Search results for: analytical network design model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30352

Search results for: analytical network design model

28192 HelpMeBreathe: A Web-Based System for Asthma Management

Authors: Alia Al Rayssi, Mahra Al Marar, Alyazia Alkhaili, Reem Al Dhaheri, Shayma Alkobaisi, Hoda Amer

Abstract:

We present in this paper a web-based system called “HelpMeBreathe” for managing asthma. The proposed system provides analytical tools, which allow better understanding of environmental triggers of asthma, hence better support of data-driven decision making. The developed system provides warning messages to a specific asthma patient if the weather in his/her area might cause any difficulty in breathing or could trigger an asthma attack. HelpMeBreathe collects, stores, and analyzes individuals’ moving trajectories and health conditions as well as environmental data. It then processes and displays the patients’ data through an analytical tool that leads to an effective decision making by physicians and other decision makers.

Keywords: asthma, environmental triggers, map interface, web-based systems

Procedia PDF Downloads 294
28191 Calculation of the Thermal Stresses in an Elastoplastic Plate Heated by Local Heat Source

Authors: M. Khaing, A. V. Tkacheva

Abstract:

The work is devoted to solving the problem of temperature stresses, caused by the heating point of the round plate. The plate is made of elastoplastic material, so the Prandtl-Reis model is used. A piecewise-linear condition of the Ishlinsky-Ivlev flow is taken as the loading surface, in which the yield stress depends on the temperature. Piecewise-linear conditions (Treska or Ishlinsky-Ivlev), in contrast to the Mises condition, make it possible to obtain solutions of the equilibrium equation in an analytical form. In the problem under consideration, using the conditions of Tresca, it is impossible to obtain a solution. This is due to the fact that the equation of equilibrium ceases to be satisfied when the two Tresca conditions are fulfilled at once. Using the conditions of plastic flow Ishlinsky-Ivlev allows one to solve the problem. At the same time, there are also no solutions on the edge of the Ishlinsky-Ivlev hexagon in the plane-stressed state. Therefore, the authors of the article propose to jump from the edge to the edge of the mine edge, which gives an opportunity to obtain an analytical solution. At the same time, there is also no solution on the edge of the Ishlinsky-Ivlev hexagon in a plane stressed state; therefore, in this paper, the authors of the article propose to jump from the side to the side of the mine edge, which gives an opportunity to receive an analytical solution. The paper compares solutions of the problem of plate thermal deformation. One of the solutions was obtained under the condition that the elastic moduli (Young's modulus, Poisson's ratio) which depend on temperature. The yield point is assumed to be parabolically temperature dependent. The main results of the comparisons are that the region of irreversible deformation is larger in the calculations obtained for solving the problem with constant elastic moduli. There is no repeated plastic flow in the solution of the problem with elastic moduli depending on temperature. The absolute value of the irreversible deformations is higher for the solution of the problem in which the elastic moduli are constant; there are also insignificant differences in the distribution of the residual stresses.

Keywords: temperature stresses, elasticity, plasticity, Ishlinsky-Ivlev condition, plate, annular heating, elastic moduli

Procedia PDF Downloads 142
28190 Prevalence and Characteristics of Torus Palatinus among Western Indonesian Population

Authors: Raka Aldy Nugraha, Kiwah Andanni, Aditya Indra Pratama, Aswin Guntara

Abstract:

Background: Torus palatinus is a bony protuberance in the hard palate. Sex and race are considered as influencing factors for the development of torus palatinus. Hence, the objective of this study was to determine the prevalence and characteristics of torus palatinus and its correlation with sex and ethnicity among Western Indonesian Population. Methods: We conducted a descriptive and analytical study employing cross-sectional design in 274 new students of Universitas Indonesia. Data were collected by using consecutive sampling method through questionnaire-filling and direct oral examination. Subject with racial background other than indigenous Indonesian Mongol were excluded from this study. Data were statistically analyzed using chi square test for categorical variables whereas logistic regression model was employed to assess the correlation between variables of interest with prevalence of torus palatinus. Results: Torus palatinus were found in 212 subjects (77.4%), mostly small in size (< 3 mm) and single in number, with percentage of 50.5% and 90.6%, respectively. The prevalence of torus palatinus were significantly higher in women (OR 2.88; 95% CI: 1.53-5.39; p = 0.001), dominated by medium-sized and single tori. There was no significant correlation between ethnicity and the occurrence of torus palatinus among Western Indonesian population. Conclusion: Torus palatinus was prevalent among Western Indonesian population. It showed significant positive correlation with sex, but not with ethnicity.

Keywords: characteristic, ethnicity, Indonesia, mongoloid, prevalence, sex, Torus palatinus

Procedia PDF Downloads 268
28189 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland

Authors: Alireza Ansariyar, Safieh Laaly

Abstract:

Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates CAVs’ fuel consumption and air pollutants (C.O., PM, and NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.

Keywords: connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models

Procedia PDF Downloads 445
28188 Reduction of Energy Consumption of Distillation Process by Recovering the Heat from Exit Streams

Authors: Apichit Svang-Ariyaskul, Thanapat Chaireongsirikul, Pawit Tangviroon

Abstract:

Distillation consumes enormous quantity of energy. This work proposed a process to recover the energy from exit streams during the distillation process of three consecutive columns. There are several novel techniques to recover the heat with the distillation system; however, a complex control system is required. This work proposed a simpler technique by exchanging the heat between streams without interrupting the internal distillation process that might cause a serious control problem. The proposed process is executed by using heat exchanger network with pinch analysis to maximize the process heat recovery. The test model is the distillation of butane, pentane, hexane, and heptanes, which is a common mixture in the petroleum refinery. This proposed process saved the energy consumption for hot and cold utilities of 29 and 27%, which is considered significant. Therefore, the recovery of heat from exit streams from distillation process is proved to be effective for energy saving.

Keywords: distillation, heat exchanger, network pinch analysis, chemical engineering

Procedia PDF Downloads 369
28187 Fault Analysis of Induction Machine Using Finite Element Method (FEM)

Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi

Abstract:

The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.

Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis

Procedia PDF Downloads 301
28186 Study on Influencing Factors of Walkability of Rail Transit Station Area

Authors: Yang Wenjuan, Xu Yilun

Abstract:

Based on the comparative analysis of the relevant evaluation methods of walking environment, this paper selects the combined evaluation method of macro urban morphology analysis and micro urban design quality survey, then investigates and analyzes the walking environment of three rail transit station area in Nanjing to explore the influence factor and internal relation of walkability of rail transit station area. Analysis shows that micro urban design factors have greater impact on the walkability of rail transit station area compared with macro urban morphology factors, the convenience is the key factor in the four aspects of convenience, security, identity and comfortability of the urban design factors, the convenience is not only affected by the block network form, but also related to the quality of the street space. The overall evaluation of walkability comes from the overlapping and regrouping of the walking environment at different levels, but some environmental factors play a leading role. The social attributes of pedestrians also partly influence their walking perception and evaluation.

Keywords: rail transit station area, walkability, evaluation, influence factors

Procedia PDF Downloads 295
28185 Seismic Resistant Columns of Buildings against the Differential Settlement of the Foundation

Authors: Romaric Desbrousses, Lan Lin

Abstract:

The objective of this study is to determine how Canadian seismic design provisions affect the column axial load resistance of moment-resisting frame reinforced concrete buildings subjected to the differential settlement of their foundation. To do so, two four-storey buildings are designed in accordance with the seismic design provisions of the Canadian Concrete Design Standards. One building is located in Toronto, which is situated in a moderate seismic hazard zone in Canada, and the other in Vancouver, which is in Canada’s highest seismic hazard zone. A finite element model of each building is developed using SAP 2000. A 100 mm settlement is assigned to the base of the building’s center column. The axial load resistance of the column is represented by the demand capacity ratio. The analysis results show that settlement-induced tensile axial forces have a particularly detrimental effect on the conventional settling columns of the Toronto buildings which fail at a much smaller settlement that those in the Vancouver buildings. The results also demonstrate that particular care should be taken in the design of columns in short-span buildings.

Keywords: Columns, Demand, Foundation differential settlement, Seismic design, Non-linear analysis

Procedia PDF Downloads 135
28184 Performance Comparison of AODV and Soft AODV Routing Protocol

Authors: Abhishek, Seema Devi, Jyoti Ohri

Abstract:

A mobile ad hoc network (MANET) represents a system of wireless mobile nodes that can self-organize freely and dynamically into arbitrary and temporary network topology. Unlike a wired network, wireless network interface has limited transmission range. Routing is the task of forwarding data packets from source to a given destination. Ad-hoc On Demand Distance Vector (AODV) routing protocol creates a path for a destination only when it required. This paper describes the implementation of AODV routing protocol using MATLAB-based Truetime simulator. In MANET's node movements are not fixed while they are random in nature. Hence intelligent techniques i.e. fuzzy and ANFIS are used to optimize the transmission range. In this paper, we compared the transmission range of AODV, fuzzy AODV and ANFIS AODV. For soft computing AODV, we have taken transmitted power and received threshold as input and transmission range as output. ANFIS gives better results as compared to fuzzy AODV.

Keywords: ANFIS, AODV, fuzzy, MANET, reactive routing protocol, routing protocol, truetime

Procedia PDF Downloads 498
28183 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 118
28182 The Influence of the Concentration and Temperature on the Rheological Behavior of Carbonyl-Methylcellulose

Authors: Mohamed Rabhi, Kouider Halim Benrahou

Abstract:

The rheological properties of the carbonyl-methylcellulose (CMC), of different concentrations (25000, 50000, 60000, 80000 and 100000 ppm) and different temperatures were studied. We found that the rheological behavior of all CMC solutions presents a pseudo-plastic behavior, it follows the model of Ostwald-de Waele. The objective of this work is the modeling of flow by the CMC Cross model. The Cross model gives us the variation of the viscosity according to the shear rate. This model allowed us to adjust more clearly the rheological characteristics of CMC solutions. A comparison between the Cross model and the model of Ostwald was made. Cross the model fitting parameters were determined by a numerical simulation to make an approach between the experimental curve and those given by the two models. Our study has shown that the model of Cross, describes well the flow of "CMC" for low concentrations.

Keywords: CMC, rheological modeling, Ostwald model, cross model, viscosity

Procedia PDF Downloads 405
28181 A 3D Numerical Environmental Modeling Approach For Assessing Transport of Spilled Oil in Porous Beach Conditions under a Meso-Scale Tank Design

Authors: J. X. Dong, C. J. An, Z. Chen, E. H. Owens, M. C. Boufadel, E. Taylor, K. Lee

Abstract:

Shorelines are vulnerable to significant environmental impacts from oil spills. Stranded oil can cause potential short- to long-term detrimental effects along beaches that include injuries to the ecosystem, socio-economic and cultural resources. In this study, a three-dimensional (3D) numerical modeling approach is developed to evaluate the fate and transport of spilled oil for hypothetical oiled shoreline cases under various combinations of beach geomorphology and environmental conditions. The developed model estimates the spatial and temporal distribution of spilled oil for the various test conditions, using the finite volume method and considering the physical transport (dispersion and advection), sinks, and sorption processes. The model includes a user-friendly interface for data input on variables such as beach properties, environmental conditions, and physical-chemical properties of spilled oil. An experimental mesoscale tank design was used to test the developed model for dissolved petroleum hydrocarbon within shorelines. The simulated results for effects of different sediment substrates, oil types, and shoreline features for the transport of spilled oil are comparable to those obtained with a commercially available model. Results show that the properties of substrates and the oil removal by shoreline effects have significant impacts on oil transport in the beach area. Sensitivity analysis, through the application of the one-step-at-a-time method (OAT), for the 3D model identified hydraulic conductivity as the most sensitive parameter. The 3D numerical model allows users to examine the behavior of oil on and within beaches, assess potential environmental impacts, and provide technical support for decisions related to shoreline clean-up operations.

Keywords: dissolved petroleum hydrocarbons, environmental multimedia model, finite volume method, sensitivity analysis, total petroleum hydrocarbons

Procedia PDF Downloads 217
28180 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network

Authors: P. Karthick, K. Mahesh

Abstract:

Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.

Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system

Procedia PDF Downloads 187
28179 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space

Authors: Chao He, Shunhua Zhou, Peijun Guo

Abstract:

The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.

Keywords: underground railway, twin tunnels, wave translation and transformation, transfer matrix method

Procedia PDF Downloads 119
28178 Human Performance Evaluating of Advanced Cardiac Life Support Procedure Using Fault Tree and Bayesian Network

Authors: Shokoufeh Abrisham, Seyed Mahmoud Hossieni, Elham Pishbin

Abstract:

In this paper, a hybrid method based on the fault tree analysis (FTA) and Bayesian networks (BNs) are employed to evaluate the team performance quality of advanced cardiac life support (ACLS) procedures in emergency department. According to American Heart Association (AHA) guidelines, a category relying on staff action leading to clinical incidents and also some discussions with emergency medicine experts, a fault tree model for ACLS procedure is obtained based on the human performance. The obtained FTA model is converted into BNs, and some different scenarios are defined to demonstrate the efficiency and flexibility of the presented model of BNs. Also, a sensitivity analysis is conducted to indicate the effects of team leader presence and uncertainty knowledge of experts on the quality of ACLS. The proposed model based on BNs shows that how the results of risk analysis can be closed to reality comparing to the obtained results based on only FTA in medical procedures.

Keywords: advanced cardiac life support, fault tree analysis, Bayesian belief networks, numan performance, healthcare systems

Procedia PDF Downloads 147
28177 Synergy and Complementarity in Technology-Intensive Manufacturing Networks

Authors: Daidai Shen, Jean Claude Thill, Wenjia Zhang

Abstract:

This study explores the dynamics of synergy and complementarity within city networks, specifically focusing on the headquarters-subsidiary relations of firms. We begin by defining these two types of networks and establishing their pivotal roles in shaping city network structures. Utilizing the mesoscale analytic approach of weighted stochastic block modeling, we discern relational patterns between city pairs and determine connection strengths through statistical inference. Furthermore, we introduce a community detection approach to uncover the underlying structure of these networks using advanced statistical methods. Our analysis, based on comprehensive network data up to 2017, reveals the coexistence of both complementarity and synergy networks within China’s technology-intensive manufacturing cities. Notably, firms in technology hardware and office & computing machinery predominantly contribute to the complementarity city networks. In contrast, a distinct synergy city network, underpinned by the cities of Suzhou and Dongguan, emerges amidst the expansive complementarity structures in technology hardware and equipment. These findings provide new insights into the relational dynamics and structural configurations of city networks in the context of technology-intensive manufacturing, highlighting the nuanced interplay between synergy and complementarity.

Keywords: city system, complementarity, synergy network, higher-order network

Procedia PDF Downloads 43
28176 Big Data Strategy for Telco: Network Transformation

Authors: F. Amin, S. Feizi

Abstract:

Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.

Keywords: big data, next generation networks, network transformation, strategy

Procedia PDF Downloads 360
28175 Numerical Simulation of Kangimi Reservoir Sedimentation, Kaduna State, Nigeria

Authors: Abdurrasheed Sa'id, Abubakar Isma'il, Waheed Alayande

Abstract:

This study focused on carrying out numerical simulations of Kangimi reservoir sedimentation by reviewing different numerical sediment transport models, and GSTARS3 was selected. The model was developed using the 1977 data. It was calibrated by simulating the 2012 profile and sediment deposition and compared with 2012 hydrographic survey results of NWRI. The model was validated by simulating the 2016 deposition and compared the results with NWRI estimates. Also, the performance of the proposed model was tested using statistical parameters such as MSE (Mean Square Error), MAPE (Mean Average Percentage Error) and R2 (Coefficient of determination) with values of 1.32m, 0.17% and 0.914 respectively which shows strong agreement. After the calibration, validation and performance testing the model was used to simulate the 2032 and 2062 profiles and deposition. The results showed that by 2032 the reservoir will be silted by 25.34MCM or 43.3% of the design capacity and 60.7% of the capacity by the year 2062. A number of sedimentation mitigation measures were recommended.

Keywords: NWRI- national water resources institute, sedimentation, GSTARS3, model

Procedia PDF Downloads 219
28174 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity

Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj

Abstract:

This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.

Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares

Procedia PDF Downloads 73
28173 Dynamic Analysis of Turbine Foundation

Authors: Mogens Saberi

Abstract:

This paper presents different design approaches for the design of turbine foundations. In the design process, several unknown factors must be considered such as the soil stiffness at the site. The main static and dynamic loads are presented and the results of a dynamic simulation are presented for a turbine foundation that is currently being built. A turbine foundation is an important part of a power plant since a non-optimal behavior of the foundation can damage the turbine itself and thereby stop the power production with large consequences.

Keywords: dynamic turbine design, harmonic response analysis, practical turbine design experience, concrete foundation

Procedia PDF Downloads 316
28172 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: redox enzyme, nanomaterials, biosensors, electrical communication

Procedia PDF Downloads 454
28171 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 321
28170 Chaotic Search Optimal Design and Modeling of Permanent Magnet Synchronous Linear Motor

Authors: Yang Yi-Fei, Luo Min-Zhou, Zhang Fu-Chun, He Nai-Bao, Xing Shao-Bang

Abstract:

This paper presents an electromagnetic finite element model of permanent magnet synchronous linear motor and distortion rate of the air gap flux density waveform is analyzed in detail. By designing the sample space of the parameters, nonlinear regression modeling of the orthogonal experimental design is introduced. We put forward for possible air gap flux density waveform sine electromagnetic scheme. Parameters optimization of the permanent magnet synchronous linear motor is also introduced which is based on chaotic search and adaptation function. Simulation results prove that the pole shifting does not affect the motor back electromotive symmetry based on the structural parameters, it provides a novel way for the optimum design of permanent magnet synchronous linear motor and other engineering.

Keywords: permanent magnet synchronous linear motor, finite element analysis, chaotic search, optimization design

Procedia PDF Downloads 417
28169 Assessing the Adaptive Re-Use Potential of Buildings as Part of the Disaster Management Process

Authors: A. Esra İdemen, Sinan M. Şener, Emrah Acar

Abstract:

The technological paradigm of the disaster management field, especially in the case of governmental intervention strategies, is generally based on rapid and flexible accommodation solutions. From various technical solution patterns used to address the immediate housing needs of disaster victims, the adaptive re-use of existing buildings can be considered to be both low-cost and practical. However, there is a scarcity of analytical methods to screen, select and adapt buildings to help decision makers in cases of emergency. Following an extensive literature review, this paper aims to highlight key points and problem areas associated with the adaptive re-use of buildings within the disaster management context. In other disciplines such as real estate management, the adaptive re-use potential (ARP) of existing buildings is typically based on the prioritization of a set of technical and non-technical criteria which are then weighted to arrive at an economically viable investment decision. After a disaster, however, the assessment of the ARP of buildings requires consideration of different/additional layers of analysis which stem from general disaster management principles and the peculiarities of different types of disasters, as well as of their victims. In this paper, a discussion of the development of an adaptive re-use potential (ARP) assessment model is presented. It is thought that governmental and non-governmental decision makers who are required to take quick decisions to accommodate displaced masses following disasters are likely to benefit from the implementation of such a model.

Keywords: adaptive re-use of buildings, disaster management, temporary housing, assessment model

Procedia PDF Downloads 332
28168 Optimum Design for Cathode Microstructure of Solid Oxide Fuel Cell

Authors: M. Riazat, H. Abdolvand, M. Baniassadi

Abstract:

In this present work, 3D reconstruction of cathode of SOFC is developed with various volume fractions and porosity. Three Phase Boundary (TPB) of construction of such derived micro structures is calculated. The neural network is used to optimize the porosity and volume fraction of each phase to reach a structure with maximum TPB.

Keywords: fuel cell, solid oxide, TPB, 3D reconstruction

Procedia PDF Downloads 324
28167 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning

Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho

Abstract:

Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.

Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning

Procedia PDF Downloads 96
28166 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: biosensor, nanomaterials, redox enzyme, thiol-modified Au surface

Procedia PDF Downloads 329
28165 Preliminary Conceptions of 3D Prototyping Model to Experimental Investigation in Hypersonic Shock Tunnels

Authors: Thiago Victor Cordeiro Marcos, Joao Felipe de Araujo Martos, Ronaldo de Lima Cardoso, David Romanelli Pinto, Paulo Gilberto de Paula Toro, Israel da Silveira Rego, Antonio Carlos de Oliveira

Abstract:

Currently, the use of 3D rapid prototyping, also known as 3D printing, has been investigated by some universities around the world as an innovative technique, fast, flexible and cheap for a direct plastic models manufacturing that are lighter and with complex geometries to be tested for hypersonic shock tunnel. Initially, the purpose is integrated prototyped parts with metal models that actually are manufactured through of the conventional machining and hereafter replace them with completely prototyped models. The mechanical design models to be tested in hypersonic shock tunnel are based on conventional manufacturing processes, therefore are limited forms and standard geometries. The use of 3D rapid prototyping offers a range of options that enables geometries innovation and ways to be used for the design new models. The conception and project of a prototyped model for hypersonic shock tunnel should be rethought and adapted when comparing the conventional manufacturing processes, in order to fully exploit the creativity and flexibility that are allowed by the 3D prototyping process. The objective of this paper is to compare the conception and project of a 3D rapid prototyping model and a conventional machining model, while showing the advantages and disadvantages of each process and the benefits that 3D prototyping can bring to the manufacture of models to be tested in hypersonic shock tunnel.

Keywords: 3D printing, 3D prototyping, experimental research, hypersonic shock tunnel

Procedia PDF Downloads 469
28164 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
28163 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: artificial neural network, bending angle, fuzzy logic, laser forming

Procedia PDF Downloads 597