Search results for: Particle separation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2788

Search results for: Particle separation

628 Extraction of Phycocyanin from Spirulina platensis by Isoelectric Point Precipitation and Salting Out for Scale Up Processes

Authors: Velasco-Rendón María Del Carmen, Cuéllar-Bermúdez Sara Paulina, Parra-Saldívar Roberto

Abstract:

Phycocyanin is a blue pigment protein with fluorescent activity produced by cyanobacteria. It has been recently studied to determine its anticancer, antioxidant and antiinflamatory potential. Since 2014 it was approved as a Generally Recognized As Safe (GRAS) proteic pigment for the food industry. Therefore, phycocyanin shows potential for the food, nutraceutical, pharmaceutical and diagnostics industry. Conventional phycocyanin extraction includes buffer solutions and ammonium sulphate followed by chromatography or ATPS for protein separation. Therefore, further purification steps are time-requiring, energy intensive and not suitable for scale-up processing. This work presents an alternative to conventional methods that also allows large scale application with commercially available equipment. The extraction was performed by exposing the dry biomass to mechanical cavitation and salting out with NaCl to use an edible reagent. Also, isoelectric point precipitation was used by addition of HCl and neutralization with NaOH. The results were measured and compared in phycocyanin concentration, purity and extraction yield. Results showed that the best extraction condition was the extraction by salting out with 0.20 M NaCl after 30 minutes cavitation, with a concentration in the supernatant of 2.22 mg/ml, a purity of 3.28 and recovery from crude extract of 81.27%. Mechanical cavitation presumably increased the solvent-biomass contact, making the crude extract visibly dark blue after centrifugation. Compared to other systems, our process has less purification steps, similar concentrations in the phycocyanin-rich fraction and higher purity. The contaminants present in our process edible NaCl or low pHs that can be neutralized. It also can be adapted to a semi-continuous process with commercially available equipment. This characteristics make this process an appealing alternative for phycocyanin extraction as a pigment for the food industry.

Keywords: extraction, phycocyanin, precipitation, scale-up

Procedia PDF Downloads 423
627 QUALIFYING AGGREGATES PRODUCED IN KANO-NIGERIA FOR USE IN SUPERPAVE DESIGN METHOD

Authors: Ahmad Idris, Bishir Kado, Murtala Umar, Armaya`u Suleiman Labo

Abstract:

Superpave is the short form of Superior Performing Asphalt Pavement and represents a basis for specifying component materials, asphalt mixture design and analysis, and pavement performance prediction. This new technology is the result of long research projects conducted by the strategic Highway Research program (SHRP) of the Federal Highway Administration. This research was aimed at examining the suitability of Aggregates found in Kano for used in Superpave design method. Aggregates samples were collected from different sources in Kano Nigeria and their Engineering properties, as they relate to the SUPERPAVE design requirements were determined. The average result of Coarse Aggregate Angularity in Kano was found to be 87% and 86% of one fractured face and two or more fractured faces respectively with a standard of 80% and 85% respectively. Fine Aggregate Angularity average result was found to be 47% with a requirement of 45% minimum. A flat and elongated particle which was found to be 10% has a maximum criterion of 10%. Sand equivalent was found to be 51% with the criteria of 45% minimum. Strength tests were also carried out, and the results reflect the requirements of the standards. The tests include Impact value test, Aggregate crushing value, and Aggregate Abrasion tests and the results are 27.5%, 26.7%, and 13%, respectively, with the maximum criteria of 30%. Specific gravity was also carried out and the result was found to have an average value of 2.52 with a criterion of 2.6 to 2.9 and Water absorption was found to be 1.41% with maximum criteria of 0.6%. From the study, the result of the tests indicated that the aggregates properties has met the requirements of Superpave design method based on the specifications of ASTMD 5821, ASTM D 4791, AASHTO T176, AASHTO T33 and BS815.

Keywords: Superpave, aggregates, asphalt mix, Kano

Procedia PDF Downloads 383
626 A Linguistic Product of K-Pop: A Corpus-Based Study on the Korean-Originated Chinese Neologism Simida

Authors: Hui Shi

Abstract:

This article examines the online popularity of Chinese neologism simida, which is a loanword derived from Korean declarative sentence-final suffix seumnida. Facilitated by corpus data obtained from Weibo, the Chinese counterpart of Twitter, this study analyzes the morphological and syntactical processes behind simida’s coinage, as well as the causes of its prevalence on Chinese social media. The findings show that simida is used by Weibo bloggers in two manners: (1) as an alternative word of 'Korea' and 'Korean'; (2) as a redundant sentence-final particle which adds a Korean-like speech style to a statement. Additionally, Weibo user profile analysis further reveals demographical distribution patterns concerning this neologism and highlights young Weibo users in the third-tier cities as the leading adopters of simida. These results are accounted for under the theoretical framework of social indexicality, especially how variations generate style in the indexical field. This article argues that the creation of such an ethnically-targeted neologism is a linguistic demonstration of Chinese netizen’s two-sided attitudes toward the previously heated Korean-wave. The exotic suffix seumnida is borrowed to Chinese as simida due to its high-frequency in Korean cultural exports. Therefore, it gradually becomes a replacement of Korea-related lexical items due to markedness, regardless of semantic prosody. Its innovative implantation to Chinese syntax, on the other hand, reflects Chinese netizens’ active manipulation of language for their online identity building. This study has implications for research on the linguistic construction of identity and style and lays the groundwork for linguistic creativity in the Chinese new media.

Keywords: Chinese neologism, loanword, humor, new media

Procedia PDF Downloads 165
625 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM

Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari

Abstract:

Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.

Keywords: CFD, moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine

Procedia PDF Downloads 191
624 Isolation Enhancement of Compact Dual-Band Printed Multiple Input Multiple Output Antenna for WLAN Applications

Authors: Adham M. Salah, Tariq A. Nagem, Raed A. Abd-Alhameed, James M. Noras

Abstract:

Recently, the demand for wireless communications systems to cover more than one frequency band (multi-band) with high data rate has been increased for both fixed and mobile services. Multiple Input Multiple Output (MIMO) technology is one of the significant solutions for attaining these requirements and to achieve the maximum channel capacity of the wireless communications systems. The main issue associated with MIMO antennas especially in portable devices is the compact space between the radiating elements which leads to limit the physical separation between them. This issue exacerbates the performance of the MIMO antennas by increasing the mutual coupling between the radiating elements. In other words, the mutual coupling will be stronger if the radiating elements of the MIMO antenna are closer. This paper presents a low–profile dual-band (2×1) MIMO antenna that works at 2.4GHz, 5.3GHz and 5.8GHz for wireless local area networks (WLAN) applications. A neutralization line (NL) technique for enhancing the isolation has been used by introducing a strip line with a length of λg/4 at the isolation frequency (2.4GHz) between the radiating elements. The overall dimensions of the antenna are 33.5 x 36 x 1.6 mm³. The fabricated prototype shows a good agreement between the simulated and measured results. The antenna impedance bandwidths are 2.38–2.75 GHz and 4.4–6 GHz for the lower and upper band respectively; the reflection coefficient and mutual coupling are better than -25 dB in both lower and higher bands. The MIMO antenna performance characteristics are reported in terms of the scattering parameters, envelope correlation coefficient (ECC), total active reflection coefficient, capacity loss, antenna gain, and radiation patterns. Analysis of these characteristics indicates that the design is appropriate for the WLAN terminal applications.

Keywords: ECC, neutralization line, MIMO antenna, multi-band, mutual coupling, WLAN

Procedia PDF Downloads 123
623 Investigating Role of Novel Molecular Players in Forebrain Roof-Plate Midline Invagination

Authors: Mohd Ali Abbas Zaidi, Meenu Sachdeva, Jonaki Sen

Abstract:

In the vertebrate embryo, the forebrain anlagen develops from the anterior-most region of the neural tube which is the precursor of the central nervous system (CNS). The roof plate located at the dorsal midline region of the forebrain anlagen, acts as a source of several secreted molecules involved in patterning and morphogenesis of the forebrain. One such key morphogenetic event is the invagination of the forebrain roof plate which results in separation of the single forebrain vesicle into two cerebral hemispheres. Retinoic acid (RA) signaling plays a key role in this process. Blocking RA signaling at the dorsal forebrain midline inhibits dorsal invagination and results in the absence of certain key features of this region, such as thinning of the neuroepithelium and a lowering of cell proliferation. At present we are investigating the possibility of other signaling pathways acting in concert with RA signaling to regulate this process. We have focused on BMP signaling, which we found to be active in a mutually exclusive domain to that of RA signaling within the roof plate. We have also observed that there is a change in BMP signaling activity on modulation of RA signaling indicating an antagonistic relationship between the two. Moreover, constitutive activation of BMP signaling seems to completely inhibit thinning and partially affect invagination, leaving the lowering of cell proliferation in the midline unaffected. We are employing in-silico modeling as well as molecular manipulations to investigate the relative contribution if any, of regional differences in rates of cell proliferation and thinning of the neuroepithelium towards the process of invagination. We have found expression of certain cell adhesion molecules in forebrain roof-plate whose mRNA localization across the thickness of neuroepithelium is influenced by Bmp and RA signaling, giving regional rigidity to roof plate and assisting invagination. We also found expression of certain cytoskeleton modifiers in a localized small domains in invaginating forebrain roof plate suggesting that midline invagination is under control of many factors.

Keywords: bone morphogenetic signaling, cytoskeleton, cell adhesion molecules, forebrain roof plate, retinoic acid signaling

Procedia PDF Downloads 144
622 Simulation, Optimization, and Analysis Approach of Microgrid Systems

Authors: Saqib Ali

Abstract:

Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.

Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management

Procedia PDF Downloads 90
621 Polymer Impregnated Sulfonated Carbon Composite as a Solid Acid Catalyst for the Dehydration of Xylose to Furfural

Authors: Praveen K. Khatri, Neha Karanwal, Savita Kaul, Suman L. Jain

Abstract:

Conversion of biomass through green chemical routes is of great industrial importance as biomass is considered to be most widely available inexpensive renewable resource that can be used as a raw material for the production of bio fuel and value-added organic products. In this regard, acid catalyzed dehydration of biomass derived pentose sugar (mainly D-xylose) to furfural is a process of tremendous research interest in current scenario due to the wider industrial applications of furfural. Furfural is an excellent organic solvent for refinement of lubricants and separation of butadiene from butene mixture in synthetic rubber fabrication. In addition it also serve as a promising solvent for many organic materials, such as resins, polymers and also used as a building block for synthesis of various valuable chemicals such as furfuryl alcohol, furan, pharmaceutical, agrochemicals and THF. Here in a sulfonated polymer impregnated carbon composite solid acid catalyst (P-C-SO3H) was prepared by the pyrolysis of a polymer matrix impregnated with glucose followed by its sulfonation and used for the dehydration of xylose to furfural. The developed catalyst exhibited excellent activity and provided almost quantitative conversion of xylose with the selective synthesis of furfural. The higher catalytic activity of P-C-SO3H may be due to the more even distribution of polycyclic aromatic hydrocarbons generated from incomplete carbonization of glucose along the polymer matrix network, leading to more available sites for sulfonation which resulted in greater sulfonic acid density in P-C-SO3H as compared to sulfonated carbon catalyst (C-SO3H). In conclusion, we have demonstrated sulfonated polymer impregnated carbon composite (P-C-SO3H) as an efficient and selective solid acid catalyst for the dehydration of xylose to furfural. After completion of the reaction, the catalyst was easily recovered and reused for several runs without noticeable loss in its activity and selectivity.

Keywords: Solid acid , Biomass conversion, Xylose Dehydration, Heterogeneous catalyst

Procedia PDF Downloads 396
620 A Novel Rapid Well Control Technique Modelled in Computational Fluid Dynamics Software

Authors: Michael Williams

Abstract:

The ability to control a flowing well is of the utmost important. During the kill phase, heavy weight kill mud is circulated around the well. While increasing bottom hole pressure near wellbore formation, the damage is increased. The addition of high density spherical objects has the potential to minimise this near wellbore damage, increase bottom hole pressure and reduce operational time to kill the well. This operational time saving is seen in the rapid deployment of high density spherical objects instead of building high density drilling fluid. The research aims to model the well kill process using a Computational Fluid Dynamics software. A model has been created as a proof of concept to analyse the flow of micron sized spherical objects in the drilling fluid. Initial results show that this new methodology of spherical objects in drilling fluid agrees with traditional stream lines seen in non-particle flow. Additional models have been created to demonstrate that areas of higher flow rate around the bit can lead to increased probability of wash out of formations but do not affect the flow of micron sized spherical objects. Interestingly, areas that experience dimensional changes such as tool joints and various BHA components do not appear at this initial stage to experience increased velocity or create areas of turbulent flow, which could lead to further borehole stability. In conclusion, the initial models of this novel well control methodology have not demonstrated any adverse flow patterns, which would conclude that this model may be viable under field conditions.

Keywords: well control, fluid mechanics, safety, environment

Procedia PDF Downloads 162
619 Carbon, Nitrogen Doped TiO2 Macro/Mesoporous Monoliths with High Visible Light Absorption for Photocatalytic Wastewater Treatment

Authors: Paolo Boscaro, Vasile Hulea, François Fajula, Francis Luck, Anne Galarneau

Abstract:

TiO2 based monoliths with hierarchical macropores and mesopores have been synthesized following a novel one pot sol-gel synthesis method. Taking advantage of spinodal separation that occurs between titanium isopropoxide and an acidic solution in presence of polyethylene oxide polymer, monoliths with homogeneous interconnected macropres of 3 μm in diameter and mesopores of ca. 6 nm (surface area 150 m2/g) are obtained. Furthermore, these monoliths present some carbon and nitrogen (as shown by XPS and elemental analysis), which considerably reduce titanium oxide energy gap and enable light to be absorbed up to 700 nm wavelength. XRD shows that anatase is the dominant phase with a small amount of brookite. Enhanced light absorption and high porosity of the monoliths are responsible for a remarkable photocatalytic activity. Wastewater treatment has been performed in closed reactor under sunlight using orange G dye as target molecule. Glass reactors guarantee that most of UV radiations (to almost 300 nm) of solar spectrum are excluded. TiO2 nanoparticles P25 (usually used in photocatalysis under UV) and un-doped TiO2 monoliths with similar porosity were used as comparison. C,N-doped TiO2 monolith allowed a complete colorant degradation in less than 1 hour, whereas 10 h are necessary for 40% colorant degradation with P25 and un-doped monolith. Experiment performed in the dark shows that only 3% of molecules have been adsorbed in the C,N-doped TiO2 monolith within 1 hour. The much higher efficiency of C,N-doped TiO2 monolith in comparison to P25 and un-doped monolith, proves that doping TiO2 is an essential issue and that nitrogen and carbon are effective dopants. Monoliths offer multiples advantages in respect to nanometric powders: sample can be easily removed from batch (no needs to filter or to centrifuge). Moreover flow reactions can be set up with cylindrical or flat monoliths by simple sheathing or by locking them with O-rings.

Keywords: C-N doped, sunlight photocatalytic activity, TiO2 monolith, visible absorbance

Procedia PDF Downloads 217
618 Metal-Organic Frameworks for Innovative Functional Textiles

Authors: Hossam E. Emam

Abstract:

Metal–organic frameworks (MOFs) are new hybrid materials investigated from 15 years ago; they synthesized from metals as inorganic center joined with multidentate organic linkers to form a 1D, 2D or 3D network structure. MOFs have unique properties such as pore crystalline structure, large surface area, chemical tenability and luminescent characters. These significant properties enable MOFs to be applied in many fields such like gas storage, adsorption/separation, drug delivery/biomedicine, catalysis, polymerization, magnetism and luminescence applications. Recently, many of published reports interested in superiority of MOFs for functionalization of textiles to exploit the unique properties of MOFs. Incorporation of MOFs is found to acquire the textiles some additional formidable functions to be used in considerable fields such like water treatment and fuel purification. Modification of textiles with MOFs could be easily performed by two main techniques; Ex-situ (preparation of MOFs then applied onto textiles) and in-situ (ingrowth of MOFs within textiles networks). Uniqueness of MOFs could be assimilated in acquirement of decorative color, antimicrobial character, anti-mosquitos character, ultraviolet radiation protective, self-clean, photo-luminescent and sensor character. Additionally, textiles treatment with MOFs make it applicable as filter in the adsorption of toxic gases, hazardous materials (such as pesticides, dyes and aromatics molecules) and fuel purification (such as removal of oxygenated, nitrogenated and sulfur compounds). Also, the porous structure of MOFs make it mostly utilized in control release of insecticides from the surface of the textile. Moreover, MOF@textiles as recyclable materials lead it applicable as photo-catalyst composites for photo-degradation of different dyes in the day light. Therefore, MOFs is extensively considered for imparting textiles with formidable properties as ingeniousness way for textile functionalization.

Keywords: MOF, functional textiles, water treatment, fuel purification, environmental applications

Procedia PDF Downloads 131
617 Identification of Blood Biomarkers Unveiling Early Alzheimer's Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders

Authors: Hediyeh Talebi, Shokoofeh Ghiam, Changiz Eslahchi

Abstract:

Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets.

Keywords: alzheimer's disease, single-cell RNA-seq, neural networks, blood biomarkers

Procedia PDF Downloads 51
616 Synthesis and Study of Properties of Polyaniline/Nickel Sulphide Nanocomposites

Authors: Okpaneje Onyinye Theresa, Ugwu Laeticia Udodiri, Okereke Ngozi Agatha, Okoli Nonso Livinus

Abstract:

This work is on the synthesis and study of the optical characterization of polyaniline/nickel sulphide nanocomposite. Polyaniline (PANI) and nickel sulphide (NiS) nanoparticles were synthesized by oxidative chemical polymerization and sol-gel method. The polyaniline nickel sulphide nanocomposites with various concentrations of NiS were synthesized by in-situ polymerization of aniline monomer. In each case, the nickel sulphide nanoparticles were uniformly dispersed in the aniline hydrochloride before the initiation of oxidative chemical polymerization using ammonium persulphate. The samples formed were subjected to optical characterization using an ultraviolet (UV)-visible light (VIS) spectrophotometer (model: 756S UV – VIS). Optical analysis of the synthesized nanoparticles and nanocomposites showed absorption of radiation within VIS regions. The Tauc model was used to obtain the optical band gap. Energy band gap values of PANI and NiS were found to be 2.50 eV and 1.95 eV, respectively. PANI/NiSnanocomposites has an energy band gap that decreased from 2.25 eV to 1.90 eV as the amount of NiS increased (from 0.5g to 2.0g). These optical results showed that these nanocomposites are potential materials to be considered in solar cells and optoelectronics devices. The structural analysis confirmed the formation of polyaniline and hexagonal nickel sulphide with an average crystallite size of 25.521 nm, while average crystallite sizes of PANI/NiSnanocomposites ranged from 19.458 nm to 25.108 nm. Average particle sizes obtained from the SEM images ranged from 23.24 nm to 51.88 nm. Compositional results confirmed the presence of desired elements that made up the nanoparticles and nanocomposites.

Keywords: polyaniline, nickel sulphide, polyaniline-nickel sulphide nanocomposite, optical characterization, structural analysis, morphological properties, compositional properties

Procedia PDF Downloads 98
615 Comparison of Process Slaughtered on Beef Cattle Based on Level of Cortisol and Fourier Transform Infrared Spectroscopy (FTIR)

Authors: Pudji Astuti, C. P. C. Putro, C. M. Airin, L. Sjahfirdi, S. Widiyanto, H. Maheshwari

Abstract:

Stress of slaughter animals starting long before until at the time of process of slaughtering which cause misery and decrease of meat quality. Meanwhile, determination of animal stress using hormonal such as cortisol is expensive and less practical so that portable stress indicator for cows based on Fourier Transform Infrared Spectroscopy (FTIR) must be provided. The aims of this research are to find out the comparison process of slaughter between Rope Casting Local (RCL) and Restraining Box Method (RBM) by measuring of cortisol and wavelength in FTIR methods. Thirty two of male Ongole crossbred cattle were used in this experiment. Blood sampling was taken from jugular vein when they were rested and repeated when slaughtered. All of blood samples were centrifuged at 3000 rpm for 20 minutes to get serum, and then divided into two parts for cortisol assayed using ELISA and for measuring the wavelength using FTIR. The serum then measured at the wavelength between 4000-400 cm-1 using MB3000 FTIR. Band data absorption in wavelength of FTIR is analyzed descriptively by using FTIR Horizon MBTM. For RCL, average of serum cortisol when the animals rested were 11.47 ± 4.88 ng/mL, when the time of slaughter were 23.27 ± 7.84 ng/mL. For RBM, level of cortisol when rested animals were 13.67 ± 3.41 ng/mL and 53.47 ± 20.25 ng/mL during the slaughter. Based on student t-Test, there were significantly different between RBM and RCL methods when beef cattle were slaughtered (P < 0.05), but no significantly different when animals were rested (P > 0.05). Result of FTIR with the various of wavelength such as methyl group (=CH3) 2986cm-1, methylene (=CH2) 2827 cm-1, hydroxyl (-OH) 3371 cm-1, carbonyl (ketones) (C=O) 1636 cm-1, carboxyl (COO-1) 1408 cm-1, glucosa 1057 cm-1, urea 1011 cm-1have been obtained. It can be concluded that the RCL slaughtered method is better than the RBM method based on the increase of cortisol as an indicator of stress in beef cattle (P<0.05). FTIR is really possible to be used as stub of stress tool due to differentiate of resting and slaughter condition by recognizing the increase of absorption and the separation of component group at the wavelength.

Keywords: cows, cortisol, FTIR, RBM, RCL, stress indicator

Procedia PDF Downloads 627
614 Biochar Affects Compressive Strength of Portland Cement Composites: A Meta-Analysis

Authors: Zhihao Zhao, Ali El-Nagger, Johnson Kau, Chris Olson, Douglas Tomlinson, Scott X. Chang

Abstract:

One strategy to reduce CO₂ emissions from cement production is to reduce the amount of Portland cement produced by replacing it with supplementary cementitious materials (SCMs). Biochar is a potential SCM that is an eco-friendly and stable porous pyrolytic material. However, the effects of biochar addition on the performances of Portland cement composites are not fully understood. This meta-analysis investigated the impact of biochar addition on the 7- and 28-day compressive strength of Portland cement composites based on 606 paired observations. Biochar feedstock type, pyrolysis conditions, pre-treatments and modifications, biochar dosage, and curing type all influenced the compressive strength of Portland cement composites. Biochars obtained from plant-based feedstocks (except rice and hardwood) improved the 28-day compressive strength of Portland cement composites by 3-13%. Biochars produced at pyrolysis temperatures higher than 450 °C, with a heating rate of around 10 °C/min, increased the 28-day compressive strength more effectively. Furthermore, the addition of biochars with small particle sizes increased the compressive strength of Portland cement composites by 2-7% compared to those without biochar addition. Biochar dosage of < 2.5% of the binder weight enhanced both compressive strengths and common curing methods maintained the effect of biochar addition. However, when mixing the cement, adding fine and coarse aggregates such as sand and gravel affects the concrete and mortar's compressive strength, diminishing the effect of biochar addition and making the biochar effect nonsignificant. We conclude that appropriate biochar addition could maintain or enhance the mechanical performance of Portland cement composites, and future research should explore the mechanisms of biochar effects on the performance of cement composites.

Keywords: biochar, Portland cement, constructure, compressive strength, meta-analysis

Procedia PDF Downloads 50
613 White Light Emitting Carbon Dots- Surface Modification of Carbon Dots Using Auxochromes

Authors: Manasa Perikala, Asha Bhardwaj

Abstract:

Fluorescent carbon dots (CDs), a young member of Carbon nanomaterial family, has gained a lot of research attention across the globe due to its highly luminescent emission properties, non-toxic behavior, stable emission properties, and zero re-absorption lose. These dots have the potential to replace the use of traditional semiconductor quantum dots in light-emitting devices (LED’s, fiber lasers) and other photonic devices (temperature sensor, UV detector). However, One major drawback of Carbon dots is that, till date, the actual mechanism of photoluminescence (PL) in carbon dots is still an open topic of discussion among various researchers across the globe. PL mechanism of CDs based on wide particle size distribution, the effect of surface groups, hybridization in carbon, and charge transfer mechanisms have been proposed. Although these mechanisms explain PL of CDs to an extent, no universally accepted mechanism to explain complete PL behavior of these dots is put forth. In our work, we report parameters affecting the size and surface of CDs, such as time of the reaction, synthesis temperature and concentration of precursors and their effects on the optical properties of the carbon dots. The effect of auxochromes on the emission properties and re-modification of carbon surface using an external surface functionalizing agent is discussed in detail. All the explanations have been supported by UV-Visible absorption, emission spectroscopies, Fourier transform infrared spectroscopy and Transmission electron microscopy and X-Ray diffraction techniques. Once the origin of PL in CDs is understood, parameters affecting PL centers can be modified to tailor the optical properties of these dots, which can enhance their applications in the fabrication of LED’s and other photonic devices out of these carbon dots.

Keywords: carbon dots, photoluminescence, size effects on emission in CDs, surface modification of carbon dots

Procedia PDF Downloads 122
612 Assessing the Potential of a Waste Material for Cement Replacement and the Effect of Its Fineness in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock

Abstract:

This paper represents the results of experimental work to investigate the suitability of a waste material (WM) for soft soil stabilisation. In addition, the effect of particle size distribution (PSD) of the waste material on its performance as a soil stabiliser was investigated. The WM used in this study is produced from the incineration processes in domestic energy power plant and it is available in two different grades of fineness (coarse waste material (CWM) and fine waste material (FWM)). An intermediate plasticity silty clayey soil with medium organic matter content has been used in this study. The suitability of the CWM and FWM to improve the physical and engineering properties of the selected soil was evaluated dependant on the results obtained from the consistency limits, compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)); along with the unconfined compressive strength test (UCS). Different percentages of CWM were added to the soft soil (3, 6, 9, 12 and 15%) to produce various admixtures. Then the UCS test was carried out on specimens under different curing periods (zero, 7, 14, and 28 days) to find the optimum percentage of CWM. The optimum and other two percentages (either side of the optimum content) were used for FWM to evaluate the effect of the fineness of the WM on UCS of the stabilised soil. Results indicated that both types of the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly. IP was decreased from 21 to 13.64 and 13.10 with 12% of CWM and 15% of FWM respectively. The results of the unconfined compressive strength test indicated that 12% of CWM was the optimum and this percentage developed the UCS value from 202kPa to 500kPa for 28 days cured samples, which is equal, approximately 2.5 times the UCS value for untreated soil. Moreover, this percentage provided 1.4 times the value of UCS for stabilized soil-CWA by using FWM which recorded just under 700kPa after 28 days curing.

Keywords: soft soil stabilisation, waste materials, fineness, unconfined compressive strength

Procedia PDF Downloads 260
611 Optimization of an Electro-Submersible Pump for Crude Oil Extraction Processes

Authors: Deisy Becerra, Nicolas Rios, Miguel Asuaje

Abstract:

The Electrical Submersible Pump (ESP) is one of the most artificial lifting methods used in the last years, which consists of a serial arrangement of centrifugal pumps. One of the main concerns when handling crude oil is the formation of O/W or W/O (oil/water or water/oil) emulsions inside the pump, due to the shear rate imparted and the presence of high molecular weight substances that act as natural surfactants. Therefore, it is important to perform an analysis of the flow patterns inside the pump to increase the percentage of oil recovered using the centrifugal force and the difference in density between the oil and the water to generate the separation of liquid phases. For this study, a Computational Fluid Dynamic (CFD) model was developed on STAR-CCM+ software based on 3D geometry of a Franklin Electric 4400 4' four-stage ESP. In this case, the modification of the last stage was carried out to improve the centrifugal effect inside the pump, and a perforated double tube was designed with three different holes configurations disposed at the outlet section, through which the cut water flows. The arrangement of holes used has different geometrical configurations such as circles, rectangles, and irregular shapes determined as grating around the tube. The two-phase flow was modeled using an Eulerian approach with the Volume of Fluid (VOF) method, which predicts the distribution and movement of larger interfaces in immiscible phases. Different water-oil compositions were evaluated, such as 70-30% v/v, 80-20% v/v and 90-10% v/v, respectively. Finally, greater recovery of oil was obtained. For the several compositions evaluated, the volumetric oil fraction was greater than 0.55 at the pump outlet. Similarly, it is possible to show an inversely proportional relationship between the Water/Oil rate (WOR) and the volumetric flow. The volumetric fractions evaluated, the oil flow increased approximately between 41%-10% for circular perforations and 49%-19% for rectangular shaped perforations, regarding the inlet flow. Besides, the elimination of the pump diffuser in the last stage of the pump reduced the head by approximately 20%.

Keywords: computational fluid dynamic, CFD, electrical submersible pump, ESP, two phase flow, volume of fluid, VOF, water/oil rate, WOR

Procedia PDF Downloads 144
610 Effect of Lithium Bromide Concentration on the Structure and Performance of Polyvinylidene Fluoride (PVDF) Membrane for Wastewater Treatment

Authors: Poojan Kothari, Yash Madhani, Chayan Jani, Bharti Saini

Abstract:

The requirements for quality drinking and industrial water are increasing and water resources are depleting. Moreover large amount of wastewater is being generated and dumped into water bodies without treatment. These have made improvement in water treatment efficiency and its reuse, an important agenda. Membrane technology for wastewater treatment is an advanced process and has become increasingly popular in past few decades. There are many traditional methods for tertiary treatment such as chemical coagulation, adsorption, etc. However recent developments in membrane technology field have led to manufacturing of better quality membranes at reduced costs. This along with the high costs of conventional treatment processes, high separation efficiency and relative simplicity of the membrane treatment process has made it an economically viable option for municipal and industrial purposes. Ultrafiltration polymeric membranes can be used for wastewater treatment and drinking water applications. The proposed work focuses on preparation of one such UF membrane - Polyvinylidene fluoride (PVDF) doped with LiBr for wastewater treatment. Majorly all polymeric membranes are hydrophobic in nature. This property leads to repulsion of water and hence solute particles occupy the pores, decreasing the lifetime of a membrane. Thus modification of membrane through addition of small amount of salt such as LiBr helped us attain certain characteristics of membrane, which can then be used for wastewater treatment. The membrane characteristics are investigated through measuring its various properties such as porosity, contact angle and wettability to find out the hydrophilic nature of the membrane and morphology (surface as well as structure). Pure water flux, solute rejection and permeability of membrane is determined by permeation experiments. A study of membrane characteristics with various concentration of LiBr helped us to compare its effectivity.

Keywords: Lithium bromide (LiBr), morphology, permeability, Polyvinylidene fluoride (PVDF), solute rejection, wastewater treatment

Procedia PDF Downloads 134
609 Combined Effect of Heat Stimulation and Delayed Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar

Authors: Faraidoon Rahmanzai, Mizuki Takigawa, Yu Bomura, Shigeyuki Date

Abstract:

To obtain the high quality and essential workability of mortar, different types of superplasticizers are used. The superplasticizers are the chemical admixture used in the mix to improve the fluidity of mortar. Many factors influenced the superplasticizer to disperse the cement particle in the mortar. Nature and amount of replaced cement by slag, mixing procedure, delayed addition time, and heat stimulation technique of superplasticizer cause the varied effect on the fluidity of the cementitious material. In this experiment, the superplasticizers were heated for 1 hour under 60 °C in a thermostatic chamber. Furthermore, the effect of delayed addition time of heat stimulated superplasticizers (SP) was also analyzed. This method was applied to two types of polycarboxylic acid based ether SP (precast type superplasticizer (SP2) and ready-mix type superplasticizer (SP1)) in combination with a partial replacement of normal Portland cement with blast furnace slag (BFS) with 30% w/c ratio. On the other hands, the fluidity, air content, fresh density, and compressive strength for 7 and 28 days were studied. The results indicate that the addition time and heat stimulation technique improved the flow and air content, decreased the density, and slightly decreased the compressive strength of mortar. Moreover, the slag improved the flow of mortar by increasing the amount of slag, and the effect of external temperature of SP on the flow of mortar was decreased. In comparison, the flow of mortar was improved on 5-minute delay for both kinds of SP, but SP1 has improved the flow in all conditions. Most importantly, the transition points in both types of SP appear to be the same, at about 5±1 min.  In addition, the optimum addition time of SP to mortar should be in this period.

Keywords: combined effect, delay addition, heat stimulation, flow of mortar

Procedia PDF Downloads 186
608 Investigation into the Effectiveness of Bacillus Mucilaginosus in Liberation of Platinum Group Metals Locked in Silicates

Authors: Nokubonga G. Zulu, Bongephiwe M. Thethwayo, Mapilane S. Madiba, Peter A. Olubambi

Abstract:

In South Africa, PGMs’ metallurgy industry is now leaned on the Upper Group 2 (UG2) reef for the beneficiation of 4PGEs (Platinum, Palladium, Rhodium, and Ruthenium). The current effective beneficiation method is direct froth flotation which uses the hydrophobicity of liberated valuables minerals to carefully float them while hydrophilic gangue minerals report to the residue. PGMs are known to be associated with base metal sulphides which are hydrophobic; however, approximately 25% of PGMs from UG2 are associated with hydrophilic silicates, which results in high PGMs grade in the flotation residue. Further, the smallest size in which UG2 PGMs occur is approximately 9 microns which demands high grinding for liberation, imposing energy and cost implications. The use of Bacillus mucilaginosus to liberate PGMs using Bio-leaching of PGMs bearing Silicates is a promising cost-effective, energy-saving, and green solution to liberate PGMs locked in silicates. This is due to the ability of Bacillus mucilaginosus to generate extracellular polysaccharides (EPS) that are responsible for the leaching of silicate minerals. The bioleaching is done at a laboratory beaker using a cultivated Bacillus mucilaginosus as a lixiviant. The bioleaching residue is expected to have a reduced particle size due to silicate consumption, which reduces the need and cost associated with a secondary milling circuit. Moreover, the grade of the bioleaching product is increased since the silicates (gangue minerals) are consumed by Bacillus mucilaginosus; this serves as a pre-concentration step. This paper discusses an alternative liberation and pre-concentrating technique of PGMs that are associated with silicates using Bacillus mucilaginosus leaching to dissolve silicates.

Keywords: Bacillus mucilaginosus, bio-leaching of PGMs bearing silicates, liberation of PGMs, pre-concentration of PGMs

Procedia PDF Downloads 112
607 Development of Nanoparticulate Based Chimeric Drug Delivery System Using Drug Bioconjugated Plant Virus Capsid on Biocompatible Nanoparticles

Authors: Indu Barwal, Shloka Thakur, Subhash C. Yadav

Abstract:

The plant virus capsid protein based nanoparticles are extensively studied for their application in biomedical research for development of nanomedicines and drug delivery systems. We have developed a chimeric drug delivery system by controlled in vitro assembly of separately bioconjugated fluorescent dye (as reporting molecule), folic acid (as receptor binding biomolecule for targeted delivery) and doxorubicin (as anticancer drug) using modified EDC NHS chemistry on heterologously overexpressed (E. coli) capsid proteins of cowpea chlorotic mottle virus (CCMV). This chimeric vehicle was further encapsidated on gold nanoparticles (20nm) coated with 5≠ thiolated DNA probe to neutralize the positive charge of capsid proteins. This facilitates the in vitro assembly of modified capsid subunits on the gold nanoparticles to develop chimeric GNPs encapsidated targeted drug delivery system. The bioconjugation of functionalities, number of functionality on capsid subunits as well as virus like nanoparticles, structural stability and in vitro assembly were confirmed by SDS PAGE, relative absorbance, MALDI TOF, ESI-MS, Circular dichroism, intrinsic tryptophan fluorescence, zeta particle size analyzer and TEM imaging. This vehicle was stable at pH 4.0 to 8.0 suitable for many organelles targeting. This in vitro assembled chimeric plant virus like particles could be suitable for ideal drug delivery vehicles for subcutaneous cancer treatment and could be further modified for other type of cancer treatment by conjugating other functionalities (targeting, drug) on capsids.

Keywords: chimeric drug delivery vehicles, bioconjugated plant, virus, capsid

Procedia PDF Downloads 478
606 Modified Silicates as Dissolved Oxygen Sensors in Water: Structural and Optical Properties

Authors: Andile Mkhohlakali, Tien-Chien Jen, James Tshilongo, Happy Mabowa

Abstract:

Among different parameters, oxygen is one of the most important analytes of interest, dissolved oxygen (DO) concentration is very crucial and significant for various areas of physical, chemical, and environmental monitoring. Herein we report oxygen-sensitive luminophores -based lanthanum(III) trifluoromethanesulfonate), [La]³⁺ was encapsulated into SiO₂-based xerogel matrix. The nanosensor is composed of organically modified silica nanoparticles, doped with the luminescent oxygen–sensitive lanthanum(III) trifluoromethanesulfonate complex. The precursor materials used for sensing film were triethyl ethoxy silane (TEOS) and (3-Mercaptopropyltriethoxysilane) (MPTMS- TEOS) used for SiO2-baed matrices. Brunauer–Emmett–Teller (BET), and BJH indicate that the SiO₂ transformed from microporous to mesoporous upon the addition of La³⁺ luminophore with increased surface area (SBET). The typical amorphous SiO₂ based xerogels were revealed with X-Ray diffraction (XRD) and Selected Area Electron Diffraction (SAED) analysis. Scanning electron microscope- (SEM) and transmission electron microscope (TEM) showed the porous morphology and reduced particle for SiO₂ and La-SiO₂ xerogels respectively. The existence of elements, siloxane networks, and thermal stability of xerogel was confirmed by energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and Thermographic analysis (TGA). UV-Vis spectroscopy and photoluminescence (PL) have been used to characterize the optical properties of xerogels. La-SiO₂ demonstrates promising characteristic features of an active sensing film for dissolved oxygen in the water. Keywords: Sol-gel, ORMOSILs, encapsulation, Luminophores quenching, O₂-sensing

Keywords: sol-gel, ORMOSILs, luminophores quenching, O₂-sensing

Procedia PDF Downloads 113
605 The Family, Tradition and Change in Africa: The Perspective of Postcolonial African Fiction

Authors: Ayobami Kehinde

Abstract:

The literary representations of the family, tradition and change in African literature offer an immense, and as yet little theorised area of literary scholarship. Therefore, this paper explores the nexus among the family, tradition and change in five purposively selected post-colonial African fiction: Chimamanda Adichie’s Purple Hibiscus, Wale Okediran’s Tenants of the House, J. M. Coetzee’s In the Heart of the Country, Tsitsi Dangrembga’s Nervous Condition and Meja Mwangi’s Striving for the Wind. The methodology centres on analysing, questioning, undermining and celebrating the family and its contemporary vicissitudes as depicted in the texts. This is with a view to exploring the postcolonial novel with references to concepts developed by major theorists in the field of postcolonial studies, including Frantz Fanon, Edward Said, Gayatri Spivak, Homi Bhabha, Kwame Appiah and Achille Mbembe. It is revealed that in spite of the fact that the family is a vital institution, the primary social unit in any community, an agent of acculturation and the first focus of development, independence and growth, the texts reflect a diversity of problems confronting the family unit in Africa. These include the multiple problems of disrupted family lives, enforced family separation, political and personal violence with the domestic environment. It is concluded that the post-colonial African novel is a quintessential weapon to analyse the continent, opening up to the reader the specific expressions and experiences of human lives and their wider contexts. Therefore, the post-colonial African novel is a primary socio-cultural indicator representing an immense variety of lived realities in the continent. The study, therefore, suggests a concerted concern with the preservation of traditional family structures and other related aspects, such as cultural values, spirituality, gender roles and mutual trust.

Keywords: family, African fiction, postcolonialism, African tradition, domestic dissonance

Procedia PDF Downloads 317
604 Application of Microparticulated Whey Proteins in Reduced-Fat Yogurt through Hot-Extrusion: Influence on Physicochemical and Sensory Properties

Authors: M. K. Hossain, J. Keidel, O. Hensel, M. Diakite

Abstract:

Fat reduced dairy products are holding a potential market due to health reason. Due to less creamy, and pleasantness, reduced and/or low-fat dairy products are getting less consumer acceptance whereas the fat molecule provides smooth, creamy and a pleasant mouthfeel in dairy products especially yogurt & ice cream. This study was aimed to investigate whether the application of microparticulated whey proteins (MWPs) processed by extrusion cooking, the reduced fat yogurt can achieve similar or higher creaminess compared to whole milk (3.8% fat) and skimmed milk (0.5% fat) yogurt. Full cream and skimmed milk were used to prepare natural stirred yogurt, as well as the dry matter content, also adjusted up to 16% with skimmed milk powder. Whey protein concentrates (WPC80) were used to produce MWPs in particle size of d50 > 5 µm, d50 3<5 µm and d50 < 3 µm through the hot-extrusion process with a screw speed of 400, 600 and 1000 rpm respectively. Furthermore, the commercially available microparticulated whey protein called Simplesse® was also applied in order to compare with extruded MWPs. The rheological and sensory properties of yogurt were assessed, and data were analyzed statistically. The applications of extruded MWPs with 600 and 1000 rpm were achieved significantly (p < 0.05) higher creaminess and preference compared to the whole and skimmed milk yogurt whereas, 400 rpm got lower preference. On the other hand, Simplesse® obtained the lowest creaminess and preference compared to other yogurts, although the contribution of dry matter in yogurt was same as extruded MWPs. The creaminess and viscosities were strongly (r = 0.62) correlated, furthermore, the viscosity from sensory evaluation and the dynamic viscosity of yogurt was also significantly (r = 0.72) correlated which clarifies that the performance of sensory panelists as well as the quality of the products.

Keywords: microparticulation, hot-extrusion, reduced-fat yogurt, whey protein concentrate

Procedia PDF Downloads 119
603 Alternative of Lead-Based Ionization Radiation Shielding Property: Epoxy-Based Composite Design

Authors: Md. Belal Uudin Rabbi, Sakib Al Montasir, Saifur Rahman, Niger Nahid, Esmail Hossain Emon

Abstract:

The practice of radiation shielding protects against the detrimental effects of ionizing radiation. Radiation shielding depletes radiation by inserting a shield of absorbing material between any radioactive source. It is a primary concern when building several industrial fields, so using potent (high activity) radioisotopes in food preservation, cancer treatment, and particle accelerator facilities is significant. Radiation shielding is essential for radiation-emitting equipment users to reduce or mitigate radiation damage. Polymer composites (especially epoxy based) with high atomic number fillers can replace toxic Lead in ionizing radiation shielding applications because of their excellent mechanical properties, superior solvent and chemical resistance, good dimensional stability, adhesive, and less toxic. Due to being lightweight, good neutron shielding ability in almost the same order as concrete, epoxy-based radiation shielding can be the next big thing. Micro and nano-particles for the epoxy resin increase the epoxy matrix's radiation shielding property. Shielding is required to protect users of such facilities from ionizing radiation as recently, and considerable attention has been paid to polymeric composites as a radiation shielding material. This research will examine the radiation shielding performance of epoxy-based nano-WO3 reinforced composites, exploring the performance of epoxy-based nano-WO3 reinforced composites. The samples will be prepared using the direct pouring method to block radiation. The practice of radiation shielding protects against the detrimental effects of ionizing radiation.

Keywords: radiation shielding materials, ionizing radiation, epoxy resin, Tungsten oxide, polymer composites

Procedia PDF Downloads 97
602 Research Study on the Concept of Unity of Ummah and Its Sources in the Light of Islamic Teachings

Authors: Ghazi Abdul Rehman Qasmi

Abstract:

Islam is the preacher and torch-bearer of unity and solidarity. All the followers of Islam are advised to be united. Islam strongly condemns those elements which disunite the unity of Muslim Ummah. Like pearls in a rosary, Islam has united the Muslims from all over the world in the wreath of unity and forbade the Muslims to avoid separation and to be disintegrated. The aspect of unity is prominent in all divine injunctions and about worship. By offering five times obligatory congregational prayers, passion of mutual love and affection is increased and on the auspicious days like Friday, Eid-ul-fiter and Eid-ul-azha, majority of the Muslims come together at central places to offer these congregational prayers. Thus unity and harmony among the Muslims can be seen. Similarly the Muslim pilgrims from all over the world eliminate all kind of worldly discrimination to perform many rituals of pilgrimage while wearing white color cloth as a dress. Pilgrimage is a demonstration of Islamic strength. When the Muslims from all over the world perform the same activities together and they offer their prayers under the leadership of one leader (IMAM). Muslims come together on the occasion of pilgrimage to perform Tawaf (seven circuits,first three circuits at a hurried pace(Rammal) and followed by four times, more closely, at a leisurely pace, round the Holy Kaabah to perform circumambulation known as Tawaf in religious terminology,Saee(running or walking briskly seven times between two small hills Safa&Marwa), Ramy-al-jamarat (throwing pebbles at the stone pillars, symbolizing the devil). In this way dignity and sublimity of Islam is increased and unity and integrity of Muslim Ummah is promoted also. By studying the life history of Hazrat Muhammad (P.B.U.H) we come to know that our Holy Prophet (P.B.U.H) has put emphasis on unity and integrity. We have to follow the Islamic teachings to create awareness among the members of Muslim Ummah. In the light of the Holy Quran and Sunnah, we have to utilize all the sources and potential for this noble cause.

Keywords: unity, Ummah, sources, Islamic teaching

Procedia PDF Downloads 277
601 Optimization, Characterization and Stability of Trachyspermum copticum Essential Oil Loaded in Niosome Nanocarriers

Authors: Mohadese Hashemi, Elham Akhoundi Kharanaghi, Fatemeh Haghiralsadat, Mojgan Yazdani, Omid Javani, Mahboobe Sharafodini, Davood Rajabi

Abstract:

Niosomes are non-ionic surfactant vesicles in aqueous media resulting in closed bilayer structures that can be used as carriers of hydrophilic and hydrophobic compounds. The use of niosomes for encapsulation of essential oils (EOs) is an attractive new approach to overcome their physicochemical stability concerns include sensibility to oxygen, light, temperature, and volatility, and their reduced bioavailability which is due to low solubility in water. EOs are unstable and fragile volatile compounds which have strong interest in pharmaceutical due to their medicinal properties such as antiviral, anti-inflammatory, antifungal, and antioxidant activities without side effects. Trachyspermum copticum (ajwain) is an annual aromatic plant with important medicinal properties that grows widely around Mediterranean region and south-west Asian countries. The major components of the ajwain oil were reported as thymol, γ-terpinene, p-cymene, and carvacrol which provide antimicrobial and antioxidant activity. The aim of this work was to formulate ajwain essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Ajwain oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.

Keywords: trachyspermum copticum, ajwain, niosome, essential oil, encapsulation

Procedia PDF Downloads 471
600 Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin

Authors: Muhammad Muzamil Khan, Asadullah Madni, Nina Filipczek, Jiayi Pan, Nayab Tahir, Hassan Shah, Vladimir Torchilin

Abstract:

Lipid-polymer hybrid nanoparticles (LPHNP) are delivery systems for controlled drug delivery at tumor sites. The superior biocompatible properties of lipid and structural advantages of polymer can be obtained via this system for controlled drug delivery. In the present study, cisplatin-loaded lipid-chitosan hybrid nanoparticles were formulated by the single step ionic gelation method based on ionic interaction of positively charged chitosan and negatively charged lipid. Formulations with various chitosan to lipid ratio were investigated to obtain the optimal particle size, encapsulation efficiency, and controlled release pattern. Transmission electron microscope and dynamic light scattering analysis demonstrated a size range of 181-245 nm and a zeta potential range of 20-30 mV. Compatibility among the components and the stability of formulation were demonstrated with FTIR analysis and thermal studies, respectively. The therapeutic efficacy and cellular interaction of cisplatin-loaded LPHNP were investigated using in vitro cell-based assays in A2780/ADR ovarian carcinoma cell line. Additionally, the cisplatin loaded LPHNP exhibited a low toxicity profile in rats. The in-vivo pharmacokinetics study also proved a controlled delivery of cisplatin with enhanced mean residual time and half-life. Our studies suggested that the cisplatin-loaded LPHNP being a promising platform for controlled delivery of cisplatin in cancer therapy.

Keywords: cisplatin, lipid-polymer hybrid nanoparticle, chitosan, in vitro cell line study

Procedia PDF Downloads 121
599 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant

Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov

Abstract:

Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.

Keywords: catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase

Procedia PDF Downloads 375