Search results for: adsorption properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9714

Search results for: adsorption properties

7554 Effect of Fiber Content and Chemical Treatment on Hardness of Bagasse Fiber Reinforced Epoxy Composites

Authors: Varun Mittal, Shishir Sinha

Abstract:

The present experimental study focused on the hardness behavior of bagasse fiber-epoxy composites. The relationship between bagasse fiber content and effect of chemical treatment on bagasse fiber as a function of Brinell hardness of bagasse fiber epoxy was investigated. Bagasse fiber was treated with sodium hydroxide followed by acrylic acid before they were reinforced with epoxy resin. Compared hardness properties with the untreated bagasse filled epoxy composites. It was observed that Brinell hardness increased up to 15 wt% fiber content and further decreases, however, chemical treatment also improved the hardness properties of composites.

Keywords: bagasse fiber, composite, hardness, sodium hydroxide

Procedia PDF Downloads 291
7553 Eco-Friendly Natural Filler Based Epoxy Composites

Authors: Suheyla Kocaman, Gulnare Ahmetli

Abstract:

In this study, acrylated soybean oil (AESO) was used as modifying agent for DGEBF-type epoxy resin (ER). AESO was used as a co-matrix in 50 wt % with ER. Composites with eco-friendly natural fillers-banana bark and seashell were prepared. MNA was used as a hardener. Effect of banana peel (BP) and seashell (SSh) fillers on mechanical properties, such as tensile strength, elongation at break, and hardness of M-ERs were investigated. The structure epoxy resins (M-ERs) cured with MNA and sebacic acid (SAc) hardeners were characterized by Fourier transform infrared spectroscopy (FTIR). Tensile test results show that Young’s (elastic) modulus, tensile strength and hardness of SSh particles reinforced with M-ERs were higher than the M-ERs reinforced with banana bark.

Keywords: biobased composite, epoxy resin, mechanical properties, natural fillers

Procedia PDF Downloads 244
7552 Effect of Weld Build-up on the Mechanical Performance of Railway Wheels

Authors: Abdullah Kaymakci, Daniel M. Madyira, Hilda Moseme

Abstract:

Repairing railway wheels by weld build-up is one of the technological solutions that have been applied in the past. However, the effects of this process on the material properties are not well established. The effects of the weld build-up on the mechanical properties of the wheel material in comparison to the required mechanical properties for proper service performance were investigated in this study. A turning process was used to remove the worn surface from the railway wheel. During this process 5mm thickness was removed to ensure that, if there was any weld build-up done in the previous years, it was removed. This was followed by welding a round bar on the sides of the wheel to provide build-up guide. There were two welding processes performed, namely submerged arc welding (SAW) and gas metal arc welding (GMAW). Submerged arc welding (SAW) was used to build up weld on one rim while the other rim was just left with metal arc welding of the round bar at the edges. Both processes produced hardness values that were lower than that of the parent material of 195 HV as the GMAW welds had an average of 184 HV and SAW had an average of 194 HV. Whilst a number of defects were noted on the GMAW welds at both macro and micro levels, SAW welds had less defects and they were all micro defects. All the microstructures were ferritic but with differences in grain sizes. Furthermore, in the SAW weld build up, the grains of the weld build-up appeared to be elongated which was a result of the cooling rate. Using GMAW instead of SAW would result in improved wear and fatigue performance.

Keywords: submerged arc welding, gas metal arc welding, railway wheel, microstructure, micro hardness

Procedia PDF Downloads 304
7551 Electrical Properties of Cement-Based Piezoelectric Nanoparticles

Authors: Moustafa Shawkey, Ahmed G. El-Deen, H. M. Mahmoud, M. M. Rashad

Abstract:

Piezoelectric based cement nanocomposite is a promising technology for generating an electric charge upon mechanical stress of concrete structure. Moreover, piezoelectric nanomaterials play a vital role for providing accurate system of structural health monitoring (SHM) of the concrete structure. In light of increasing awareness of environmental protection and energy crises, generating renewable and green energy form cement based on piezoelectric nanomaterials attracts the attention of the researchers. Herein, we introduce a facial synthesis for bismuth ferrite nanoparticles (BiFeO3 NPs) as piezoelectric nanomaterial via sol gel strategy. The fabricated piezoelectric nanoparticles are uniformly distributed to cement-based nanomaterials with different ratios. The morphological shape was characterized by field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HR-TEM) as well as the crystal structure has been confirmed using X-ray diffraction (XRD). The ferroelectric and magnetic behaviours of BiFeO3 NPs have been investigated. Then, dielectric constant for the prepared cement samples nanocomposites (εr) is calculated. Intercalating BiFeO3 NPs into cement materials achieved remarkable results as piezoelectric cement materials, distinct enhancement in ferroelectric and magnetic properties. Overall, this present study introduces an effective approach to improve the electrical properties based cement applications.

Keywords: piezoelectric nanomaterials, cement technology, bismuth ferrite nanoparticles, dielectric

Procedia PDF Downloads 254
7550 Studying the Dynamical Response of Nano-Microelectromechanical Devices for Nanomechanical Testing of Nanostructures

Authors: Mohammad Reza Zamani Kouhpanji

Abstract:

Characterizing the fatigue and fracture properties of nanostructures is one of the most challenging tasks in nanoscience and nanotechnology due to lack of a MEMS/NEMS device for generating uniform cyclic loadings at high frequencies. Here, the dynamic response of a recently proposed MEMS/NEMS device under different inputs signals is completely investigated. This MEMS/NEMS device is designed and modeled based on the electromagnetic force induced between paired parallel wires carrying electrical currents, known as Ampere’s Force Law (AFL). Since this MEMS/NEMS device only uses two paired wires for actuation part and sensing part, it represents highly sensitive and linear response for nanostructures with any stiffness and shapes (single or arrays of nanowires, nanotubes, nanosheets or nanowalls). In addition to studying the maximum gains at different resonance frequencies of the MEMS/NEMS device, its dynamical responses are investigated for different inputs and nanostructure properties to demonstrate the capability, usability, and reliability of the device for wide range of nanostructures. This MEMS/NEMS device can be readily integrated into SEM/TEM instruments to provide real time study of the fatigue and fracture properties of nanostructures as well as their softening or hardening behaviors, and initiation and/or propagation of nanocracks in them.

Keywords: MEMS/NEMS devices, paired wire actuators and sensors, dynamical response, fatigue and fracture characterization, Ampere’s force law

Procedia PDF Downloads 404
7549 Wetting Treatement: Comparative Overview: Case of Polypropylene Top Sheet Layer on Disposable Baby Diaper

Authors: Tilouche Rahma, Sayeb Soumaya, Ben Hassen Mohamed

Abstract:

The wettability of materials is a very important aspect of surface science, it presents a key factor providing the best characteristic of product, especially in hygienic field. Hydrophobic polypropylene is used as nonwoven topsheet in disposable diaper, for its interesting properties (toughness, lightness...) by comparing with traditional product previously used. SURFACTANTs are widely used to reduce contact angle (water contact angles larger than 90° on smooth surfaces) and to change wetting properties. In the present work, we study ways to obtain hydrophilic polypropylene surface, by the deposition of a variety of surfactant on surfaces of varying morphology. We used two different methods for surface wetting: Spraying method and the coating method. The concentration of the wetting agent, the type of non-woven fabric and the parameters in the method for controlling, hugely affect the quality of treatment. Therefore need that the treatment is effective in terms of contact angle without affecting the mechanical properties of the nonwoven. For the assessment of the quality of treatment, two methods are used: The measurement of the contact angle and the strike trough time. Also, with subjective evaluation by Hedonic test (which involves the consumer preference (naive panel: group of moms). Finally, we selected the better treated topsheet referring to the assessment results.

Keywords: SURFACTANT, topsheet polypropylene, hydrophilic, hydrophobic

Procedia PDF Downloads 548
7548 Effect of Annealing on Electrodeposited ZnTe Thin Films in Non-Aqueous Medium

Authors: Shyam Ranjan Kumar, Shashikant Rajpal

Abstract:

Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material. This semiconducting material has several applications in sensors, photo-electrochemical devices and photovoltaic solar cell. In this study, Zinc telluride (ZnTe) thin films were deposited on nickel substrate by electrodeposition technique using potentiostat/galvanostat at -0.85 V using AR grade of Zinc Chloride (ZnCl2), Tellurium Tetrachloride (TeCl4) in non-aqueous bath. The developed films were physically stable and showed good adhesion. The as deposited ZnTe films were annealed at 400ºC in air. The solid state properties and optical properties of the as deposited and annealed films were carried out by XRD, EDS, SEM, AFM, UV–Visible spectrophotometer, and photoluminescence spectrophotometer. The diffraction peak observed at 2θ = 49.58° with (111) plane indicate the crystalline nature of ZnTe film. Annealing improves the crystalline nature of the film. Compositional analysis reveals the presence of Zn and Te with tellurium rich ZnTe film. SEM photograph at 10000X shows that grains of film are spherical in nature and densely distributed over the surface. The average roughness of the film is measured by atomic force microscopy and it is nearly equal to 60 nm. The direct wide band gap of 2.12 eV is observed by UV-Vis spectroscopy. Luminescence peak of the ZnTe films are also observed in as deposited and annealed case.

Keywords: annealing, electrodeposition, optical properties, thin film, XRD, ZnTe

Procedia PDF Downloads 196
7547 Investigation of Elastic Properties of 3D Full Five Directional (f5d) Braided Composite Materials

Authors: Apeng Dong, Shu Li, Wenguo Zhu, Ming Qi, Qiuyi Xu

Abstract:

The primary objective of this paper is to focus on the elasticity properties of three-dimensional full five directional (3Df5d) braided composite. A large body of research has been focused on the 3D four directional (4d) and 3D five directional (5d) structure but not much research on the 3Df5d material. Generally, the influence of the yarn shape on mechanical properties of braided materials tends to be ignored, which makes results too ideal. Besides, with the improvement of the computational ability, people are accustomed to using computers to predict the material parameters, which fails to give an explicit and concise result facilitating production and application. Based on the traditional mechanics, this paper firstly deduced the functional relation between elasticity properties and braiding parameters. In addition, considering the actual shape of yarns after consolidation, the longitudinal modulus is modified and defined practically. Firstly, the analytic model is established based on the certain assumptions for the sake of clarity, this paper assumes that: A: the cross section of axial yarns is square; B: The cross section of braiding yarns is hexagonal; C: the characters of braiding yarns and axial yarns are the same; D: The angle between the structure boundary and the projection of braiding yarns in transverse plane is 45°; E: The filling factor ε of composite yarns is π/4; F: The deformation of unit cell is under constant strain condition. Then, the functional relation between material constants and braiding parameters is systematically deduced aimed at the yarn deformation mode. Finally, considering the actual shape of axial yarns after consolidation, the concept of technology factor is proposed and the longitudinal modulus of the material is modified based on the energy theory. In this paper, the analytic solution of material parameters is given for the first time, which provides a good reference for further research and application for 3Df5d materials. Although the analysis model is established based on certain assumptions, the analysis method is also applicable for other braided structures. Meanwhile, it is crucial that the cross section shape and straightness of axial yarns play dominant roles in the longitudinal elastic property. So in the braiding and solidifying process, the stability of the axial yarns should be guaranteed to increase the technology factor to reduce the dispersion of material parameters. Overall, the elastic properties of this materials are closely related to the braiding parameters and can be strongly designable, and although the longitudinal modulus of the material is greatly influenced by the technology factors, it can be defined to certain extent.

Keywords: analytic solution, braided composites, elasticity properties, technology factor

Procedia PDF Downloads 240
7546 Influence of Nanomaterials on the Properties of Shape Memory Polymeric Materials

Authors: Katielly Vianna Polkowski, Rodrigo Denizarte de Oliveira Polkowski, Cristiano Grings Herbert

Abstract:

The use of nanomaterials in the formulation of polymeric materials modifies their molecular structure, offering an infinite range of possibilities for the development of smart products, being of great importance for science and contemporary industry. Shape memory polymers are generally lightweight, have high shape recovery capabilities, they are easy to process and have properties that can be adapted for a variety of applications. Shape memory materials are active materials that have attracted attention due to their superior damping properties when compared to conventional structural materials. The development of methodologies capable of preparing new materials, which use graphene in their structure, represents technological innovation that transforms low-cost products into advanced materials with high added value. To obtain an improvement in the shape memory effect (SME) of polymeric materials, it is possible to use graphene in its composition containing low concentration by mass of graphene nanoplatelets (GNP), graphene oxide (GO) or other functionalized graphene, via different mixture process. As a result, there was an improvement in the SME, regarding the increase in the values of maximum strain. In addition, the use of graphene contributes to obtaining nanocomposites with superior electrical properties, greater crystallinity, as well as resistance to material degradation. The methodology used in the research is Systematic Review, scientific investigation, gathering relevant studies on influence of nanomaterials on the properties of shape memory polymeric, using the literature database as a source and study methods. In the present study, a systematic reviewwas performed of all papers published from 2014 to 2022 regarding graphene and shape memory polymeric througha search of three databases. This study allows for easy identification of themost relevant fields of study with respect to graphene and shape memory polymeric, as well as the main gaps to beexplored in the literature. The addition of graphene showed improvements in obtaining higher values of maximum deformation of the material, attributed to a possible slip between stacked or agglomerated nanostructures, as well as an increase in stiffness due to the increase in the degree of phase separation that results in a greater amount physical cross-links, referring to the formation of shortrange rigid domains.

Keywords: graphene, shape memory, smart materials, polymers, nanomaterials

Procedia PDF Downloads 89
7545 Effect of Repellent Coatings, Aerosol Protective Liners, and Lamination on the Properties of Chemical/Biological Protective Textiles

Authors: Natalie Pomerantz, Nicholas Dugan, Molly Richards, Walter Zukas

Abstract:

The primary research question to be answered for Chemical/Biological (CB) protective clothing, is how to protect wearers from a range of chemical and biological threats in liquid, vapor, and aerosol form, while reducing the thermal burden. Currently, CB protective garments are hot, heavy, and wearers are limited by short work times in order to prevent heat injury. This study demonstrates how to incorporate different levels of protection on a material level and modify fabric composites such that the thermal burden is reduced to such an extent it approaches that of a standard duty uniform with no CB protection. CB protective materials are usually comprised of several fabric layers: a cover fabric with a liquid repellent coating, a protective layer which is comprised of a carbon-based sorptive material or semi-permeable membrane, and a comfort next-to-skin liner. In order to reduce thermal burden, all of these layers were laminated together to form one fabric composite which had no insulative air gap in between layers. However, the elimination of the air gap also reduced the CB protection of the fabric composite. In order to increase protection in the laminated composite, different nonwoven aerosol protective liners were added, and a super repellent coating was applied to the cover fabric, prior to lamination. Different adhesive patterns were investigated to determine the durability of the laminate with the super repellent coating, and the effect on air permeation. After evaluating the thermal properties, textile properties and protective properties of the iterations of these fabric composites, it was found that the thermal burden of these materials was greatly reduced by decreasing the thermal resistance with the elimination of the air gap between layers. While the level of protection was reduced in laminate composites, the addition of a super repellent coating increased protection towards low volatility agents without impacting thermal burden. Similarly, the addition of aerosol protective liner increased protection without reducing water vapor transport, depending on the nonwoven used, however, the air permeability was significantly decreased. The balance of all these properties and exploration of the trade space between thermal burden and protection will be discussed.

Keywords: aerosol protection, CBRNe protection, lamination, nonwovens, repellent coatings, thermal burden

Procedia PDF Downloads 367
7544 Analysis of Cracked Beams with Spalling Having Different Arrangements of the Reinforcement Bars Using Finite Element Analysis (FEA)

Authors: Rishabh Shukla, Achin Agrawal, Anupam Saxena, S. Mandal

Abstract:

The existence of a crack, affects the mechanical behaviour and various properties of a structure to a great degree. This paper focuses on recognizing the parameters that gets changed due to the formation of cracks and have a great impact on the performance of the structure. Spalling is a major concern as it leaves the reinforcement bars more susceptible to environmental attacks. Beams of cross section 300 mm × 500 mm are designed and for a calculated area of steel, two different arrangements of reinforced bars are analysed. Results are prepared for different stages of cracking for each arrangement of rebars. The parameters for both arrangements are then compared. The Finite Element Analysis (FEA) is carried out and changes in the properties like flexural strength, Elasticity and modal frequency are reported. The conclusions have been drawn by comparing the results.

Keywords: cracks, elasticity, spalling, FEA

Procedia PDF Downloads 283
7543 Non Destructive Ultrasound Testing for the Determination of Elastic Characteristics of AlSi7Zn3Cu2Mg Foundry Alloy

Authors: A. Hakem, Y. Bouafia

Abstract:

Characterization of materials used for various mechanical components is of great importance in their design. Several studies were conducted by various authors in order to improve their physical and/or chemical properties in general and mechanical or metallurgical properties in particular. The foundry alloy AlSi7Zn3Cu2Mg is one of the main components constituting the various mechanisms for the implementation of applications and various industrial projects. Obtaining a reliable product is not an easy task; several results proposed by different authors show sometimes results that can contradictory. Due to their high mechanical characteristics, these alloys are widely used in engineering. Silicon improves casting properties and magnesium allows heat treatment. It is thus possible to obtain various degrees of hardening and therefore interesting compromise between tensile strength and yield strength, on one hand, and elongation, on the other hand. These mechanical characteristics can be further enhanced by a series of mechanical treatments or heat treatments. Their light weight coupled with high mechanical characteristics, aluminum alloys are very much used in cars and aircraft industry. The present study is focused on the influence of heat treatments which cause significant micro structural changes, usually hardening by variation of annealing temperatures by increments of 10°C and 20°C on the evolution of the main elastic characteristics, the resistance, the ductility and the structural characteristics of AlSi7Zn3Cu2Mg foundry alloy cast in sand by gravity. These elastic properties are determined in three directions for each specimen of dimensions 200x150x20 mm³ by the ultrasonic method based on acoustic or elastic waves. The hardness, the micro hardness and the structural characteristics are evaluated by a non-destructive method. The aim of this work is to study the hardening ability of AlSi7Zn3Cu2Mg alloy by considering ten states. To improve the mechanical properties obtained with the raw casting, one should use heat treatment for structural hardening; the addition of magnesium is necessary to increase the sensitivity to this specific heat treatment: Treatment followed by homogenization which generates a diffusion of atoms in a substitution solid solution inside a hardening furnace at 500°C during 8h, followed immediately by quenching in water at room temperature 20 to 25°C, then an ageing process for 17h at room temperature and at different annealing temperature (150, 160, 170, 180, 190, 240, 200, 220 and 240°C) for 20h in an annealing oven. The specimens were allowed to cool inside the oven.

Keywords: aluminum, foundry alloy, magnesium, mechanical characteristics, silicon

Procedia PDF Downloads 267
7542 The Effect of Supplementary Cementitious Materials on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars in Simulated Concrete Pore Solution

Authors: M. S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy, A. I. Al-Negheimish

Abstract:

The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH which are the compounds commonly observed in ordinary portland cement concrete pore solution. In addition to that, commonly used mineral admixtures (silica fume, natural pozzolan and fly ash) were also added to the simulated concrete pore solution. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, silica fume has been shown to have a negative influence on the film quality though it has positive effect on the concrete properties. Fly ash and natural pozzolan increase the protective qualities of the passive film. The research data in this area is very limited in the past and needed further investigation.

Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)

Procedia PDF Downloads 398
7541 From Homogeneous to Phase Separated UV-Cured Interpenetrating Polymer Networks: Influence of the System Composition on Properties and Microstructure

Authors: Caroline Rocco, Feyza Karasu, Céline Croutxé-Barghorn, Xavier Allonas, Maxime Lecompère, Gérard Riess, Yujing Zhang, Catarina Esteves, Leendert van der Ven, Rolf van Benthem Gijsbertus de With

Abstract:

Acrylates are widely used in UV-curing technology. Their high reactivity can, however, limit their conversion due to early vitrification. In addition, the free radical photopolymerization is known to be sensitive to oxygen inhibition leading to tacky surfaces. Although epoxides can lead to full polymerization, they are sensitive to humidity and exhibit low polymerization rate. To overcome the intrinsic limitations of both classes of monomers, Interpenetrating Polymer Networks (IPNs) can be synthesized. They consist of at least two cross linked polymers which are permanently entangled. They can be achieved under thermal and/or light induced polymerization in one or two steps approach. IPNs can display homogeneous to heterogeneous morphologies with various degrees of phase separation strongly linked to the monomer miscibility and also synthesis parameters. In this presentation, we synthesize UV-cured methacrylate - epoxide based IPNs with different chemical compositions in order to get a better understanding of their formation and phase separation. Miscibility before and during the photopolymerization, reaction kinetics, as well as mechanical properties and morphology have been investigated. The key parameters controlling the morphology and the phase separation, namely monomer miscibility and synthesis parameters have been identified. By monitoring the stiffness changes on the film surface, atomic force acoustic microscopy (AFAM) gave, in conjunction with polymerization kinetic profiles and thermomechanical properties, explanations and corroborated the miscibility predictions. When varying the methacrylate / epoxide ratio, it was possible to move from a miscible and highly-interpenetrated IPN to a totally immiscible and phase-separated one.

Keywords: investigation of properties and morphology, kinetics, phase separation, UV-cured IPNs

Procedia PDF Downloads 372
7540 Development of Sustainable Composite Fabric from Orange Peel for Ladies’ Undergarments: A Different Approach Towards Eco-Friendly Textile Design

Authors: Abdul Hafeez, Samiya Shehzadi

Abstract:

This research paper presents a different approach towards eco-friendly textile design by developing a sustainable composite fabric from orange peel for ladies' undergarments. The research focuses on utilizing orange peel to develop a unique orange leather/composite (fabric) through a process involving heating, extracting, and subsequent sun-drying to obtain the composite. The sustainable composite fabric shows properties that are favorable to the development of environmentally friendly undergarments, which not only offer UV protection but also possess healing properties for the skin. Through comprehensive testing and analysis, it has been determined that the orange peel composite fabric has zero harmful effects on the skin, making it a safe and desirable material for intimate wear. Furthermore, the research suggests that the orange peel composite fabric has the potential to reduce the rate of cancer cell growth. While the exact mechanisms and factors contributing to this effect require further investigation, the initial findings indicate promising aspects of the fabric in terms of potential cancer-preventive properties. Research contribution to the field of sustainable textile design by introducing a usual and eco-friendly approach utilizing orange peel waste. This work opens up avenues for further exploration and development of innovative materials that are both sustainable and beneficial for human health.

Keywords: sustainability, composite textiles, extracting, undergarments, eco-friendly, orange peels

Procedia PDF Downloads 72
7539 Properties of Concrete with Wood Ashes in Construction Engineering

Authors: Piotr-Robert Lazik, Lena Teichmann, Harald Garrecht

Abstract:

Many concrete technologists are looking for a solution to replace fly ashes as a component that occurs as a major component of many types of concrete. The importance of such a component is clear -it saves cement and reduces the amount of CO₂ in the atmosphere that occurs during cement production. For example, the amount of cement in ultrahigh strength concrete (UHPC) is approximately 700-800 kg/m³ in normal concrete up to 350 kg/m³. For this reason, it is easy to follow that the use of components like fly ashes or wood ashes protect the environment. The newest investigations carried out at the University of Stuttgart have clearly shown that the use of wood ashes with appropriate pre-treatment in concrete has a positive effect. German-wide, there are hundreds of tons of wood ashes, which can be used in a wide range of construction materials. The strengths of the concrete with different types of cement and with wood ashes have given the same or, in some cases, better results than those with the use of fly ashes. There are many areas in building construction, where the clays of wood ashes can be used as a by-product. This does not only require a strength test but also, for example, an examination of structural-physical parameters. Especially the heat and moisture characteristics have an important role in times of energy-efficient construction. These are therefore determined and then compared with the characteristics of the concretes with fly ashes. The University of Stuttgart has decided to investigate the buildings' physical properties of different types of concrete with wood ashes to find their application in construction. After the examination of the buildings' physical properties in combination with strength tests, it is possible to determine in which field of civil engineering, this type of concrete can be used.

Keywords: fly ashes, wood ashes, structural-physical parameters, UHPC

Procedia PDF Downloads 149
7538 Recycling of End of Life Concrete Based on C2CA Method

Authors: Somayeh Lotfi, Manuel Eggimann, Eckhard Wagner, Radosław Mróz, Jan Deja

Abstract:

One of the main environmental challenges in the construction industry is a strong social force to decrease the bulk transport of the building materials in urban environments. Considering this fact, applying more in-situ recycling technologies for Construction and Demolition Waste (CDW) is an urgent need. The European C2CA project develops a novel concrete recycling technology that can be performed purely mechanically and in situ. The technology consists of a combination of smart demolition, gentle grinding of the crushed concrete in an autogenous mill, and a novel dry classification technology called ADR to remove the fines. The feasibility of this recycling process was examined in demonstration projects involving in total 20,000 tons of End of Life (EOL) concrete from two office towers in Groningen, The Netherlands. This paper concentrates on the second demonstration project of C2CA, where EOL concrete was recycled on an industrial site. After recycling, the properties of the produced Recycled Aggregate (RA) were investigated, and results are presented. An experimental study was carried out on mechanical and durability properties of produced Recycled Aggregate Concrete (RAC) compared to those of the Natural Aggregate Concrete (NAC). The aim was to understand the importance of RA substitution, w/c ratio and type of cement to the properties of RAC. In this regard, two series of reference concrete with strength classes of C25/30 and C45/55 were produced using natural coarse aggregates (rounded and crushed) and natural sand. The RAC series were created by replacing parts of the natural aggregate, resulting in series of concrete with 0%, 20%, 50% and 100% of RA. Results show that the concrete mix design and type of cement have a decisive effect on the properties of RAC. On the other hand, the substitution of RA even at a high percentage replacement level has a minor and manageable impact on the performance of RAC. This result is a good indication towards the feasibility of using RA in structural concrete by modifying the mix design and using a proper type of cement.

Keywords: C2CA, ADR, concrete recycling, recycled aggregate, durability

Procedia PDF Downloads 394
7537 Performance of Fiber Reinforced Self-Compacting Concrete Containing Different Pozzolanic Materials

Authors: Ahmed Fathi Mohamed, Nasir Shafiq, Muhd Fadhil Nuruddin, Ali Elheber Ahmed

Abstract:

Steel fiber adds to Self-Compacting Concrete (SCC) to enhance it is properties and achieves the requirement. This research work focus on the using of different percentage of steel fiber in SCC mixture contains fly ash and microwave incinerator rice husk ash (MIRHA) as supplementary material. Fibers affect several characteristics of SCC in the fresh and the hardened state. To optimize fiber-reinforced self-compacting concrete (FSCC), The possible fiber content of a given mix composition is an essential input parameter. The aim of the research is to study the properties of fiber reinforced self–compacting (FRSCC) and to develop the expert system/computer program of mix proportion for calculating the steel fiber content and pozzolanic replacement that can be applied to investigate the compressive strength of FSCC mix.

Keywords: self-compacting concrete, silica fume, steel fiber, fresh taste

Procedia PDF Downloads 577
7536 Thermo-Mechanical Treatments of Cu-Ti Alloys

Authors: M. M. Morgham, A. A. Hameda, N. A. Zriba, H. A. Jawan

Abstract:

This paper aims to study the effect of cold work condition on the microstructure of Cu-1.5wt%Ti, and Cu-3.5wt%Ti and hence mechanical properties. The samples under investigation were machined and solution heat treated. X-ray diffraction technique is used to identify the different phases present after cold deformation by compression and also different heat treatment and also measuring the relative quantities of phases present. Metallographic examination is used to study the microstructure of the samples. The hardness measurements were used to indicate the change in mechanical properties. The results are compared with the mechanical properties obtained by previous workers. Experiments on cold compression followed by aging of Cu-Ti alloys have indicated that the most effective hardening of the material results from continuous precipitation of very fine particles within the matrix. These particles were reported to be β`-type, Cu4Ti phase. The β`-β transformation and particles coarsening within the matrix as well as a long grain boundaries were responsible for the averaging of Cu-1.5wt%Ti and Cu-3.5wt%Ti alloys. It is well know that plate like particles are β – type, Cu3Ti phase. Discontinuous precipitation was found to start at the grain boundaries and expand into grain interior. At the higher aging temperature a classic widmanstätten morphology forms giving rise to a coarse microstructure comprised of α and the equilibrium phase β. Those results were confirmed by X-ray analysis, which found that a few percent of Cu3Ti, β precipitates are formed during aging at high temperature for long time for both Cu- Ti alloys (i.e. Cu-1.5wt%Ti and Cu-3.5wt%Ti).

Keywords: metallographic, hardness, precipitation, aging

Procedia PDF Downloads 409
7535 Effect of III-V Nitrides on Performance of Graphene-Gold SPR Biosensor

Authors: Bijaya Kumar Sahoo

Abstract:

The effect of III-V nitride semiconductors on performance of a graphene-on-gold surface plasmon resonance (SPR) biosensor has been investigated theoretically. III-V nitrides (AlN, GaN and InN) have been grown between gold (Au) and graphene layers. The sensitivity and performance of the biosensor have been computed for with and without semiconductors. Due to superior electronic and optical properties, III-V nitrides demonstrate high sensitivity and performance over Si and Ge. The enhancement of evanescent electric field due to III-V nitrides have been computed and found highest for InN. The analysis shows that for a high-sensitive imaging biosensor the required optimal thickness of gold, InN and graphene are respectively 49 nm, 11 nm and 0.34 nm for the light of wavelength =633 nm (red He-Ne laser). This study suggests that InN would be a better choice for fabrication of new imaging SPR biosensors.

Keywords: SPR biosensor, optical properties, III-V nitrides, sensitivity, enhancement of electric field, performance of graphene gold SPR biosensor

Procedia PDF Downloads 554
7534 Impact of the Oxygen Content on the Optoelectronic Properties of the Indium-Tin-Oxide Based Transparent Electrodes for Silicon Heterojunction Solar Cells

Authors: Brahim Aissa

Abstract:

Transparent conductive oxides (TCOs) used as front electrodes in solar cells must feature simultaneously high electrical conductivity, low contact resistance with the adjacent layers, and an appropriate refractive index for maximal light in-coupling into the device. However, these properties may conflict with each other, motivating thereby the search for TCOs with high performance. Additionally, due to the presence of temperature sensitive layers in many solar cell designs (for example, in thin-film silicon and silicon heterojunction (SHJ)), low-temperature deposition processes are more suitable. Several deposition techniques have been already explored to fabricate high-mobility TCOs at low temperatures, including sputter deposition, chemical vapor deposition, and atomic layer deposition. Among this variety of methods, to the best of our knowledge, magnetron sputtering deposition is the most established technique, despite the fact that it can lead to damage of underlying layers. The Sn doped In₂O₃ (ITO) is the most commonly used transparent electrode-contact in SHJ technology. In this work, we studied the properties of ITO thin films grown by RF sputtering. Using different oxygen fraction in the argon/oxygen plasma, we prepared ITO films deposited on glass substrates, on one hand, and on a-Si (p and n-types):H/intrinsic a-Si/glass substrates, on the other hand. Hall Effect measurements were systematically conducted together with total-transmittance (TT) and total-reflectance (TR) spectrometry. The electrical properties were drastically affected whereas the TT and TR were found to be slightly impacted by the oxygen variation. Furthermore, the time of flight-secondary ion mass spectrometry (TOF-SIMS) technique was used to determine the distribution of various species throughout the thickness of the ITO and at various interfaces. The depth profiling of indium, oxygen, tin, silicon, phosphorous, boron and hydrogen was investigated throughout the various thicknesses and interfaces, and obtained results are discussed accordingly. Finally, the extreme conditions were selected to fabricate rear emitter SHJ devices, and the photovoltaic performance was evaluated; the lower oxygen flow ratio was found to yield the best performance attributed to lower series resistance.

Keywords: solar cell, silicon heterojunction, oxygen content, optoelectronic properties

Procedia PDF Downloads 162
7533 Unbranched, Saturated, Carboxylic Esters as Phase-Change Materials

Authors: Anastasia Stamatiou, Melissa Obermeyer, Ludger J. Fischer, Philipp Schuetz, Jörg Worlitschek

Abstract:

This study evaluates unbranched, saturated carboxylic esters with respect to their suitability to be used as storage media for latent heat storage applications. Important thermophysical properties are gathered both by means of literature research as well as by experimental measurements. Additionally, esters are critically evaluated against other common phase-change materials in terms of their environmental impact and their economic potential. The experimental investigations are performed for eleven selected ester samples with a focus on the determination of their melting temperature and their enthalpy of fusion using differential scanning calorimetry. Transient Hot Bridge was used to determine the thermal conductivity of the liquid samples while thermogravimetric analysis was employed for the evaluation of the 5% weight loss temperature as well as of the decomposition temperature of the non-volatile samples. Both experimental results and literature data reveal the high potential of esters as phase-change materials. Their good thermal and environmental properties as well as the possibility for production from natural sources (e.g. vegetable oils) render esters as very promising for future storage applications. A particularly high short term application potential of esters could lie in low temperature storage applications where the main alternative is using salt hydrates as phase-change material.

Keywords: esters, phase-change materials, thermal properties, latent heat storage

Procedia PDF Downloads 419
7532 Variation in Wood Anatomical Properties of Acacia seyal var. seyal Tree Species Growing in Different Zones in Sudan

Authors: Hanadi Mohamed Shawgi Gamal, Ashraf Mohamed Ahmed Abdalla

Abstract:

Sudan is endowed by a great diversity of tree species; nevertheless, the utilization of wood resources has traditionally concentrated on a few number of species. With the great variation in the climatic zones of Sudan, great variations are expected in the anatomical properties between and within species. This variation needs to be fully explored in order to suggest the best uses for the species. Modern research on wood has substantiated that the climatic condition where the species grow has significant effect on wood properties. Understanding the extent of variability of wood is important because the uses for each kind of wood are related to its characteristics; furthermore, the suitability or quality of wood for a particular purpose is determined by the variability of one or more of these characteristics. The present study demonstrates the effect of rainfall zones in some anatomical properties of Acacia seyal var. seyal growing in Sudan. For this purpose, twenty healthy trees were collected randomly from two zones (ten trees per zone). One zone with relatively low rainfall (273mm annually) which represented by North Kordofan state and White Nile state and the second with relatively high rainfall (701 mm annually) represented by Blue Nile state and South Kordofan state. From each sampled tree, a stem disc (3 cm thick) was cut at 10% from stem height. One radius was obtained in central stem dices. Two representative samples were taken from each disc, one at 10% distance from pith to bark, the second at 90% in order to represent the juvenile and mature wood. The investigated anatomical properties were fibers length, fibers and vessels diameter, lumen diameter, and wall thickness as well as cell proportions. The result of the current study reveals significant differences between zones in mature wood vessels diameter and wall thickness, as well as juvenile wood vessels, wall thickness. The higher values were detected in the drier zone. Significant differences were also observed in juvenile wood fiber length, diameter as well as wall thickness. Contrary to vessels diameter and wall thickness, the fiber length, diameter as well as wall thickness were decreased in the drier zone. No significant differences have been detected in cell proportions of juvenile and mature wood. The significant differences in some fiber and vessels dimension lead to expect significant differences in wood density. From these results, Acacia seyal var. seyal seems to be well adapted with the change in rainfall and may survive in any rainfall zone.

Keywords: Acacia seyal var. seyal, anatomical properties, rainfall zones, variation

Procedia PDF Downloads 152
7531 Sensitizing Bamboo Fabric with Antimicrobial Turmeric Dye

Authors: Varinder Kaur, Amanjit Kaur, Simran Kaur, Samriti Vaid

Abstract:

Coating of fabrics with anti-microbial dyes is an adaptable technique of protection from various diseases. Natural dyes, which are known to possess antibacterial properties, can be used for antibacterial finishing of fibers like cotton, wool, bamboo and so many. Dyeing of fabrics with natural dyes normally requires the use of mordants so that dyes can stay on the fabric as well as into interstices of the fabric during multiple washings. In this study, the mordants used are alum and chitosan for ensuring a reasonable color fastness to light and washing. Chitosan is a natural polysaccharide having significant biological and chemical properties such as biodegradability, biocompatibility, bioactivity, microbial activity and polycationicity. The metal ion of alum mordant can act as electron acceptor for electron donor to form coordination bond with the dye molecule, making them insoluble in water. The dyeing of bamboo fabric using a natural dye extracted from turmeric has been studied using conventional dyeing method. Natural dye was extracted using water as solvent by Soxhlet extraction method. The extracted color was characterized by spectroscopic studies like UV/visible and further tested for antimicrobial activity. The effect of mordants on the dyeing outcome in terms of colour depth as well as fastness properties of the dyeing was investigated. It has been found that employing the conventional dyeing technique at 100 oC, the mordanted samples were deeper in depth than their unmordanted counterparts. The results of fastness properties of the dyed fabrics were fair to good. Turmeric extract was found to enhance microbial resistance of bamboo as well as was itself as a good cause of coloration. These textiles dyed with the turmeric as natural dye can be very useful in developing clothing for infants, elderly and infirm people to protect them against common infections. The outcome of this study will provide a new feature to the interface of dyeing and pharmaceutical industry.

Keywords: antimicrobial activity, bamboo fabric, natural dye, turmeric

Procedia PDF Downloads 173
7530 Waste Management Option for Bioplastics Alongside Conventional Plastics

Authors: Dan Akesson, Gauthaman Kuzhanthaivelu, Martin Bohlen, Sunil K. Ramamoorthy

Abstract:

Bioplastics can be defined as polymers derived partly or completely from biomass. Bioplastics can be biodegradable such as polylactic acid (PLA) and polyhydroxyalkonoates (PHA); or non-biodegradable (biobased polyethylene (bio-PE), polypropylene (bio-PP), polyethylene terephthalate (bio-PET)). The usage of such bioplastics is expected to increase in the future due to new found interest in sustainable materials. At the same time, these plastics become a new type of waste in the recycling stream. Most countries do not have separate bioplastics collection for it to be recycled or composted. After a brief introduction of bioplastics such as PLA in the UK, these plastics are once again replaced by conventional plastics by many establishments due to lack of commercial composting. Recycling companies fear the contamination of conventional plastic in the recycling stream and they said they would have to invest in expensive new equipment to separate bioplastics and recycle it separately. This project studies what happens when bioplastics contaminate conventional plastics. Three commonly used conventional plastics were selected for this study: polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). In order to simulate contamination, two biopolymers, either polyhydroxyalkanoate (PHA) or thermoplastic starch (TPS) were blended with the conventional polymers. The amount of bioplastics in conventional plastics was either 1% or 5%. The blended plastics were processed again to see the effect of degradation. The results from contamination showed that the tensile strength and the modulus of PE was almost unaffected whereas the elongation is clearly reduced indicating the increase in brittleness of the plastic. Generally, it can be said that PP is slightly more sensitive to the contamination than PE. This can be explained by the fact that the melting point of PP is higher than for PE and as a consequence, the biopolymer will degrade more quickly. However, the reduction of the tensile properties for PP is relatively modest. Impact strength is generally a more sensitive test method towards contamination. Again, PE is relatively unaffected by the contamination but for PP there is a relatively large reduction of the impact properties already at 1% contamination. PET is polyester, and it is, by its very nature, more sensitive to degradation than PE and PP. PET also has a much higher melting point than PE and PP, and as a consequence, the biopolymer will quickly degrade at the processing temperature of PET. As for the tensile strength, PET can tolerate 1% contamination without any reduction of the tensile strength. However, when the impact strength is examined, it is clear that already at 1% contamination, there is a strong reduction of the properties. The thermal properties show the change in the crystallinity. The blends were also characterized by SEM. Biphasic morphology can be seen as the two polymers are not truly blendable which also contributes to reduced mechanical properties. The study shows that PE is relatively robust against contamination, while polypropylene (PP) is sensitive and polyethylene terephthalate (PET) can be quite sensitive towards contamination.

Keywords: bioplastics, contamination, recycling, waste management

Procedia PDF Downloads 232
7529 Uniaxial Alignment and Ion Exchange Doping to Enhance the Thermoelectric Properties of Organic Polymers

Authors: Wenjin Zhu, Ian E. Jacobs, Henning Sirringhaus

Abstract:

This project delves into the efficiency of uniaxial alignment and ion exchange doping as methods to optimize the thermoelectric properties of organic polymers. The anisotropic nature of charge transport in conjugated polymers is capitalized upon through the uniaxial alignment of polymer backbones, ensuring charge transport is streamlined along these backbones. Ion exchange doping has demonstrated superiority over traditional molecular and electrochemical doping methods, amplifying charge carrier densities. By integrating these two techniques, we've observed marked improvements in the thermoelectric attributes of specific conjugated polymers such as PBTTT and DPP based polymers. We demonstrate respectable power factors of 172.6 μW m⁻¹ K⁻² in PBTTT system and 41.7 μW m⁻¹ K⁻² in DPP system.

Keywords: organic electronics, thermoelectrics, uniaxial alignment, ion exchange doping

Procedia PDF Downloads 73
7528 The Effect of the Rain Intensity on the Hydrodynamic Behavior of the Low-Floor ChéLiffe

Authors: Ahmed Abbas

Abstract:

Land degradation in the Lower Cheliff region leads to loss of their fertility, physical and chemical properties by secondary salinization and film forming surface or surface crust. The main factor related to runoff and soil erosion is their susceptibility to crusting caused by the impact of raindrops, which causes the reduction of the filterability of the soil. The present study aims to investigate the hydrodynamic behavior of five types of soil taken from the plain of low Cheliff under simulated rainfall by using two intensities, one moderate, and others correspond to heavy rains at low kinetic energies. Experimental results demonstrate the influence of chemical and mechanical physical properties of soils on their hydrodynamic behavior and the influence of heavy rain on the modality of the reduction in the filterability and the amount of transported sediment.

Keywords: erosion, hydrodynamic behavior, rain simulation, soil

Procedia PDF Downloads 288
7527 A Novel Comparison Scheme for Thermal Conductivity Enhancement of Heat Transfer

Authors: Islam Tarek, Moataz Soliman

Abstract:

With the amazing development of nanoscience’s and the discovery of the unique properties of nanometric materials, the ideas of scientists and researchers headed to take advantage of this progress in various fields, and one of the most important of these areas is the field of heat transfer and benefit from it in saving energy used for heat transfer, so nanometric materials were used to improve the properties of heat transfer fluids and increase the efficiency of the liquid. In this paper, we will compare two types of heat transfer fluid, one industrial type (the base fluid is a mix of ethylene glycol and deionized water ) and another natural oils(the base fluid is a mix of jatropha oil and expired olive oil), explaining the method of preparing each of them, starting from the method of preparing CNT, collecting and sorting jatropha seeds, and the most appropriate method for extracting oil from them, and characterization the both of two fluids and when to use both.

Keywords: nanoscience, heat transfer, thermal conductivity, jatropha oil

Procedia PDF Downloads 224
7526 Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications

Authors: Sara Mercedes Barroso Pinzón, Álvaro Jesús Caicedo Castro, Antonio Javer Sánchez Herencia

Abstract:

In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 62
7525 Kaolinite-Assisted Microencapsulation of Octodecane for Thermal Energy Storage

Authors: Ting Pan, Jiacheng Wang, Pengcheng Lin, Ying Chen, Songping Mo

Abstract:

Phase change materials (PCMs) are widely used in latent heat thermal energy storage because of their good properties such as high energy storage density and constant heat-storage/release temperature. Microencapsulation techniques can prevent PCMs from leaking during the liquid-solid phase transition and enhance thermal properties. This technique has been widely applied in architectural materials, thermo-regulated textiles, aerospace fields, etc. One of the most important processes during the synthesis of microcapsules is to form a stable emulsion of the PCM core and reactant solution for the formation of the shell of the microcapsules. The use of surfactants is usually necessary for the formation of a stable emulsion system because of the difference in hydrophilia/lipophilicity of the PCM and the solvent. Unfortunately, the use of surfactants may cause pollution to the environment. In this study, modified kaolinite was used as an emulsion stabilizer for the microencapsulation of octodecane as PCM. Microcapsules were synthesized by phase inversion emulsification method, and the shell of polymethyl methacrylate (PMMA) was formed through free radical polymerization. The morphologies, crystalloid phase, and crystallization properties of microcapsules were investigated using scanning electron microscopy (SEM), X-ray diffractometer (XRD), and Fourier transforms infrared spectrometer (FTIR). The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TG). The FT-IR, XRD results showed that the octodecane was well encapsulated in the PMMA shell. The SEM results showed that the microcapsules were spheres with an average size of about 50-100nm. The DSC results indicated that the latent heat of the microcapsules was 152.64kJ/kg and 164.23kJ/kg. The TG results confirmed that the microcapsules had good thermal stability due to the PMMA shell. Based on the results, it can be concluded that the modified kaolinite can be used as an emulsifier for the synthesis of PCM microcapsules, which is valid for reducing part of the possible pollution caused by the utilization of surfactants.

Keywords: kaolinite, microencapsulation, PCM, thermal energy storage

Procedia PDF Downloads 135