
6870 Effect of Lullabies on Babies Growth and Development, Vital Signs and Hospitalization Times in the Neonatal Intensive Care Units

Authors: Işın Alkan, Meltem Kürtüncü

Abstract:

Objective: This study was carried out with an experimental design in order to determine whether the lullaby, which was listened from mother’s voice and a stranger’s voice to the babies born at term and hospitalized in neonatal intensive care unit, had an effect on saturation values (SpO2), peak heart rate (PHR), respiration, fever, growth and development and hospitalization times of the infants. Method: Data from the study were obtained from 90 newborn babies who were hospitalized in Neonatal Intensive Care Unit of Zonguldak Maternity And Children Hospital between September 2015-January 2016 and who met the eligibility criteria. Lullaby concert was performed by choosing one of the suitable care hours. SpO2, PHR, respiration, fever, growth and development and hospitalization times of the infants were recorded by the researcher on “Newborn response follow-up form” at pre-care and post-care. Vital signs of babies every day, weight, height and head circumference measurements at admission, weakly rated at an output. Results: In the experimental and control groups, like weight, height and head circumference anthropometric measurements were not found statistically significant difference intensive care units admission and output times. Hospitalization times on babies who listen to lullaby mother’s voice revealed statistically significant difference according to babies who listen to lullaby stranger’s voice. Before care and after care were examined, SpO2 rates of babies who listen to lullaby mother’s voice revealed statistically significant higher difference according to babies who listen to lullaby stranger’s voice and control group babies. Before care on PHR of babies in three groups were not found the statistical difference, but aftercare, it was found that statistically lower (normal range) on babies who listen to lullaby mother’s voice according to babies who listen to lullaby stranger’s voice. Before care in three groups were not found the statistical difference on respiration values of babies, but aftercare, it was found that statistically lower (normal range) on babies who listen to lullaby stranger’s voice according to babies who listen to mother’s voice and control groups. Before care and after care were examined, fever signs did not reveal statistically significant difference in three groups. Conclusion: Lullaby concerts as being normal ranges of vital signs of infants and also helping to shorten hospitalization times should be preferred in the neonatal intensive care units.

Keywords: growth and development, lullaby, mother voice, vital signs

Procedia PDF Downloads 214
6869 Effect of Vermicompost and Vermitea on the Growth and Yield of Selected Vegetable Crops

Authors: Josephine R. Migalbin, Jurhamid C. Imlan, Evelyn P. Esteban

Abstract:

A study was conducted to determine the effect of vermicompost and vermitea as organic fertilizers on the growth and yield of selected vegetable crops specifically eggplant, tomatoes and sweet pepper. The study was laid-out in Randomized Complete Block Design with 4 treatments replicated 4 times. The treatments were as follows: Treatment I (control), Treatment II (vermitea), Treatment III (vermicompost with buffalo manure), and Treatment IV (vermicompost with goat and sheep manure). In all the vegetable crops, almost all parameters significantly increased compared with the control except for number of fruits in eggplant and plant height in tomatoes where no significant difference was observed among treatments. The highest marketable fruit yield (tons/ha) was obtained from plants applied with vermicompost with goat and sheep manure but comparable with plants applied with vermicompost with buffalo manure and vermitea while the control plots received the lowest yield. The 28 spotted beetle (Epilachna philippinensis), and shoot and fruit borer (Leucinodes orbonalis) were the serious pests observed in the study on eggplant.

Keywords: marketable fruit yield, vermicompost, vermitea, vegetable crops

Procedia PDF Downloads 579
6868 Molecular Dynamics Simulation of Realistic Biochar Models with Controlled Microporosity

Authors: Audrey Ngambia, Ondrej Masek, Valentina Erastova

Abstract:

Biochar is an amorphous carbon-rich material generated from the pyrolysis of biomass with multifarious properties and functionality. Biochar has shown proven applications in the treatment of flue gas and organic and inorganic pollutants in soil and water/wastewater as a result of its multiple surface functional groups and porous structures. These properties have also shown potential in energy storage and carbon capture. The availability of diverse sources of biomass to produce biochar has increased interest in it as a sustainable and environmentally friendly material. The properties and porous structures of biochar vary depending on the type of biomass and high heat treatment temperature (HHT). Biochars produced at HHT between 400°C – 800°C generally have lower H/C and O/C ratios, higher porosities, larger pore sizes and higher surface areas with temperature. While all is known experimentally, there is little knowledge on the porous role structure and functional groups play on processes occurring at the atomistic scale, which are extremely important for the optimization of biochar for application, especially in the adsorption of gases. Atomistic simulations methods have shown the potential to generate such amorphous materials; however, most of the models available are composed of only carbon atoms or graphitic sheets, which are very dense or with simple slit pores, all of which ignore the important role of heteroatoms such as O, N, S and pore morphologies. Hence, developing realistic models that integrate these parameters are important to understand their role in governing adsorption mechanisms that will aid in guiding the design and optimization of biochar materials for target applications. In this work, molecular dynamics simulations in the isobaric ensemble are used to generate realistic biochar models taking into account experimentally determined H/C, O/C, N/C, aromaticity, micropore size range, micropore volumes and true densities of biochars. A pore generation approach was developed using virtual atoms, which is a Lennard-Jones sphere of varying van der Waals radius and softness. Its interaction via a soft-core potential with the biochar matrix allows the creation of pores with rough surfaces while varying the van der Waals radius parameters gives control to the pore-size distribution. We focused on microporosity, creating average pore sizes of 0.5 - 2 nm in diameter and pore volumes in the range of 0.05 – 1 cm3/g, which corresponds to experimental gas adsorption micropore sizes of amorphous porous biochars. Realistic biochar models with surface functionalities, micropore size distribution and pore morphologies were developed, and they could aid in the study of adsorption processes in confined micropores.

Keywords: biochar, heteroatoms, micropore size, molecular dynamics simulations, surface functional groups, virtual atoms

Procedia PDF Downloads 71
6867 Effect of Temperatures on Growth and Development Time of Aphis fabae Scopoli (Homoptera: Aphididae): On Bean (Phaseolus vulgaris L.)

Authors: Rochelyn Dona, Serdar Satar

Abstract:

The aim of this study was to evaluate the biological parameters of A. fabae Scopoli (Hemiptera: Aphididae). Developmental, survival, and reproductive data were collected for Aphis fabae reared on detached bean leaves (Phaseolus vulgaris L.) ‘pinto beans’ at five temperature regimes (12, 16, 20, 24, and 28 °C), 65% relative humidity (RH), relative and a photoperiod of 16:8 (LD) h. The developmental times of immature stages ranged from 16, 65 days at 12°C to 5.70 days at 24°C, but a slight increase again at 28°C (6.62 days). At 24°C from this study presented the developmental threshold for A. fabae slightly to 24°C. The average longevity of mature females significantly decreased from 42.32 days at 12°C to 16.12 days at 28°C. The reproduction rate per female was 62.27 at 16°C and 12.72 at 28°C. The mean generation period of the population ranged from 29.24 at 12°C to 11.50 at 28°C. The highest intrinsic rate of increase (rm = 0.41) were recorded at 24°C, the lowest at 12°C (rm = 0.15). It was evident that temperatures over 28°C augmented the development time, accelerated the death ratio of the nymphal stages, Shrunk Adult longevity, and reduced fecundity. The optimal range of temperature for the population growth of A. fabae on the bean was 16°C-24°C, according to this study.

Keywords: developmental time, intrinsic rate, reproduction period, temperature dependence

Procedia PDF Downloads 228
6866 The Effect of Multiple Environmental Conditions on Acacia senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation

Authors: Abdelmoniem A. Attaelmanan, Ahmed A. H. Siddig

Abstract:

This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven days old seedlings were assigned to the treatments in Split- plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sand soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Synthesis application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.

Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Saharan, Sudan

Procedia PDF Downloads 116
6865 Mathematical Modeling and Analysis of COVID-19 Pandemic

Authors: Thomas Wetere

Abstract:

Background: The coronavirus disease 2019 (COVID-19) pandemic (COVID-19) virus infection is a severe infectious disease with the highly transmissible variant, which become the global public health treat now. It has taken the life of more than 4 million people so far. What makes the disease the worst of all is no specific effective treatment available, its dynamics is not much researched and understood. Methodology: To end the global COVID-19 pandemic, implementation of multiple population-wide strategies, including vaccination, environmental factors, Government action, testing, and contact tracing, is required. In this article, a new mathematical model incorporating both temperature and government action to study the dynamics of the COVID-19 pandemic has been developed and comprehensively analysed. The model considers eight stages of infection: susceptible (S), infected Asymptomatic and Undetected(IAU ), infected Asymptomatic and detected(IAD), infected symptomatic and Undetected(ISU ), infected Symptomatic and detected(ISD), Hospitalized or threatened(H), Recovered(R) and Died(D). Results: The existence as well as non-negativity of the solution to the model is also verified, and the basic reproduction number is calculated. Besides, stability conditions are also checked, and finally, simulation results are compared with real data. The results demonstrates that effective government action will need to be combined with vaccination to end the ongoing COVID-19 pandemic. Conclusion: Vaccination and Government action are highly the crucial measures to control the COVID-19 pandemic. Besides, as the cost of vaccination might be high, we recommend an optimal control to reduce the cost and number of infected individuals. Moreover, in order to prevent COVID-19 pandemic, through the analysis of the model, the government must strictly manage the policy on COVID-19 and carry it out. This, in turn, helps for health campaigning and raising health literacy which plays a role to control the quick spread of the disease. We finally strongly believe that our study will play its own role in the current effort of controlling the pandemic.

Keywords: modeling, COVID-19, MCMC, stability

Procedia PDF Downloads 113
6864 Use of Numerical Tools Dedicated to Fire Safety Engineering for the Rolling Stock

Authors: Guillaume Craveur

Abstract:

This study shows the opportunity to use numerical tools dedicated to Fire Safety Engineering for the Rolling Stock. Indeed, some lawful requirements can now be demonstrated by using numerical tools. The first part of this study presents the use of modelling evacuation tool to satisfy the criteria of evacuation time for the rolling stock. The buildingEXODUS software is used to model and simulate the evacuation of rolling stock. Firstly, in order to demonstrate the reliability of this tool to calculate the complete evacuation time, a comparative study was achieved between a real test and simulations done with buildingEXODUS. Multiple simulations are performed to capture the stochastic variations in egress times. Then, a new study is done to calculate the complete evacuation time of a train with the same geometry but with a different interior architecture. The second part of this study shows some applications of Computational Fluid Dynamics. This work presents the approach of a multi scales validation of numerical simulations of standardized tests with Fire Dynamics Simulations software developed by the National Institute of Standards and Technology (NIST). This work highlights in first the cone calorimeter test, described in the standard ISO 5660, in order to characterize the fire reaction of materials. The aim of this process is to readjust measurement results from the cone calorimeter test in order to create a data set usable at the seat scale. In the second step, the modelisation concerns the fire seat test described in the standard EN 45545-2. The data set obtained thanks to the validation of the cone calorimeter test was set up in the fire seat test. To conclude with the third step, after controlled the data obtained for the seat from the cone calorimeter test, a larger scale simulation with a real part of train is achieved.

Keywords: fire safety engineering, numerical tools, rolling stock, multi-scales validation

Procedia PDF Downloads 303
6863 Dynamic Externalities and Regional Productivity Growth: Evidence from Manufacturing Industries of India and China

Authors: Veerpal Kaur

Abstract:

The present paper aims at investigating the role of dynamic externalities of agglomeration in the regional productivity growth of manufacturing sector in India and China. Taking 2-digit level manufacturing sector data of states and provinces of India and China respectively for the period of 1998-99 to 2011-12, this paper examines the effect of dynamic externalities namely – Marshall-Arrow-Romer (MAR) specialization externalities, Jacobs’s diversity externalities, and Porter’s competition externalities on regional total factor productivity growth (TFPG) of manufacturing sector in both economies. Regressions have been carried on pooled data for all 2-digit manufacturing industries for India and China separately. The estimation of Panel has been based on a fixed effect by sector model. The results of econometric exercise show that labour-intensive industries in Indian regional manufacturing benefit from diversity externalities and capital intensive industries gain more from specialization in terms of TFPG. In China, diversity externalities and competition externalities hold better prospectus for regional TFPG in both labour intensive and capital intensive industries. But if we look at results for coastal and non-coastal region separately, specialization tends to assert a positive effect on TFPG in coastal regions whereas it has a negative effect on TFPG of coastal regions. Competition externalities put a negative effect on TFPG of non-coastal regions whereas it has a positive effect on TFPG of coastal regions. Diversity externalities made a positive contribution to TFPG in both coastal and non-coastal regions. So the results of the study postulate that the importance of dynamic externalities should not be examined by pooling all industries and all regions together. This could hold differential implications for region specific and industry-specific policy formulation. Other important variables explaining regional level TFPG in both India and China have been the availability of infrastructure, level of competitiveness, foreign direct investment, exports and geographical location of the region (especially in China).

Keywords: China, dynamic externalities, India, manufacturing, productivity

Procedia PDF Downloads 123
6862 Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain

Authors: Madiha El Awamie, Catherine Rees

Abstract:

Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of Glycyrrhiza glabra (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis. The Gram-negative bacteria tested include Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml-1 was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of Listeria transformed with the bioluminescence genes luxABCDE indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml-1 of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane.

Keywords: antibacterial activity, bioluminescence, Glycyrrhiza glabra, natural preservative

Procedia PDF Downloads 340
6861 Modeling of Nanocomposite Films Made of Cloisite 30b- Metal Nanoparticle in Packaging of Soy Burger

Authors: Faranak Beigmohammadi, Seyed Hadi Peighambardoust, Seyed Jamaledin Peighambardoust

Abstract:

This study undertakes to investigate the ability of different kinds of nanocomposite films made of cloisite-30B with different percentages of silver and copper oxide nanoparticles incorporated into a low-density polyethylene (LDPE) polymeric matrix by a melt mixing method in order to inhibit the growth of microorganism in soy burger. The number of surviving cell of the total count was decreased by 3.61 log and mold and yeast diminished by 2.01 log after 8 weeks storage at 18 ± 0.5°C below zero, whilst pure LDPE did not has any antimicrobial effect. A composition of 1.3 % cloisite 30B-Ag and 2.7 % cloisite 30B-CuO for total count and 0 % cloisite 30B-Ag and 4 % cloisite 30B-CuO for yeast & mold gave optimum points in combined design test in Design Expert 7.1.5. Suitable microbial models were suggested for retarding above microorganisms growth in soy burger. To validation of optimum point, the difference between the optimum point of nanocomposite film and its repeat was not significant (p<0.05) by one-way ANOVA analysis using SPSS 17.0 software, while the difference was significant for pure film. Migration of metallic nanoparticles into a food stimulant was within the accepted safe level.

Keywords: modeling, nanocomposite film, packaging, soy burger

Procedia PDF Downloads 302
6860 The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation

Authors: Mohammad Anwar, Shah Waliullah

Abstract:

This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models.

Keywords: Bayesian approach, common effect, fixed effect, random effect, Dynamic Random Effect Model

Procedia PDF Downloads 68
6859 Modeling and System Identification of a Variable Excited Linear Direct Drive

Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke

Abstract:

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux

Procedia PDF Downloads 370