Search results for: validation studies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12539

Search results for: validation studies

10409 Contrast Media Effects and Radiation Dose Assessment in Contrast Enhanced Computed Tomography

Authors: Buhari Samaila, Sabiu Abdullahi, Buhari Maidamma

Abstract:

Background: Contrast-enhanced computed tomography (CE-CT) is a technique that uses contrast media to improve image quality and diagnostic accuracy. It is a widely used imaging modality in medical diagnostics, offering high-resolution images for accurate diagnosis. However, concerns regarding the potential adverse effects of contrast media and radiation dose exposure have prompted ongoing investigation and assessment. It is important to assess the effects of contrast media and radiation dose in CE-CT procedures. Objective: This study aims to assess the effects of contrast media and radiation dose in contrast-enhanced computed tomography (CECT) procedures. Methods: A comprehensive review of the literature was conducted to identify studies related to contrast media effects and radiation dose assessment in CECT. Relevant data, including location, type of research, objective, method, findings, conclusion, authors, and year of publications, were extracted, analyzed, and reported. Results: The findings revealed that several studies have investigated the impacts of contrast media and radiation doses in CECT procedures, with iodinated contrast agents being the most commonly employed. Adverse effects associated with contrast media administration were reported, including allergic reactions, nephrotoxicity, and thyroid dysfunction, albeit at relatively low incidence rates. Additionally, radiation dose levels varied depending on the imaging protocol and anatomical region scanned. Efforts to minimize radiation exposure through optimization techniques were evident across studies. Conclusion: Contrast-enhanced computed tomography (CECT) remains an invaluable tool in medical imaging; however, careful consideration of contrast media effects and radiation dose exposure is imperative. Healthcare practitioners should weigh the diagnostic benefits against potential risks, employing strategies to mitigate adverse effects and optimize radiation dose levels for patient safety and effective diagnosis. Further research is warranted to enhance the understanding and management of contrast media effects and radiation dose optimization in CECT procedures.

Keywords: CT, contrast media, radiation dose, effect of radiation

Procedia PDF Downloads 23
10408 Bilingual Education and Its Implication for Teaching English as a Second Language: A Comparative Study of Two Selected Secondary Schools in Bauchi State, Nigeria

Authors: Auwal Ibrahim Amba

Abstract:

Bilingualism is the use/existence of two languages in the repertoire of an individual or a community. This linguistic phenomenon may encourage the use of Bilingual Education/Instruction for the teaching of English as a Second Language. Bilingual Education is the teaching of academic content in two languages in most cases simultaneously in multilingual/bilingual communities. This study is an attempt at investigating the impact of Bilingual Education for the teaching of English as a Second Language. The study examines the performance of students in English language examinations in two selected secondary schools that employ Monolingual and Bilingual Education respectively. The schools: Demonstration Secondary School and Higher Islamic Studies Secondary School are public schools that exist side by side at A.D.Rufa’i College of Education, Legal and General Studies Misau, Bauchi State, Nigeria. The choice of the two schools is deliberate because of their existence in the same learning environment, the same public status and bein managed by the same administration. The only difference lies in the use of Bilingual Education for classroom instruction by the former and Monolingual Education by the latter. While Demonstration Secondary School uses English Language as the only Language of instruction, Higher Islamic Studies Secondary School employs English and Arabic for classroom instruction. The study employs qualitative research methods for the collection, presentation and analysis of data. Purposive sampling is employed in selecting students of Senior Secondary School 3 (SS3) from each school as the only participants in the research and a questionnaire was administered on fifty students each in addition to analyzing and comparing the students’ performance based on the Final Certificate Examinations Results. The findings of this study reveal that Bilingual Education slows the rate of learning English as a Second Language and affects learning proficiency. The study recommends the intensive use of the Target Language (English) for the teaching of English as a Second Language. It suggests the adequate use of Language Laboratory, constant listening of international English media organizations like British Broadcasting Corporation (BBC), practical communicative engagement of learners in the Target Language in classroom and outside among other strategies for effective learning.

Keywords: bilingualism, bilingual education, target language, second language

Procedia PDF Downloads 9
10407 Evaluating India's Smart Cities against the Sustainable Development Goals

Authors: Suneet Jagdev

Abstract:

17 Sustainable Development Goals were adopted by the world leaders in September 2015 at the United Nations Sustainable Development Summit. These goals were adopted by UN member states to promote prosperity, health and human rights while protecting the planet. Around the same time, the Government of India launched the Smart City Initiative to speed up development of state of the art infrastructure and services in 100 cities with a focus on sustainable and inclusive development. These cities are meant to become role models for other cities in India and promote sustainable regional development. This paper examines goals set under the Smart City Initiative and evaluates them in terms of the Sustainable Development Goals, using case studies of selected Smart Cities in India. The study concludes that most Smart City projects at present actually consist of individual solutions to individual problems identified in a community rather than comprehensive models for complex issues in cities across India. Systematic, logical and comparative analysis of important literature and data has been done, collected from government sources, government papers, research papers by various experts on the topic, and results from some online surveys. Case studies have been used for a graphical analysis highlighting the issues of migration, ecology, economy and social equity in these Smart Cities.

Keywords: housing, migration, smart cities, sustainable development goals, urban infrastructure

Procedia PDF Downloads 411
10406 Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns

Authors: M.Rüştü Karaman, İsmail İşeri, Kadir Saltalı, A.Reşit Brohi, Ayhan Horuz, Mümin Dizman

Abstract:

Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements.

Keywords: artificial intelligence, ANN, drainage water, nitrate pollution

Procedia PDF Downloads 312
10405 The Effectiveness of Prenatal Breastfeeding Education on Breastfeeding Uptake Postpartum: A Systematic Review.

Authors: Jennifer Kehinde, Claire O'donnell, Annmarie Grealish

Abstract:

Introduction: Breastfeeding has been shown to provide numerous health benefits for both infants and mothers. The decision to breastfeed is influenced by physiological, psychological, and emotional factors. However, the importance of equipping mothers with the necessary knowledge for successful breastfeeding practice cannot be ruled out. The decline in global breastfeeding rate can be linked to lack of adequate breastfeeding education during prenatal stage.This systematic review examined the effectiveness of prenatal breastfeeding education on breastfeeding uptake postpartum. Method: This review was undertaken and reported in conformity with the Preferred Reporting Items for Systemic Reviews and Meta-Analysis statement (PRISMA) and was registered on the international prospective register for systematic reviews (PROSPERO: CRD42020213853). A PICO analysis (population, intervention, comparison, outcome) was undertaken to inform the choice of keywords in the search strategy to formulate the review question which was aimed at determining the effectiveness of prenatal breastfeeding educational programs at improving breastfeeding uptake following birth. A systematic search of five databases (Cumulative Index to Nursing and Allied Health Literature, Medline, Psych INFO, and Applied Social Sciences Index and Abstracts) were searched between January 2014 until July 2021 to identify eligible studies. Quality assessment and narrative synthesis were subsequently undertaken. Results: Fourteen studies were included. All 14 studies used different types of breastfeeding programs; eight used a combination of curriculum based breastfeeding education program, group prenatal breastfeeding counselling and one-to-one breastfeeding educational programs which were all delivered in person; four studies used web-based learning platforms to deliver breastfeeding education prenatally which were both delivered online and face to face over a period of 3 weeks to 2 months with follow-up periods ranging from 3 weeks to 6 months; one study delivered breastfeeding educational intervention using mother-to-mother breastfeeding support groups in promoting exclusive breastfeeding and one study disseminated breastfeeding education to participants based on the theory of planned behaviour. The most effective interventions were those that included both theory and hands-on demonstrations. Results showed an increase in breastfeeding uptake, breastfeeding knowledge, increase in positive attitude to breastfeeding and an increase in maternal breastfeeding self-efficacy among mothers who participated in breastfeeding educational programs during prenatal care. Conclusion: Prenatal breastfeeding education increases women’s knowledge of breastfeeding. Mothers who are knowledgeable about breastfeeding and hold a positive approach towards breastfeeding have the tendency to initiate breastfeeding and continue for a lengthened period. Findings demonstrates a general correlation between prenatal breastfeeding education and increased breastfeeding uptake postpartum. The high level of positive breastfeeding outcome inherent in all the studies can be attributed to prenatal breastfeeding education. This review provides rigorous contemporary evidence that healthcare professionals and policymakers can apply when developing effective strategies to improve breastfeeding rates and ultimately improve the health outcomes of mothers and infants.

Keywords: breastfeeding, breastfeeding programs, breastfeeding self-efficacy, prenatal breastfeedng education

Procedia PDF Downloads 69
10404 Validation of the Recovery of House Dust Mites from Fabrics by Means of Vacuum Sampling

Authors: A. Aljohani, D. Burke, D. Clarke, M. Gormally, M. Byrne, G. Fleming

Abstract:

Introduction: House Dust Mites (HDMs) are a source of allergen particles embedded in textiles and furnishings. Vacuum sampling is commonly used to recover and determine the abundance of HDMs but the efficiency of this method is less than standardized. Here, the efficiency of recovery of HDMs was evaluated from home-associated textiles using vacuum sampling protocols.Methods/Approach: Living Mites (LMs) or dead Mites (DMs) House Dust Mites (Dermatophagoides pteronyssinus: FERA, UK) were separately seeded onto the surfaces of Smooth Cotton, Denim and Fleece (25 mites/10x10cm2 squares) and left for 10 minutes before vacuuming. Fabrics were vacuumed (SKC Flite 2 pump) at a flow rate of 14 L/min for 60, 90 or 120 seconds and the number of mites retained by the filter (0.4μm x 37mm) unit was determined. Vacuuming was carried out in a linear direction (Protocol 1) or in a multidirectional pattern (Protocol 2). Additional fabrics with LMs were also frozen and then thawed, thereby euthanizing live mites (now termed EMs). Results/Findings: While there was significantly greater (p=0.000) recovery of mites (76% greater) in fabrics seeded with DMs than LMs irrespective of vacuuming protocol or fabric type, the efficiency of recovery of DMs (72%-76%) did not vary significantly between fabrics. For fabrics containing EMs, recovery was greatest for Smooth Cotton and Denim (65-73% recovered) and least for Fleece (15% recovered). There was no significant difference (p=0.99) between the recovery of mites across all three mite categories from Smooth Cotton and Denim but significantly fewer (p=0.000) mites were recovered from Fleece. Scanning Electron Microscopy images of HMD-seeded fabrics showed that live mites burrowed deeply into the Fleece weave which reduced their efficiency of recovery by vacuuming. Research Implications: Results presented here have implications for the recovery of HDMs by vacuuming and the choice of fabric to ameliorate HDM-dust sensitization.

Keywords: allergy, asthma, dead, fabric, fleece, live mites, sampling

Procedia PDF Downloads 141
10403 Creating and Questioning Research-Oriented Digital Outputs to Manuscript Metadata: A Case-Based Methodological Investigation

Authors: Diandra Cristache

Abstract:

The transition of traditional manuscript studies into the digital framework closely affects the methodological premises upon which manuscript descriptions are modeled, created, and questioned for the purpose of research. This paper intends to explore the issue by presenting a methodological investigation into the process of modeling, creating, and questioning manuscript metadata. The investigation is founded on a close observation of the Polonsky Greek Manuscripts Project, a collaboration between the Universities of Cambridge and Heidelberg. More than just providing a realistic ground for methodological exploration, along with a complete metadata set for computational demonstration, the case study also contributes to a broader purpose: outlining general methodological principles for making the most out of manuscript metadata by means of research-oriented digital outputs. The analysis mainly focuses on the scholarly approach to manuscript descriptions, in the specific instance where the act of metadata recording does not have a programmatic research purpose. Close attention is paid to the encounter of 'traditional' practices in manuscript studies with the formal constraints of the digital framework: does the shift in practices (especially from the straight narrative of free writing towards the hierarchical constraints of the TEI encoding model) impact the structure of metadata and its capability to respond specific research questions? It is argued that flexible structure of TEI and traditional approaches to manuscript description lead to a proliferation of markup: does an 'encyclopedic' descriptive approach ensure the epistemological relevance of the digital outputs to metadata? To provide further insight on the computational approach to manuscript metadata, the metadata of the Polonsky project are processed with techniques of distant reading and data networking, thus resulting in a new group of digital outputs (relational graphs, geographic maps). The computational process and the digital outputs are thoroughly illustrated and discussed. Eventually, a retrospective analysis evaluates how the digital outputs respond to the scientific expectations of research, and the other way round, how the requirements of research questions feed back into the creation and enrichment of metadata in an iterative loop.

Keywords: digital manuscript studies, digital outputs to manuscripts metadata, metadata interoperability, methodological issues

Procedia PDF Downloads 143
10402 Ethical, Legal and Societal Aspects of Unmanned Aircraft in Defence

Authors: Henning Lahmann, Benjamyn I. Scott, Bart Custers

Abstract:

Suboptimal adoption of AI in defence organisations carries risks for the protection of the freedom, safety, and security of society. Despite the vast opportunities that defence AI-technology presents, there are also a variety of ethical, legal, and societal concerns. To ensure the successful use of AI technology by the military, ethical, legal, and societal aspects (ELSA) need to be considered, and their concerns continuously addressed at all levels. This includes ELSA considerations during the design, manufacturing and maintenance of AI-based systems, as well as its utilisation via appropriate military doctrine and training. This raises the question how defence organisations can remain strategically competitive and at the edge of military innovation, while respecting the values of its citizens. This paper will explain the set-up and share preliminary results of a 4-year research project commissioned by the National Research Council in the Netherlands on the ethical, legal, and societal aspects of AI in defence. The project plans to develop a future-proof, independent, and consultative ecosystem for the responsible use of AI in the defence domain. In order to achieve this, the lab shall devise a context-dependent methodology that focuses on the ‘analysis’, ‘design’ and ‘evaluation’ of ELSA of AI-based applications within the military context, which include inter alia unmanned aircraft. This is bolstered as the Lab also recognises and complements the existing methods in regards to human-machine teaming, explainable algorithms, and value-sensitive design. Such methods will be modified for the military context and applied to pertinent case-studies. These case-studies include, among others, the application of autonomous robots (incl. semi- autonomous) and AI-based methods against cognitive warfare. As the perception of the application of AI in the military context, by both society and defence personnel, is important, the Lab will study how these perceptions evolve and vary in different contexts. Furthermore, the Lab will monitor – as they may influence people’s perception – developments in the global technological, military and societal spheres. Although the emphasis of the research project is on different forms of AI in defence, it focuses on several case studies. One of these case studies is on unmanned aircraft, which will also be the focus of the paper. Hence, ethical, legal, and societal aspects of unmanned aircraft in the defence domain will be discussed in detail, including but not limited to privacy issues. Typical other issues concern security (for people, objects, data or other aircraft), privacy (sensitive data, hindrance, annoyance, data collection, function creep), chilling effects, PlayStation mentality, and PTSD.

Keywords: autonomous weapon systems, unmanned aircraft, human-machine teaming, meaningful human control, value-sensitive design

Procedia PDF Downloads 93
10401 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 89
10400 Effect of Phenytoin and Cyclosporine on Connective Tissue Enzymes in Gingival Fibroblasts of Adult and Children

Authors: V. Surena, B. Nazemisalman, F. Noghrehkar

Abstract:

Introduction: Gingival overgrowth (GO) is a common side effect involving users of antiepileptic, immunosuppressive and calcium channel blocker drugs. Cyclosporine and phenytoin are amongst the most widely used drugs associated with GO. Gingival fibroblasts seem to have a significant role in the production of certain enzymes after administration of the drugs contributing to GO. Previous studies have shown a higher prevalence of GO in children and adolescents. The aim of this study was to compare normal human gingival fibroblasts with those exposed to Cyclosporine or phenytoin in measuring the production levels of certain enzymes that could have a possible role in GO. Methods: samples were obtained from the gingival biopsies of seven adult and seven children and were cultured into plates. With the growth of fibroblast cells, they were treated with or without either Cyclosporine or phenytoin. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to determine the expressed levels of R-EGF, cathepsin B,L, Lysyl oxidase, COL1, TGF β1, MMP-1,2, and TIMP1. Results: according to RT-PCR analyses, the expressed levels of R-EGF, cathepsin B, L, Lysyl oxidase, COL1, TGF β1, MMP-1, 2 and TIMP1 were affected by Cyclosporine and phenytoin. TGF-β1, TIMP, Cathepsin B and EGF showed comparable values in the adult and pediatric groups. Conclusions: Different expressed levels of enzymes after treatment of the gingival fibroblasts of adults and pediatrics with phenytoin or Cyclosporine could be the reason for the higher severity of GO in children. More studies need to be performed on the pathogenesis of GO at different age groups.

Keywords: cyclosporine, fibroblasts, phenytoin, gingivae

Procedia PDF Downloads 271
10399 Classifying Affective States in Virtual Reality Environments Using Physiological Signals

Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley

Abstract:

Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28  4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.

Keywords: affective computing, biosignals, machine learning, stress database

Procedia PDF Downloads 145
10398 Endemic Medicinal Plants in Eritrea: Scientific Name, Botanical Description and Geographical Location

Authors: Liya Abraham

Abstract:

Medicinal plants are globally valuable sources of herbal products, either as lifesaving or life maintaining medicines. Studies reveal that more than 25% of modern drugs in the world are derived from plants. The Horn of Africa as a world hotspot; it has more than 1500 endemic plants. Eritrea, a country located in the Horn of Africa, is blessed with medicinal flora and fauna and marine and terrestrial biodiversity. Previous studies of flora of Ethiopia and Eritrea, incomplete species lists, indicate figures ranging between 6000 and 7000 species, with levels of endemism between 12–20%. In the past two decades, there has been growing interest in natural remedy herbal medicines owing to, but not limited to; resistance to antimicrobials, intolerance of side effects of modern drugs, and rise in chronic diseases like diabetes, hypertension, cancer, etc. Hence, owing to the rising demand for nature based health solutions, deforestation, construction purposes, grazing, and agricultural expansion; several medicinal plants in general and the endemic ones, in particular, are in the verge of extinction. Therefore, conservation strategies of endangered and endemic medicinal plants, especially those located in hot spot regions, must be promoted at global level. Thus, the author aims to share certain information regarding the endemic medicinal plants in Eritrea with the international scientific world.

Keywords: endemic, eritrea, horn of Africa, medicinal plants, species

Procedia PDF Downloads 175
10397 Strategic Shear Wall Arrangement in Buildings under Seismic Loads

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Reinforced concrete shear walls are pivotal in protecting buildings from seismic forces by providing strength and stiffness. This study highlights the importance of strategically placing shear walls and optimizing the shear wall-to-floor area ratio in building design. Nonlinear analyses were conducted on an eight-story building situated in a high seismic zone, exploring various scenarios of shear wall positioning and ratios to floor area. Employing the performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria such as inter-story drift ratio and damage levels. The results indicate that concentrating shear walls in the middle of the structure during the design phase yields superior performance compared to peripheral distributions. Utilizing shear walls that fully infill the frame and adopting compound shapes (e.g., Box, U, and L) enhances reliability in terms of inter-story drift. Conversely, the absence of complete shear walls within the frame leads to decreased stiffness and degradation of shorter beams. Increasing the shear wall-to-floor area ratio in building design enhances structural rigidity and reliability regarding inter-story drift, facilitating the attainment of desired performance levels. The study suggests that a shear wall ratio of 1.0% is necessary to meet validation criteria for inter-story drift and structural damage, as exceeding this percentage leads to excessive performance levels, proving uneconomical as structural elements operate near the elastic range.

Keywords: nonlinear analyses, pushover analysis, shear wall, plastic hinge, performance level

Procedia PDF Downloads 52
10396 Intraosseous Urography by Iodixanol in Persian Squirrels

Authors: Mehdi Tavana, Seyedeh Zeinab Peighambarzadeh

Abstract:

Excretory urography is used for morphologic and especially functional studies of the urinary tracts. There are many indications for excretory urography in humans and animals. Intravenous urography is the most practical method, other urography techniques were manipulated because of difficulties for finding veins in small size of the patients. At the best of times, the combination of small veins and abundant subcutaneous tissue make vascular access difficult or impossible, therefore, another methods of administration of contrast media is desired. This study was performed to evaluate the feasibility of intraosseous injection of iodixanol in providing a safe and diagnostic urogram in Persian squirrel. Fourteen hundreds mg iodine per kilogram body weight of iodixanol were injected subcutaneously over tibial tuberosity on ten clinically healthy adult Persian squirrels with no signs of urinary system disorder. Lateral and ventrodorsal radiographs were taken every 2 minutes until the pyelogram was finished. Intraosseous injection of iodixanol was successful to show nephrogram, pyelogram, uretrogram and cystogram clearly. There were no abnormal clinical signs after one week of experiments. Biochemical and hematological profiles were in normal ranges. It is concluded that intraosseous urography is an effective and reliable method for urography studies in squirrel. Microscopic examinations of the kidneys and the site of injection after one week were normal.

Keywords: intraosseous urography, iodixanol, Persian squirrel, morphologic

Procedia PDF Downloads 396
10395 Evaluation of a Method for the Virtual Design of a Software-based Approach for Electronic Fuse Protection in Automotive Applications

Authors: Dominic Huschke, Rudolf Keil

Abstract:

New driving functionalities like highly automated driving have a major impact on the electrics/electronics architecture of future vehicles and inevitably lead to higher safety requirements. Partly due to these increased requirements, the vehicle industry is increasingly looking at semiconductor switches as an alternative to conventional melting fuses. The protective functionality of semiconductor switches can be implemented in hardware as well as in software. A current approach discussed in science and industry is the implementation of a model of the protected low voltage power cable on a microcontroller to calculate its temperature. Here, the information regarding the current is provided by the continuous current measurement of the semiconductor switch. The signal to open the semiconductor switch is provided by the microcontroller when a previously defined limit for the temperature of the low voltage power cable is exceeded. A setup for the testing of the described principle for electronic fuse protection of a low voltage power cable is built and successfullyvalidated with experiments afterwards. Here, the evaluation criterion is the deviation of the measured temperature of the low voltage power cable from the specified limit temperature when the semiconductor switch is opened. The analysis is carried out with an assumed ambient temperature as well as with a measured ambient temperature. Subsequently, the experimentally performed investigations are simulated in a virtual environment. The explicit focus is on the simulation of the behavior of the microcontroller with an implemented model of a low voltage power cable in a real-time environment. Subsequently, the generated results are compared with those of the experiments. Based on this, the completely virtual design of the described approach is assumed to be valid.

Keywords: automotive wire harness, electronic fuse protection, low voltage power cable, semiconductor-based fuses, software-based validation

Procedia PDF Downloads 107
10394 Comparison of Risk Analysis Methodologies Through the Consequences Identification in Chemical Accidents Associated with Dangerous Flammable Goods Storage

Authors: Daniel Alfonso Reséndiz-García, Luis Antonio García-Villanueva

Abstract:

As a result of the high industrial activity, which arises from the search to satisfy the needs of products and services for society, several chemical accidents have occurred, causing serious damage to different sectors: human, economic, infrastructure and environmental losses. Historically, with the study of this chemical accidents, it has been determined that the causes are mainly due to human errors (inexperienced personnel, negligence, lack of maintenance and deficient risk analysis). The industries have the aim to increase production and reduce costs. However, it should be kept in mind that the costs involved in risk studies, implementation of barriers and safety systems is much cheaper than paying for the possible damages that could occur in the event of an accident, without forgetting that there are things that cannot be replaced, such as human lives.Therefore, it is of utmost importance to implement risk studies in all industries, which provide information for prevention and planning. The aim of this study is to compare risk methodologies by identifying the consequences of accidents related to the storage of flammable, dangerous goods for decision making and emergency response.The methodologies considered in this study are qualitative and quantitative risk analysis and consequence analysis. The latter, by means of modeling software, which provides radius of affectation and the possible scope and magnitude of damages.By using risk analysis, possible scenarios of occurrence of chemical accidents in the storage of flammable substances are identified. Once the possible risk scenarios have been identified, the characteristics of the substances, their storage and atmospheric conditions are entered into the software.The results provide information that allows the implementation of prevention, detection, control, and combat elements for emergency response, thus having the necessary tools to avoid the occurrence of accidents and, if they do occur, to significantly reduce the magnitude of the damage.This study highlights the importance of risk studies applying tools that best suited to each case study. It also proves the importance of knowing the risk exposure of industrial activities for a better prevention, planning and emergency response.

Keywords: chemical accidents, emergency response, flammable substances, risk analysis, modeling

Procedia PDF Downloads 95
10393 The Physiological Effects of Thyriod Disorders During the Gestatory Period on Fetal Neurological Development: A Descriptive Review

Authors: Vanessa Bennemann, Gabriela Laste, Márcia Inês Goettert

Abstract:

The gestational period is a phase in which the pregnant woman undergoes constant physiological and hormonal changes, which are part of the woman’s biological cycle, the development of the fetus, childbirth, and lactation. These are factors of response to the immunological adaptation of the human reproductive process that is directly related to the pregnancy’s well-being and development. Although most pregnancies occur without complications, about 15% of pregnant women will develop potentially fatal complications, implying maternal and fetal risk. Therefore, requiring specialized care for high-risk pregnant women (HRPW) with obstetric interventions for the survival of the mother and/or fetus. Among the risk factors that characterize HRPW are the women's age, gestational diabetes mellitus (GDM), autoimmune diseases, infectious diseases such as syphilis and HIV, hypertension (SAH), preeclampsia, eclampsia, HELLP syndrome, uterine contraction abnormalities, and premature placental detachment (PPD), thyroid disorders, among others. Thus, pregnancy has an impact on the thyroid gland causing changes in the functioning of the mother's thyroid gland, altering the thyroid hormone (TH) profiles and production as pregnancy progresses. Considering, throughout the gestational period, the interpretation of the results of the tests to evaluate the thyroid functioning depends on the stage in which the pregnancy is. Thyroid disorders are directly related to adverse obstetric outcomes and in child development. Therefore, the adequate release of TH is important for a pregnancy without complications and optimal fetal growth and development. Objective: Investigate the physiological effects caused by thyroid disorders in the gestational period. Methods: A search for articles indexed in PubMed, Scielo, and MDPI databases, was performed using the term “AND”, with the descriptors: Pregnancy, Thyroid. With several combinations that included: Melatonin, Thyroidopathy, Inflammatory processes, Cytokines, Anti-inflammatory, Antioxidant, High-risk pregnancy. Subsequently, the screening was performed through the analysis of titles and/or abstracts. The criteria were: including clinical studies in general, randomized or not, in the period of 10 years prior to the research, in the English literature; excluded: experimental studies, case reports, research in the development phase. Results: In the preliminary results, a total of studies (n=183) were found, (n=57) excluded, such as studies of cancer, diabetes, obesity, and skin diseases. Conclusion: To date, it has been identified that thyroid diseases can impair the fetus’s brain development. Further research is suggested on this matter to identify new substances that may have a potential therapeutic effect to aid the gestational period with thyroid diseases.

Keywords: pregnancy, thyroid, melatonin, high-risk pregnancy

Procedia PDF Downloads 146
10392 An Innovative Non-Invasive Method To Improve The Stability Of Orthodontic Implants: A Pilot Study

Authors: Dr., Suchita Daokar

Abstract:

Background: Successful orthodontic treatment has always relied on anchorage. The stability of the implants depends on bone quantity, mini-implant design, and placement conditions. Out of the various methods of gaining stability, Platelet concentrations are gaining popularity for various reasons. PRF is a minimally invasive method, and there are various studies that has shown its role in enhancing the stability of general implants. However, there is no literature found regarding the effect of PRF in enhancing the stability of the orthodontic implant. Therefore, this study aimed to evaluate and assess the efficacy of PRF on the stability of the orthodontic implant. Methods: The study comprised of 9 subjects aged above 18 years of age. The split mouth technique was used; Group A (where implants were coated before insertion) and group B (implant were normally inserted). The stability of the implant was measured using resonance frequency analysis at insertion (T0), 24 hours (T1), 2 weeks (T2), at 4 weeks (T3), at 6 weeks (T4), and 8 weeks (T5) after insertion. Result: Statistically significant findings were found when group A was compared to group B using ANOVA test (p<0.05). The stability of the implant of group A at each time interval was greater than group B. The implant stability was high at T0 and reduces at T2, and increasing through T3 to T5. The stability was highest at T5. Conclusion: A chairside, minimally invasive procedure ofPRF coating on implants have shown promising results in improving the stability of orthodontic implants and providing scope for future studies.

Keywords: Orthodontic implants, stablity, resonance Frequency Analysis, pre

Procedia PDF Downloads 203
10391 A Segmentation Method for Grayscale Images Based on the Firefly Algorithm and the Gaussian Mixture Model

Authors: Donatella Giuliani

Abstract:

In this research, we propose an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster means. The Firefly Algorithm is a stochastic global optimization technique, centered on the flashing characteristics of fireflies. In this context it has been performed to determine the number of clusters and the related cluster means in a histogram-based segmentation approach. Successively these means are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian component densities, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray-level values. The proposed approach appears fairly solid and reliable when applied even to complex grayscale images. The validation has been performed by using different standard measures, more precisely: the Root Mean Square Error (RMSE), the Structural Content (SC), the Normalized Correlation Coefficient (NK) and the Davies-Bouldin (DB) index. The achieved results have strongly confirmed the robustness of this gray scale segmentation method based on a metaheuristic algorithm. Another noteworthy advantage of this methodology is due to the use of maxima of responsibilities for the pixel assignment that implies a consistent reduction of the computational costs.

Keywords: clustering images, firefly algorithm, Gaussian mixture model, meta heuristic algorithm, image segmentation

Procedia PDF Downloads 217
10390 Understanding the Gap Between Heritage Conservation and Local Development in the Global South: Success and Failure of Strategies Applied

Authors: Mohamed Aniss El-Gamal

Abstract:

For decades, the Global South has been facing many challenges in the fields of heritage conservation and local development. These challenges continue to increase due to rapid urbanization in historical cities, thus resulting in complicated juxtaposed contexts of heritage resources and deteriorated dwellings, where slum areas are dotted with heritage structures. While the majority of cases show the incapacity of national and local governments to deal with such contexts, few others managed to demonstrate how different levels of government can play complementary roles in the cooperation with local and international institutions as well as involving local community to achieve an integrated strategy and overcome the challenge. This paper discusses heritage conservation and local development strategies in reference to a number of case studies in cities of the Global south, i.e. Porto Alegre, Agra, Cairo and Mumbai. It further investigates main key aspects of success and failure through cross case studies analysis (Matrix). This study could help create a delineation of an integrated strategy for undertaking future interventions in similar contexts. Integrated strategies are needed to overcome the gap between heritage conservation and local development, maintaining the value of heritage structures and ensuring the quality of life for communities residing in its surroundings.

Keywords: heritage conservation, local development, the global south, regional development

Procedia PDF Downloads 328
10389 Establishment and Validation of Correlation Equations to Estimate Volumetric Oxygen Mass Transfer Coefficient (KLa) from Process Parameters in Stirred-Tank Bioreactors Using Response Surface Methodology

Authors: Jantakan Jullawateelert, Korakod Haonoo, Sutipong Sananseang, Sarun Torpaiboon, Thanunthon Bowornsakulwong, Lalintip Hocharoen

Abstract:

Process scale-up is essential for the biological process to increase production capacity from bench-scale bioreactors to either pilot or commercial production. Scale-up based on constant volumetric oxygen mass transfer coefficient (KLa) is mostly used as a scale-up factor since oxygen supply is one of the key limiting factors for cell growth. However, to estimate KLa of culture vessels operated with different conditions are time-consuming since it is considerably influenced by a lot of factors. To overcome the issue, this study aimed to establish correlation equations of KLa and operating parameters in 0.5 L and 5 L bioreactor employed with pitched-blade impeller and gas sparger. Temperature, gas flow rate, agitation speed, and impeller position were selected as process parameters and equations were created using response surface methodology (RSM) based on central composite design (CCD). In addition, the effects of these parameters on KLa were also investigated. Based on RSM, second-order polynomial models for 0.5 L and 5 L bioreactor were obtained with an acceptable determination coefficient (R²) as 0.9736 and 0.9190, respectively. These models were validated, and experimental values showed differences less than 10% from the predicted values. Moreover, RSM revealed that gas flow rate is the most significant parameter while temperature and agitation speed were also found to greatly affect the KLa in both bioreactors. Nevertheless, impeller position was shown to influence KLa in only 5L system. To sum up, these modeled correlations can be used to accurately predict KLa within the specified range of process parameters of two different sizes of bioreactors for further scale-up application.

Keywords: response surface methodology, scale-up, stirred-tank bioreactor, volumetric oxygen mass transfer coefficient

Procedia PDF Downloads 209
10388 Potential Effects of Climate Change on Streamflow, Based on the Occurrence of Severe Floods in Kelantan, East Coasts of Peninsular Malaysia River Basin

Authors: Muhd. Barzani Gasim, Mohd. Ekhwan Toriman, Mohd. Khairul Amri Kamarudin, Azman Azid, Siti Humaira Haron, Muhammad Hafiz Md. Saad

Abstract:

Malaysia is a country in Southeast Asia that constantly exposed to flooding and landslide. The disaster has caused some troubles such loss of property, loss of life and discomfort of people involved. This problem occurs as a result of climate change leading to increased stream flow rate as a result of disruption to regional hydrological cycles. The aim of the study is to determine hydrologic processes in the east coasts of Peninsular Malaysia, especially in Kelantan Basin. Parameterized to account for the spatial and temporal variability of basin characteristics and their responses to climate variability. For hydrological modeling of the basin, the Soil and Water Assessment Tool (SWAT) model such as relief, soil type, and its use, and historical daily time series of climate and river flow rates are studied. The interpretation of Landsat map/land uses will be applied in this study. The combined of SWAT and climate models, the system will be predicted an increase in future scenario climate precipitation, increase in surface runoff, increase in recharge and increase in the total water yield. As a result, this model has successfully developed the basin analysis by demonstrating analyzing hydrographs visually, good estimates of minimum and maximum flows and severe floods observed during calibration and validation periods.

Keywords: east coasts of Peninsular Malaysia, Kelantan river basin, minimum and maximum flows, severe floods, SWAT model

Procedia PDF Downloads 263
10387 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data

Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos

Abstract:

Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.

Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia

Procedia PDF Downloads 31
10386 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation

Authors: Pengfei Meng, Shuangcheng Jia, Qian Li

Abstract:

We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.

Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling

Procedia PDF Downloads 154
10385 Assessing Denitrification-Disintegration Model’s Efficacy in Simulating Greenhouse Gas Emissions, Crop Growth, Yield, and Soil Biochemical Processes in Moroccan Context

Authors: Mohamed Boullouz, Mohamed Louay Metougui

Abstract:

Accurate modeling of greenhouse gas (GHG) emissions, crop growth, soil productivity, and biochemical processes is crucial considering escalating global concerns about climate change and the urgent need to improve agricultural sustainability. The application of the denitrification-disintegration (DNDC) model in the context of Morocco's unique agro-climate is thoroughly investigated in this study. Our main research hypothesis is that the DNDC model offers an effective and powerful tool for precisely simulating a wide range of significant parameters, including greenhouse gas emissions, crop growth, yield potential, and complex soil biogeochemical processes, all consistent with the intricate features of environmental Moroccan agriculture. In order to verify these hypotheses, a vast amount of field data covering Morocco's various agricultural regions and encompassing a range of soil types, climatic factors, and crop varieties had to be gathered. These experimental data sets will serve as the foundation for careful model calibration and subsequent validation, ensuring the accuracy of simulation results. In conclusion, the prospective research findings add to the global conversation on climate-resilient agricultural practices while encouraging the promotion of sustainable agricultural models in Morocco. A policy architect's and an agricultural actor's ability to make informed decisions that not only advance food security but also environmental stability may be strengthened by the impending recognition of the DNDC model as a potent simulation tool tailored to Moroccan conditions.

Keywords: greenhouse gas emissions, DNDC model, sustainable agriculture, Moroccan cropping systems

Procedia PDF Downloads 67
10384 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture

Authors: Venkat S. Somayajula

Abstract:

Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical features

Keywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle

Procedia PDF Downloads 130
10383 Estimating Knowledge Flow Patterns of Business Method Patents with a Hidden Markov Model

Authors: Yoonjung An, Yongtae Park

Abstract:

Knowledge flows are a critical source of faster technological progress and stouter economic growth. Knowledge flows have been accelerated dramatically with the establishment of a patent system in which each patent is required by law to disclose sufficient technical information for the invention to be recreated. Patent analysis, thus, has been widely used to help investigate technological knowledge flows. However, the existing research is limited in terms of both subject and approach. Particularly, in most of the previous studies, business method (BM) patents were not covered although they are important drivers of knowledge flows as other patents. In addition, these studies usually focus on the static analysis of knowledge flows. Some use approaches that incorporate the time dimension, yet they still fail to trace a true dynamic process of knowledge flows. Therefore, we investigate dynamic patterns of knowledge flows driven by BM patents using a Hidden Markov Model (HMM). An HMM is a popular statistical tool for modeling a wide range of time series data, with no general theoretical limit in regard to statistical pattern classification. Accordingly, it enables characterizing knowledge patterns that may differ by patent, sector, country and so on. We run the model in sets of backward citations and forward citations to compare the patterns of knowledge utilization and knowledge dissemination.

Keywords: business method patents, dynamic pattern, Hidden-Markov Model, knowledge flow

Procedia PDF Downloads 331
10382 On-Line Super Critical Fluid Extraction, Supercritical Fluid Chromatography, Mass Spectrometry, a Technique in Pharmaceutical Analysis

Authors: Narayana Murthy Akurathi, Vijaya Lakshmi Marella

Abstract:

The literature is reviewed with regard to online Super critical fluid extraction (SFE) coupled directly with supercritical fluid chromatography (SFC) -mass spectrometry that have typically more sensitive than conventional LC-MS/MS and GC-MS/MS. It is becoming increasingly interesting to use on-line techniques that combine sample preparation, separation and detection in one analytical set up. This provides less human intervention, uses small amount of sample and organic solvent and yields enhanced analyte enrichment in a shorter time. The sample extraction is performed under light shielding and anaerobic conditions, preventing the degradation of thermo labile analytes. It may be able to analyze compounds over a wide polarity range as SFC generally uses carbon dioxide which was collected as a by-product of other chemical reactions or is collected from the atmosphere as it contributes no new chemicals to the environment. The diffusion of solutes in supercritical fluids is about ten times greater than that in liquids and about three times less than in gases which results in a decrease in resistance to mass transfer in the column and allows for fast high resolution separations. The drawback of SFC when using carbon dioxide as mobile phase is that the direct introduction of water samples poses a series of problems, water must therefore be eliminated before it reaches the analytical column. Hundreds of compounds analysed simultaneously by simple enclosing in an extraction vessel. This is mainly applicable for pharmaceutical industry where it can analyse fatty acids and phospholipids that have many analogues as their UV spectrum is very similar, trace additives in polymers, cleaning validation can be conducted by putting swab sample in an extraction vessel, analysing hundreds of pesticides with good resolution.

Keywords: super critical fluid extraction (SFE), super critical fluid chromatography (SFC), LCMS/MS, GCMS/MS

Procedia PDF Downloads 391
10381 The Effects of Consistently Reading Whole Novels on the Reading Comprehension of Adolescents with Developmental Disabilities

Authors: Pierre Brocas, Konstantinos Rizos

Abstract:

This study was conducted to test the effects of introducing a consistent pace and volume of reading whole narratives on adolescents' reading comprehension with a diagnosis of autism spectrum disorder (ASD). The study was inspired by previous studies conducted on poorer adolescent readers in English schools. The setting was a Free Special Education Needs school in England. Nine male and one female student, between 11-13 years old, across two classrooms participated in the study. All students had a diagnosis of ASD, and all were classified as advanced learners. The classroom teachers introduced reading a whole challenging novel in 12 weeks with consistency as the independent variable. The study used a before-and-after design of testing the participants’ reading comprehension using standardised tests. The participants made a remarkable 1.8 years’ mean progress on the standardised tests of reading comprehension, with three participants making 4+ years progress. The researchers hypothesise that reading novels aloud and at a fast pace in each lesson, that are challenging but appropriate to the participants’ learning level, may have a beneficial effect on the reading comprehension of adolescents with learning difficulties, giving them a more engaged uninterrupted reading experience over a sustained period. However, more studies need to be conducted to test the independent variable across a bigger and more diverse population with a stronger design.

Keywords: autism, reading comprehension, developmental disabilities, narratives

Procedia PDF Downloads 202
10380 The Analysis of the Role of Handicrafts in Consolidating Iran National Identity

Authors: Nadia Pourabbas Tahvildari

Abstract:

National identity is formed in the process of time and in the community while influenced by the historical events. The country which has a more coherent national and historical identity would be successful as well as strengthening solidarity and social cohesion. Among the international community where the various likes challenge the subject of identity, taking into consideration the components which using identity seems to be very critical. Handicrafts as reflecting the historical and cultural characteristics of the product location can be used as an important component in order to introduce the culture and identity to be evaluated. As one of the most durable crafts for man, handicrafts have played a continuous role in sustaining human culture. Today without the presence of handicrafts, restoration of culture and national identity and religious beliefs of the past clans and people, is not only difficult but is even impossible also. Due to its brilliant historical experience and having rich culture and civilization, Iran has accomplished to the high competence in the field of traditional arts and handicrafts. This article is a scientific approach which by using descriptive – analytic method based on library studies tried to address the issue of handicrafts looking to examine the position of the industry to consolidate the national identity. Studies indicate that Iran as one of the original human habitats in the field of handicrafts has adequate enrichment and in case there will be an appropriate planning and investment away from oil-based industry, it would be beneficent. Furthermore, the quality and variety of handicrafts can be used as an essential yardstick for the consolidation of Iran national identity in the age of globalization.

Keywords: handicrafts, Iran national identity, globalization, cultural heritage

Procedia PDF Downloads 731