Search results for: space vector modulation (SVM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5168

Search results for: space vector modulation (SVM)

3038 Using Urban Conversion to Green Public Space as a Tool to Generate Urban Change: Case of Seoul

Authors: Rachida Benabbou, Sang Hun Park, Hee Chung Lee

Abstract:

The world’s population is increasing with unprecedented speed, leading to fast growing urbanization pace. Cities since the Industrial revolution had evolved to fit the growing demand on infrastructure, roads, transportation, and housing. Through this evolution, cities had grown into grey, polluted, and vehicle-oriented urban areas with a significant lack of green spaces. Consequently, we ended up with low quality of life for citizens. Therefore, many cities, nowadays, are revising the way we think urbanism and try to grow into more livable and citizen-friendly, by creating change from the inside out. Thus, cities are trying to bring back nature in its crowded grey centers and regenerate many urban areas as green public spaces not only as a way to give new breath to the city, but also as a way to create change either in the environmental, social and economic levels. The city of Seoul is one of the fast growing global cities. Its population is over 12 million and it is expected to continue to grow to a point where the quality of life may seriously deteriorate. As most green areas in Seoul are located in the suburbs in form of mountains, the city’s urban areas suffer from lack of accessible green spaces in a walking distance. Understanding the gravity and consequences of this issue, Seoul city is undergoing major changes. Many of its projects are oriented to be green public spaces where citizens can enjoy the public life in healthy outdoors. The aim of this paper is to explore the results of urban conversions into green public spaces. Starting with different locations, nature, size, and scale, these conversions can lead to significant change in the surrounding areas, thus can be used as an efficient tool of regeneration for urban areas. Through a comparative analysis of three different types of urban conversions projects in the city of Seoul, we try to show the positive urban influence of the outcomes, in order to encourage cities to use green spaces as a strategic tool for urban regeneration and redevelopment.

Keywords: urban conversion, green public space, change, urban regeneration

Procedia PDF Downloads 311
3037 Enhancing Archaeological Sites: Interconnecting Physically and Digitally

Authors: Eleni Maistrou, D. Kosmopoulos, Carolina Moretti, Amalia Konidi, Katerina Boulougoura

Abstract:

InterArch is an ongoing research project that has been running since September 2020. It aims to propose the design of a site-based digital application for archaeological sites and outdoor guided tours, supporting virtual and augmented reality technology. The research project is co‐financed by the European Union and Greek national funds, through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH - CREATE – INNOVATE (project code: Τ2ΕΔΚ-01659). It involves mutual collaboration between academic and cultural institutions and the contribution of an IT applications development company. The research will be completed by July 2023 and will run as a pilot project for the city of Ancient Messene, a place of outstanding natural beauty in the west of Peloponnese, which is considered one of the most important archaeological sites in Greece. The applied research project integrates an interactive approach to the natural environment, aiming at a manifold sensory experience. It combines the physical space of the archaeological site with the digital space of archaeological and cultural data while at the same time, it embraces storytelling processes by engaging an interdisciplinary approach that familiarizes the user with multiple semantic interpretations. The mingling of the real-world environment with its digital and cultural components by using augmented reality techniques could potentially transform the visit on-site into an immersive multimodal sensory experience. To this purpose, an extensive spatial analysis along with a detailed evaluation of the existing digital and non-digital archives is proposed in our project, intending to correlate natural landscape morphology (including archaeological material remains and environmental characteristics) with the extensive historical records and cultural digital data. On-site research was carried out, during which visitors’ itineraries were monitored and tracked throughout the archaeological visit using GPS locators. The results provide our project with useful insight concerning the way visitors engage and interact with their surroundings, depending on the sequence of their itineraries and the duration of stay at each location. InterArch aims to propose the design of a site-based digital application for archaeological sites and outdoor guided tours, supporting virtual and augmented reality technology. Extensive spatial analysis, along with a detailed evaluation of the existing digital and non-digital archives, is used in our project, intending to correlate natural landscape morphology with the extensive historical records and cultural digital data. The results of the on-site research provide our project with useful insight concerning the way visitors engage and interact with their surroundings, depending on the sequence of their itineraries and the duration of stay at each location.

Keywords: archaeological site, digital space, semantic interpretations, cultural heritage

Procedia PDF Downloads 74
3036 Electro-Optic Parameters of Ferroelectric Particles- Liquid Crystal Composites

Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov

Abstract:

Influence of barium titanate particles on electro-optic properties of liquid crystal 4-cyano-4′-pentylbiphenyl (5CB) with positive dielectric anisotropy and the liquid crystalline (LC) mixture Н-37 consisting of 4-methoxybezylidene-4'–butylaniline and 4-ethoxybezylidene-4'–butylaniline with negative dielectric anisotropy was investigated. It was shown that a presence of particles inside 5СВ and H-37 decreased the clearing temperature from 35.2 °С to 32.5°С and from 61.2 oC to 60.1oC, correspondingly. The threshold voltage of the Fredericksz effect became 0.3 V for the BaTiO3-5CB colloid while the beginning of this effect of the pure 5СВ was observed at 2.1 V. Threshold voltage of the Fredericksz effect increased from 2.8 V to up 3.1 V at additive of particles into H-37. A rise time of the BaTiO3-5CB colloid improved while a decay time worsened in comparison with the pure 5CB at all applied voltages. The inverse trends were observed for the H-37 matrix, namely, a rise time worsened and a decay time improved. Among other things, the effect of fast light modulation was studied at application of the rectangular impulse with direct bias to an electro-optical cell with the BaTiO3 particles+5CB and the pure 5CB. At this case, a rise time of the composite worsened, a decay time improved in comparison with the pure 5CB. The pecularities of electrohydrodynamic instability (EHDI) formation was also investigated into the composite with the H-37 matrix. It was found that the voltage of the EHDI formation decreased, a rise time increased and a decay time decreased in comparison with the pure H-37. First of all, experimental results are explained by appearance of local electric fields near the polarized ferroelectric particles at application of external electric field and an existence of the additional obstacles (particles) for movement of ions.

Keywords: liquid crystal, ferroelectric particles, composite, electro-optics

Procedia PDF Downloads 706
3035 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 63
3034 Investigating the Role and Position of Tuka Sabz Manufacturing Service Company in Supplying Human Resources to Mobarakeh Steel Company

Authors: Mohammad Abbas Nejad

Abstract:

Tuka Sabz service production company (private shares), with more than 30 years of history, is considered as one of the first holding companies of Tuka Foulad, which takes steps in the direction of increasing service quality and customer satisfaction. Manpower supply is one of the most important activities of Tuka Sabz company, in addition to car supply services; light and heavy transportation services; management of entertainment, sports, tourism and accommodation centers; design, creation and maintenance services of land space; preparing, cooking, distributing and serving all kinds of personal and ceremonial foods; design, construction, repair and reconstruction of non-industrial buildings; industrial laundry services; public and industrial cleaning services are also among other activities of Tuka Sabz. This company has a high capacity of specialized and committed human resources as the main pillar of its success and spent most of its years of activity in Mobarakeh steel company as one of the reliable contractors in the field of automotive service contracts, green space, industrial cleaning, management cultural, recreational and tourism places, consulting, maintenance and repair of buildings and facilities, industrial laundry, management of cooking centers and personnel transportation. The final result of this article states that Tuka Sabz company is trying to get the satisfaction of three main groups of stakeholders, i.e., employees, customers, and shareholders, for this purpose, by improving the competence and competence of employees, trying to establish a system of meritocracy and respecting the human status of employees. On the one hand, the implementation of quality management and assurance to employers with the timely and favorable implementation of contracts takes a step in this direction.

Keywords: Mubarakeh steel company, Tuka Sabz company, human resources, industrial laundry services

Procedia PDF Downloads 65
3033 Sectoral Energy Consumption in South Africa and Its Implication for Economic Growth

Authors: Kehinde Damilola Ilesanmi, Dev Datt Tewari

Abstract:

South Africa is in its post-industrial era moving from the primary and secondary sector to the tertiary sector. The study investigated the impact of the disaggregated energy consumption (coal, oil, and electricity) on the primary, secondary and tertiary sectors of the economy between 1980 and 2012 in South Africa. Using vector error correction model, it was established that South Africa is an energy dependent economy, and that energy (especially electricity and oil) is a limiting factor of growth. This implies that implementation of energy conservation policies may hamper economic growth. Output growth is significantly outpacing energy supply, which has necessitated load shedding. To meet up the excess energy demand, there is a need to increase the generating capacity which will necessitate increased investment in the electricity sector as well as strategic steps to increase oil production. There is also need to explore more renewable energy sources, in order to meet the growing energy demand without compromising growth and environmental sustainability. Policy makers should also pursue energy efficiency policies especially at sectoral level of the economy.

Keywords: causality, economic growth, energy consumption, hypothesis, sectoral output

Procedia PDF Downloads 474
3032 Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves

Authors: Angel Pérez Sánchez

Abstract:

Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work.

Keywords: magnetic lines of force, magnetic field, magnetic attraction and repulsion, magnet split, magnetic monopole, magnetic lines of force as magnets, magnetic lines of force as waves

Procedia PDF Downloads 96
3031 Ant System with Acoustic Communication

Authors: Saad Bougrine, Salma Ouchraa, Belaid Ahiod, Abdelhakim Ameur El Imrani

Abstract:

Ant colony optimization is an ant algorithm framework that took inspiration from foraging behaviour of ant colonies. Indeed, ACO algorithms use a chemical communication, represented by pheromone trails, to build good solutions. However, ants involve different communication channels to interact. Thus, this paper introduces the acoustic communication between ants while they are foraging. This process allows fine and local exploration of search space and permits optimal solution to be improved.

Keywords: acoustic communication, ant colony optimization, local search, traveling salesman problem

Procedia PDF Downloads 590
3030 A New Realization of Multidimensional System for Grid Sensor Network

Authors: Yang Xiong, Hua Cheng

Abstract:

In this paper, for the basic problem of wireless sensor network topology control and deployment, the Roesser model in rectangular grid sensor networks is presented. In addition, a general constructive realization procedure will be proposed. The procedure enables a distributed implementation of linear systems on a sensor network. A non-trivial example is illustrated.

Keywords: grid sensor networks, Roesser model, state-space realization, multidimensional systems

Procedia PDF Downloads 660
3029 Intellectual Property Rights and Health Rights: A Feasible Reform Proposal to Facilitate Access to Drugs in Developing Countries

Authors: M. G. Cattaneo

Abstract:

The non-effectiveness of certain codified human rights is particularly apparent with reference to the lack of access to essential drugs in developing countries, which represents a breach of the human right to receive adequate health assistance. This paper underlines the conflict and the legal contradictions between human rights, namely health rights, international Intellectual Property Rights, in particular patent law, as well as international trade law. The paper discusses the crucial links between R&D costs for innovation, patents and new medical drugs, with the goal of reformulating the hierarchies of priorities and of interests at stake in the international intellectual property (IP) law system. Different from what happens today, International patent law should be a legal instrument apt at rebalancing an axiological asymmetry between the (conflicting) needs at stake The core argument in the paper is the proposal of an alternative pathway, namely a feasible proposal for a patent law reform. IP laws tend to balance the benefits deriving from innovation with the costs of the provided monopoly, but since developing countries and industrialized countries are in completely different political and economic situations, it is necessary to (re)modulate such exchange according to the different needs. Based on this critical analysis, the paper puts forward a proposal, called Trading Time for Space (TTS), whereby a longer time for patent exclusive life in western countries (Time) is offered to the patent holder company, in exchange for the latter selling the medical drug at cost price in developing countries (Space). Accordingly, pharmaceutical companies should sell drugs in developing countries at the cost price, or alternatively grant a free license for the sale in such countries, without any royalties or fees. However, such social service shall be duly compensated. Therefore, the consideration for such a service shall be an extension of the temporal duration of the patent’s exclusive in the country of origin that will compensate the reduced profits caused by the supply at the price cost in developing countries.

Keywords: global health, global justice, patent law reform, access to drugs

Procedia PDF Downloads 247
3028 Remodeling of Gut Microbiome of Pakistani Expats in China After Intermittent Fasting/Ramadan Fasting

Authors: Hafiz Arbab Sakandar

Abstract:

Time-restricted intermittent fasting (TRIF) impacts host’s physiology and health. Plenty of health benefits have been reported for TRIF in animal models. However, limited studies have been conducted on humans especially in underdeveloped economies. Here, we designed a study to investigate the impact of TRIF/Ramadan fasting (16:8) on the modulation of gut-microbiome structure, metabolic pathways, and predicted metabolites and explored the correlation among them at different time points (during and after the month of Ramadan) in Pakistani Expats living in China. We observed different trends of Shannon-Wiener index in different subjects; however, all subjects showed substantial change in bacterial diversity with the progression of TRIF. Moreover, the changes in gut microbial structure by the end of TRIF were higher vis-a-vis in the beginning, significant difference was observed among individuals. Additionally, metabolic pathways analysis revealed that amino acid, carbohydrate and energy metabolism, glycan biosynthesis metabolism of cofactors and vitamins were significantly affected by TRIF. Pyridoxamine, glutamate, citrulline, arachidonic acid, and short chain fatty acid showed substantial difference at different time points based on the predicted metabolism. In conclusion, these results contribute to further our understanding about the key relationship among, dietary intervention (TRIF), gut microbiome structure and function. The preliminary results from study demonstrate significant potential for elucidating the mechanisms underlying gut microbiome stability and enhancing the effectiveness of microbiome-tailored interventions among the Pakistani populace. Nonetheless, extensive, and rigorous large-scale research on the Pakistani population is necessary to expound on the association between diet, gut microbiome, and overall health.

Keywords: gut microbiome, health, fasting, functionality

Procedia PDF Downloads 86
3027 Harnessing Artificial Intelligence and Machine Learning for Advanced Fraud Detection and Prevention

Authors: Avinash Malladhi

Abstract:

Forensic accounting is a specialized field that involves the application of accounting principles, investigative skills, and legal knowledge to detect and prevent fraud. With the rise of big data and technological advancements, artificial intelligence (AI) and machine learning (ML) algorithms have emerged as powerful tools for forensic accountants to enhance their fraud detection capabilities. In this paper, we review and analyze various AI/ML algorithms that are commonly used in forensic accounting, including supervised and unsupervised learning, deep learning, natural language processing Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Support Vector Machines (SVMs), Decision Trees, and Random Forests. We discuss their underlying principles, strengths, and limitations and provide empirical evidence from existing research studies demonstrating their effectiveness in detecting financial fraud. We also highlight potential ethical considerations and challenges associated with using AI/ML in forensic accounting. Furthermore, we highlight the benefits of these technologies in improving fraud detection and prevention in forensic accounting.

Keywords: AI, machine learning, forensic accounting & fraud detection, anti money laundering, Benford's law, fraud triangle theory

Procedia PDF Downloads 97
3026 Metrology in Egyptian Architecture, Interrelation with Archaeology

Authors: Monica M. Marcos

Abstract:

In the framework of Archaeological Research, Heritage Conservation and Restoration, the object of study is metrology applied in composition of religious architecture in ancient Egypt, and usefulness in Archaology. The objective is the determination of the geometric and metrological relations in architectural models and the module used in the initial project of the buildings. The study and data collection of religious buildings, tombs and temples of the ancient Egypt, is completed with plans. The measurements systematization and buildings modulation makes possible to establish common compositional parameters, with a module determined by the measurement unit used. The measurement system corresponding to the main period of egyptian history, was the Egyptian royal cubit. The analysis of units measurements, used in architectural design, provides exact numbers on buildable spaces dimensions. It allows establishing proportional relationships between them, and finding a geometric composition module, on which the original project was based. This responds to a philosophical and functional concept of projected spaces. In the heritage rehabilitation and restoration field, knowledge of metrology helps in excavation, reconstruction and restoration of construction elements. The correct use of metrology contributes to the identification of possible work areas, helping to locate where the damaged or missing areas are. Also in restoration projects, metrology is useful for reordering and locating decontextualized parts of buildings. The conversion of measurements taken in the current International System to the ancient egyptian measurements, allows understand its conceptual purpose and its functionality, which makes easier to carry out archaeological intervention. In the work carried out in archaeological excavations, metrology is an essential tool for locating sites and establishing work zones.

Keywords: egyptology, metrology, archaeology, measurements, Egyptian cubit

Procedia PDF Downloads 29
3025 Rapid Algorithm for GPS Signal Acquisition

Authors: Fabricio Costa Silva, Samuel Xavier de Souza

Abstract:

A Global Positioning System (GPS) receiver is responsible to determine position, velocity and timing information by using satellite information. To get this information are necessary to combine an incoming and a locally generated signal. The procedure called acquisition need to found two information, the frequency and phase of the incoming signal. This is very time consuming, so there are several techniques to reduces the computational complexity, but each of then put projects issues in conflict. I this papers we present a method that can reduce the computational complexity by reducing the search space and paralleling the search.

Keywords: GPS, acquisition, complexity, parallelism

Procedia PDF Downloads 542
3024 On Deterministic Chaos: Disclosing the Missing Mathematics from the Lorenz-Haken Equations

Authors: Meziane Belkacem

Abstract:

We aim at converting the original 3D Lorenz-Haken equations, which describe laser dynamics –in terms of self-pulsing and chaos- into 2-second-order differential equations, out of which we extract the so far missing mathematics and corroborations with respect to nonlinear interactions. Leaning on basic trigonometry, we pull out important outcomes; a fundamental result attributes chaos to forbidden periodic solutions inside some precisely delimited region of the control parameter space that governs the bewildering dynamics.

Keywords: Physics, optics, nonlinear dynamics, chaos

Procedia PDF Downloads 161
3023 A Rare Case of Atypical Guillian-Barre Syndrome Following Antecedent Dengue Infection

Authors: Amlan Datta

Abstract:

Dengue is an arboviral, vector borne infection, quite prevalent in tropical countries such as India. Approximately, 1 to 25% of cases may give rise to neurological complication, such as, seizure, delirium, Guillian-Barre syndrome (GBS), multiple cranial nerve palsies, intracranial thrombosis, stroke-like presentations, to name a few. Dengue fever, as an antecedent to GBS is uncommon, especially in adults.Here, we report a case about a middle aged lady who presented with an acute onset areflexic ascending type of polyradiculoneuropathy along with bilateral lower motor neuron type of facial nerve palsy, as well as abducens and motor component of trigeminal (V3) weakness. Her respiratory and neck muscles were spared. She had an established episode of dengue fever (NS1 and dengue IgM positive) 7 days prior to the weakness. Nerve conduction study revealed a demyelinating polyradiculopathy of both lower limbs and cerebrospinal fluid examination showed albuminocytological dissociation. She was treated with 5 days of intravenous immunoglobulin (IVIg), following which her limb weakness improved considerably. This case highlights GBS as a potential complication following dengue fever.

Keywords: areflexic, demyelinating, dengue, polyradiculoneuropathy

Procedia PDF Downloads 261
3022 Assessing Moisture Adequacy over Semi-arid and Arid Indian Agricultural Farms using High-Resolution Thermography

Authors: Devansh Desai, Rahul Nigam

Abstract:

Crop water stress (W) at a given growth stage starts to set in as moisture availability (M) to roots falls below 75% of maximum. It has been found that ratio of crop evapotranspiration (ET) and reference evapotranspiration (ET0) is an indicator of moisture adequacy and is strongly correlated with ‘M’ and ‘W’. The spatial variability of ET0 is generally less over an agricultural farm of 1-5 ha than ET, which depends on both surface and atmospheric conditions, while the former depends only on atmospheric conditions. Solutions from surface energy balance (SEB) and thermal infrared (TIR) remote sensing are now known to estimate latent heat flux of ET. In the present study, ET and moisture adequacy index (MAI) (=ET/ET0) have been estimated over two contrasting western India agricultural farms having rice-wheat system in semi-arid climate and arid grassland system, limited by moisture availability. High-resolution multi-band TIR sensing observations at 65m from ECOSTRESS (ECOsystemSpaceborne Thermal Radiometer Experiment on Space Station) instrument on-board International Space Station (ISS) were used in an analytical SEB model, STIC (Surface Temperature Initiated Closure) to estimate ET and MAI. The ancillary variables used in the ET modeling and MAI estimation were land surface albedo, NDVI from close-by LANDSAT data at 30m spatial resolution, ET0 product at 4km spatial resolution from INSAT 3D, meteorological forcing variables from short-range weather forecast on air temperature and relative humidity from NWP model. Farm-scale ET estimates at 65m spatial resolution were found to show low RMSE of 16.6% to 17.5% with R2 >0.8 from 18 datasets as compared to reported errors (25 – 30%) from coarser-scale ET at 1 to 8 km spatial resolution when compared to in situ measurements from eddy covariance systems. The MAI was found to show lower (<0.25) and higher (>0.5) magnitudes in the contrasting agricultural farms. The study showed the potential need of high-resolution high-repeat spaceborne multi-band TIR payloads alongwith optical payload in estimating farm-scale ET and MAI for estimating consumptive water use and water stress. A set of future high-resolution multi-band TIR sensors are planned on-board Indo-French TRISHNA, ESA’s LSTM, NASA’s SBG space-borne missions to address sustainable irrigation water management at farm-scale to improve crop water productivity. These will provide precise and fundamental variables of surface energy balance such as LST (Land Surface Temperature), surface emissivity, albedo and NDVI. A synchronization among these missions is needed in terms of observations, algorithms, product definitions, calibration-validation experiments and downstream applications to maximize the potential benefits.

Keywords: thermal remote sensing, land surface temperature, crop water stress, evapotranspiration

Procedia PDF Downloads 74
3021 In vitro Analysis of the Effect of Supplementation Oils on Conjugated Linoleic Acid Production by Butyvibrio Fibrisolvense

Authors: B. D. Ravindra, A. K. Tyagi, C. Kathirvelan

Abstract:

Some micronutrients in food (milk and meat), called ‘functional food components’ exert beneficial effects other than their routine nutrient function and conjugated linoleic acid (CLA) is an unsaturated fatty acid of ruminant origin, an example of this category. However, recently the fear of hypercholesterolemia due to saturated fats has led to the avoidance of dietary fat especially of animal origin despite its advantages such as lowering blood cholesterol, immuno-modulation and anticarcinogenic property due to the presence of CLA. The dietary increase of linoleic acid (LA) and linolenic acid (LNA) is one of the feeding strategies for increasing the CLA concentration in milk. Butyrivibrio fibrisolvens is the one potential rumen bacteria, which has high potential to isomerize LA to CLA. The study was conducted to screen the different oils for CLA production, selected based on their LA concentration. Butyrivibrio fibrisolvens culture (strain 49, MZ3, 30/10) were isolated from the rumen liquor of fistulated Buffalo (age ≈ 3 years; weight ≈ 250 kg) were used in in-vitro experiments, further work was carried out with three oils viz., sunflower, mustard and soybean oil at different concentration (0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 g/L of media) to study the growth of bacteria and CLA production at different incubation period (0, 8, 12, 18, 24, 48, 72 h). In the present study, growth of the bacteria was decreased linearly with increase in concentration of three oils. However, highest decrease in growth was recorded at the concentration of 0.30 g of three oils per litre of the media. Highest CLA production was 51.96, 42.08 and 25.60 µg/ml at 0.25 g and it decreased to 48.19, 39.35 and 23.41 µg/ml at 0.3 g supplementation of sunflower, soybean, and mustard oil per litre of the media, respectively at 18 h incubation period. The present study indicates the Butyrivibrio fibrisolvens bacteria involves in the biohydrogenation process, and LA rich sunflower meal can be used to improve the CLA production in rumen and thereby increasing the CLA concentration of milk.

Keywords: Butyrivibrio fibrisolvens, CLA, fatty acids, sunflower oil

Procedia PDF Downloads 376
3020 Role of Micro-Patterning on Stem Cell-Material Interaction Modulation and Cell Fate

Authors: Lay Poh Tan, Chor Yong Tay, Haiyang Yu

Abstract:

Micro-contact printing is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact technique. Here, we adopt this method to print proteins of different dimensions on our biodegradable polymer substrates. We started off with printing 20-500 μm scale lanes of fibronectin to engineer the shape of bone marrow derived human mesenchymal stem cell (hMSCs). After 8 hours of culture, the hMSCs adopted elongated shapes, and upon analysis of the gene expressions, genes commonly associated with myogenesis (GATA-4, MyoD1, cTnT and β-MHC) and neurogenesis (NeuroD, Nestin, GFAP, and MAP2) were up-regulated but gene expression associated to osteogenesis (ALPL, RUNX2, and SPARC) were either down modulated or remained at the nominal level. This is the first evidence that cellular morphology control via micropatterning could be used to modulate stem cell fate without external biochemical stimuli. We further our studies to modulate the focal adhesion (FA) instead of the macro shape of cells. Micro-contact printed islands of different smaller dimensions were investigated. We successfully regulated the FAs into dense FAs and elongated FAs by micropatterning. Additionally, the combined effects of hard (40.4 kPa), and intermediate (10.6 kPa) PA gel and FAs patterning on hMSCs differentiation were studied. Results showed that FA and matrix compliance plays an important role in hMSCs differentiation, and there is a cross-talk between different physical stimulants and the significance of these stimuli can only be realized if they are combined at the optimum level.

Keywords: micro-contact printing, polymer substrate, cell-material interaction, stem cell differentiation

Procedia PDF Downloads 176
3019 DISGAN: Efficient Generative Adversarial Network-Based Method for Cyber-Intrusion Detection

Authors: Hongyu Chen, Li Jiang

Abstract:

Ubiquitous anomalies endanger the security of our system con- stantly. They may bring irreversible damages to the system and cause leakage of privacy. Thus, it is of vital importance to promptly detect these anomalies. Traditional supervised methods such as Decision Trees and Support Vector Machine (SVM) are used to classify normality and abnormality. However, in some case, the abnormal status are largely rarer than normal status, which leads to decision bias of these methods. Generative adversarial network (GAN) has been proposed to handle the case. With its strong generative ability, it only needs to learn the distribution of normal status, and identify the abnormal status through the gap between it and the learned distribution. Nevertheless, existing GAN-based models are not suitable to process data with discrete values, leading to immense degradation of detection performance. To cope with the discrete features, in this paper, we propose an efficient GAN-based model with specifically-designed loss function. Experiment results show that our model outperforms state-of-the-art models on discrete dataset and remarkably reduce the overhead.

Keywords: GAN, discrete feature, Wasserstein distance, multiple intermediate layers

Procedia PDF Downloads 131
3018 Classifications of Images for the Recognition of People’s Behaviors by SIFT and SVM

Authors: Henni Sid Ahmed, Belbachir Mohamed Faouzi, Jean Caelen

Abstract:

Behavior recognition has been studied for realizing drivers assisting system and automated navigation and is an important studied field in the intelligent Building. In this paper, a recognition method of behavior recognition separated from a real image was studied. Images were divided into several categories according to the actual weather, distance and angle of view etc. SIFT was firstly used to detect key points and describe them because the SIFT (Scale Invariant Feature Transform) features were invariant to image scale and rotation and were robust to changes in the viewpoint and illumination. My goal is to develop a robust and reliable system which is composed of two fixed cameras in every room of intelligent building which are connected to a computer for acquisition of video sequences, with a program using these video sequences as inputs, we use SIFT represented different images of video sequences, and SVM (support vector machine) Lights as a programming tool for classification of images in order to classify people’s behaviors in the intelligent building in order to give maximum comfort with optimized energy consumption.

Keywords: video analysis, people behavior, intelligent building, classification

Procedia PDF Downloads 379
3017 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 97
3016 Solitons and Universes with Acceleration Driven by Bulk Particles

Authors: A. C. Amaro de Faria Jr, A. M. Canone

Abstract:

Considering a scenario where our universe is taken as a 3d domain wall embedded in a 5d dimensional Minkowski space-time, we explore the existence of a richer class of solitonic solutions and their consequences for accelerating universes driven by collisions of bulk particle excitations with the walls. In particular it is shown that some of these solutions should play a fundamental role at the beginning of the expansion process. We present some of these solutions in cosmological scenarios that can be applied to models that describe the inflationary period of the Universe.

Keywords: solitons, topological defects, branes, kinks, accelerating universes in brane scenarios

Procedia PDF Downloads 143
3015 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction

Procedia PDF Downloads 267
3014 The Next Generation’s Learning Ability, Memory, as Well as Cognitive Skills Is under the Influence of Paternal Physical Activity (An Intergenerational and Trans-Generational Effect): A Systematic Review and Meta-Analysis

Authors: Parvin Goli, Amirhosein Kefayat, Rezvan Goli

Abstract:

Background: It is well established that parents can influence their offspring's neurodevelopment. It is shown that paternal environment and lifestyle is beneficial for the progeny's fitness and might affect their metabolic mechanisms; however, the effects of paternal exercise on the brain in the offspring have not been explored in detail. Objective: This study aims to review the impact of paternal physical exercise on memory and learning, neuroplasticity, as well as DNA methylation levels in the off-spring's hippocampus. Study design: In this systematic review and meta-analysis, an electronic literature search was conducted in databases including PubMed, Scopus, and Web of Science. Eligible studies were those with an experimental design, including an exercise intervention arm, with the assessment of any type of memory function, learning ability, or any type of brain plasticity as the outcome measures. Standardized mean difference (SMD) and 95% confidence intervals (CI) were computed as effect size. Results: The systematic review revealed the important role of environmental enrichment in the behavioral development of the next generation. Also, offspring of exercised fathers displayed higher levels of memory ability and lower level of brain-derived neurotrophic factor. A significant effect of paternal exercise on the hippocampal volume was also reported in the few available studies. Conclusion: These results suggest an intergenerational effect of paternal physical activity on cognitive benefit, which may be associated with hippocampal epigenetic programming in offspring. However, the biological mechanisms of this modulation remain to be determined.

Keywords: hippocampal plasticity, learning ability, memory, parental exercise

Procedia PDF Downloads 214
3013 Predictive Maintenance of Electrical Induction Motors Using Machine Learning

Authors: Muhammad Bilal, Adil Ahmed

Abstract:

This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.

Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures

Procedia PDF Downloads 122
3012 Training of Future Computer Science Teachers Based on Machine Learning Methods

Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova

Abstract:

The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.

Keywords: algorithm, artificial intelligence, education, machine learning

Procedia PDF Downloads 77
3011 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion

Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong

Abstract:

The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor

Procedia PDF Downloads 235
3010 Effect of Atmospheric Pressure on the Flow at the Outlet of a Propellant Nozzle

Authors: R. Haoui

Abstract:

The purpose of this work is to simulate the flow at the exit of Vulcan 1 engine of European launcher Ariane 5. The geometry of the propellant nozzle is already determined using the characteristics method. The pressure in the outlet section of the nozzle is less than atmospheric pressure on the ground, causing the existence of oblique and normal shock waves at the exit. During the rise of the launcher, the atmospheric pressure decreases and the shock wave disappears. The code allows the capture of shock wave at exit of nozzle. The numerical technique uses the Flux Vector Splitting method of Van Leer to ensure convergence and avoid the calculation instabilities. The Courant, Friedrichs and Lewy coefficient (CFL) and mesh size level are selected to ensure the numerical convergence. The nonlinear partial derivative equations system which governs this flow is solved by an explicit unsteady numerical scheme by the finite volume method. The accuracy of the solution depends on the size of the mesh and also the step of time used in the discretized equations. We have chosen in this study the mesh that gives us a stationary solution with good accuracy.

Keywords: finite volume, lunchers, nozzles, shock wave

Procedia PDF Downloads 294
3009 An Evaluation Model for Automatic Map Generalization

Authors: Quynhan Tran, Hong Fan, Quockhanh Pham

Abstract:

Automatic map generalization is a well-known problem in cartography. The development of map generalization research accompanied the development of cartography. The traditional map is plotted manually by cartographic experts. The paper studies none-scale automation generalization of resident polygons and house marker symbol, proposes methodology to evaluate the result maps based on minimal spanning tree. In this paper, the minimal spanning tree before and after map generalization is compared to evaluate whether the generalization result maintain the geographical distribution of features. The minimal spanning tree in vector format is firstly converted into a raster format and the grid size is 2mm (distance on the map). The statistical number of matching grid before and after map generalization and the ratio of overlapping grid to the total grids is calculated. Evaluation experiments are conduct to verify the results. Experiments show that this methodology can give an objective evaluation for the feature distribution and give specialist an hand while they evaluate result maps of none-scale automation generalization with their eyes.

Keywords: automatic cartography generalization, evaluation model, geographic feature distribution, minimal spanning tree

Procedia PDF Downloads 641