Search results for: smart water management
15973 Removal of Acetaminophen with Chitosan-Nano Activated Carbon Beads from Aqueous Sources
Authors: Parisa Amouzgar, Chan Eng Seng, Babak Salamatinia
Abstract:
Pharmaceutical products are being increasingly detected in the environment. However, conventional treatment systems do not provide an adequate treatment for pharmaceutical drug elimination and still there is not a regulated standard for their limitation in water. Since decades before, pharmaceuticals have been in the water but only recently, their levels in the environment have been recognized and quantified as potentially hazardous to ecosystems. In this study chitosan with a bio-based NAC (Ct-NAC) were made as beads with extrusion dripping method and investigated for acetaminophen removal from water. The effects of beading parameters such as flow rate in dripping, the distance from dipping tip to the solution surface, concentration of chitosan and percentage of NAC were analyzed to find the optimum condition. Based on the results, the overall adsorption rate and removal efficiency increased during the time till the equilibrium rate which was 80% removal of acetaminophen. The maximum adsorption belonged to the beads with 1.75% chitosan, 60% NAC, flow-rate of 1.5 ml/min while the distance of dripping was 22.5 cm.Keywords: pharmaceuticals, water treatment, chitosan nano activated carbon beads, Acetaminophen
Procedia PDF Downloads 35915972 3D Numerical Study of Tsunami Loading and Inundation in a Model Urban Area
Authors: A. Bahmanpour, I. Eames, C. Klettner, A. Dimakopoulos
Abstract:
We develop a new set of diagnostic tools to analyze inundation into a model district using three-dimensional CFD simulations, with a view to generating a database against which to test simpler models. A three-dimensional model of Oregon city with different-sized groups of building next to the coastline is used to run calculations of the movement of a long period wave on the shore. The initial and boundary conditions of the off-shore water are set using a nonlinear inverse method based on Eulerian spatial information matching experimental Eulerian time series measurements of water height. The water movement is followed in time, and this enables the pressure distribution on every surface of each building to be followed in a temporal manner. The three-dimensional numerical data set is validated against published experimental work. In the first instance, we use the dataset as a basis to understand the success of reduced models - including 2D shallow water model and reduced 1D models - to predict water heights, flow velocity and forces. This is because models based on the shallow water equations are known to underestimate drag forces after the initial surge of water. The second component is to identify critical flow features, such as hydraulic jumps and choked states, which are flow regions where dissipation occurs and drag forces are large. Finally, we describe how future tsunami inundation models should be modified to account for the complex effects of buildings through drag and blocking.Financial support from UCL and HR Wallingford is greatly appreciated. The authors would like to thank Professor Daniel Cox and Dr. Hyoungsu Park for providing the data on the Seaside Oregon experiment.Keywords: computational fluid dynamics, extreme events, loading, tsunami
Procedia PDF Downloads 11715971 Industrial Waste to Energy Technology: Engineering Biowaste as High Potential Anode Electrode for Application in Lithium-Ion Batteries
Authors: Pejman Salimi, Sebastiano Tieuli, Somayeh Taghavi, Michela Signoretto, Remo Proietti Zaccaria
Abstract:
Increasing the growth of industrial waste due to the large quantities of production leads to numerous environmental and economic challenges, such as climate change, soil and water contamination, human disease, etc. Energy recovery of waste can be applied to produce heat or electricity. This strategy allows for the reduction of energy produced using coal or other fuels and directly reduces greenhouse gas emissions. Among different factories, leather manufacturing plays a very important role in the whole world from the socio-economic point of view. The leather industry plays a very important role in our society from a socio-economic point of view. Even though the leather industry uses a by-product from the meat industry as raw material, it is considered as an activity demanding integrated prevention and control of pollution. Along the entire process from raw skins/hides to finished leather, a huge amount of solid and water waste is generated. Solid wastes include fleshings, raw trimmings, shavings, buffing dust, etc. One of the most abundant solid wastes generated throughout leather tanning is shaving waste. Leather shaving is a mechanical process that aims at reducing the tanned skin to a specific thickness before tanning and finishing. This product consists mainly of collagen and tanning agent. At present, most of the world's leather processing is chrome-tanned based. Consequently, large amounts of chromium-containing shaving wastes need to be treated. The major concern about the management of this kind of solid waste is ascribed to chrome content, which makes the conventional disposal methods, such as landfilling and incineration, not practicable. Therefore, many efforts have been developed in recent decades to promote eco-friendly/alternative leather production and more effective waste management. Herein, shaving waste resulting from metal-free tanning technology is proposed as low-cost precursors for the preparation of carbon material as anodes for lithium-ion batteries (LIBs). In line with the philosophy of a reduced environmental impact, for preparing fully sustainable and environmentally friendly LIBs anodes, deionized water and carboxymethyl cellulose (CMC) have been used as alternatives to toxic/teratogen N-methyl-2- pyrrolidone (NMP) and to biologically hazardous Polyvinylidene fluoride (PVdF), respectively. Furthermore, going towards the reduced cost, we employed water solvent and fluoride-free bio-derived CMC binder (as an alternative to NMP and PVdF, respectively) together with LiFePO₄ (LFP) when a full cell was considered. These actions make closer to the 2030 goal of having green LIBs at 100 $ kW h⁻¹. Besides, the preparation of the water-based electrodes does not need a controlled environment and due to the higher vapour pressure of water in comparison with NMP, the water-based electrode drying is much faster. This aspect determines an important consequence, namely a reduced energy consumption for the electrode preparation. The electrode derived from leather waste demonstrated a discharge capacity of 735 mAh g⁻¹ after 1000 charge and discharge cycles at 0.5 A g⁻¹. This promising performance is ascribed to the synergistic effect of defects, interlayer spacing, heteroatoms-doped (N, O, and S), high specific surface area, and hierarchical micro/mesopore structure of the biochar. Interestingly, these features of activated biochars derived from the leather industry open the way for possible applications in other EESDs as well.Keywords: biowaste, lithium-ion batteries, physical activation, waste management, leather industry
Procedia PDF Downloads 17415970 Overview of Constructed Wetlands System for Greywater Treatment: Challenges, Advantages, and Sustainable Analysis
Authors: Iga Maliga
Abstract:
As developing country, Indonesia, retreatment for greywater is an important factor that guaranteeing water sustainability? But, its still not familiar in Indonesian society. Because they still use their old habit for wasting the water without retreatment. Differently, with industry wastewater, effect of domestic wastewater is not directly looked with naked eyes. Domestic wastewater that not gets treatment directly can affect pollution in water body or river. Its affected by accumulation many pollutants that include on water. This paper is trying to analyze the challenges and advantages on greywater treatment system based on Constructed Wetlands (CWs) system in Bandung, one of the biggest cities in Indonesia. Aside that, this paper also is trying to analyze sustainability aspects. There is economic, social and of course environment with two methods. The first, study literature is used to see the advantages and challenges that faced by Indonesia when CWs are applied. Secondly, quantitative method is used to get the society perception about retreatment of greywater. Then, it will get a conclusion that this technique not only good in theoretically but also practically.Keywords: greywater, constructed wetlands, advantages, challenges, Bandung, sustainability analysis
Procedia PDF Downloads 27715969 River Analysis System Model for Proposed Weirs at Downstream of Large Dam, Thailand
Authors: S. Chuenchooklin
Abstract:
This research was conducted in the Lower Ping River Basin downstream of the Bhumibol Dam and the Lower Wang River Basin in Tak Province, Thailand. Most of the tributary streams of the Ping can be considered as ungauged catchments. There are 10- pumping station installation at both river banks of the Ping in Tak Province. Recently, most of them could not fully operate due to the water amount in the river below the level that would be pumping, even though included water from the natural river and released flow from the Bhumibol Dam. The aim of this research was to increase the performance of those pumping stations using weir projects in the Ping. Therefore, the river analysis system model (HEC-RAS) was applied to study the hydraulic behavior of water surface profiles in the Ping River with both cases of existing conditions and proposed weirs during the violent flood in 2011 and severe drought in 2013. Moreover, the hydrologic modeling system (HMS) was applied to simulate lateral streamflow hydrograph from ungauged catchments of the Ping. The results of HEC-RAS model calibration with existing conditions in 2011 showed best trial roughness coefficient for the main channel of 0.026. The simulated water surface levels fitted to observation data with R2 of 0.8175. The model was applied to 3 proposed cascade weirs with 2.35 m in height and found surcharge water level only 0.27 m higher than the existing condition in 2011. Moreover, those weirs could maintain river water levels and increase of those pumping performances during less river flow in 2013.Keywords: HEC-RAS, HMS, pumping stations, cascade weirs
Procedia PDF Downloads 39615968 Design and Implementation of Agricultural Machinery Equipment Scheduling Platform Based On Case-Based Reasoning
Authors: Wen Li, Zhengyu Bai, Qi Zhang
Abstract:
The demand for smart scheduling platform in agriculture, particularly in the scheduling process of machinery equipment, is high. With the continuous development of agricultural machinery equipment technology, a large number of agricultural machinery equipment and agricultural machinery cooperative service organizations continue to appear in China. The large area of cultivated land and a large number of agricultural activities in the central and western regions of China have made the demand for smart and efficient agricultural machinery equipment scheduling platforms more intense. In this study, we design and implement a platform for agricultural machinery equipment scheduling to allocate agricultural machinery equipment resources reasonably. With agricultural machinery equipment scheduling platform taken as the research object, we discuss its research significance and value, use the service blueprint technology to analyze and characterize the agricultural machinery equipment schedule workflow, the network analytic method to obtain the demand platform function requirements, and divide the platform functions through the platform function division diagram. Simultaneously, based on the case-based reasoning (CBR) algorithm, the equipment scheduling module of the agricultural machinery equipment scheduling platform is realized; finally, a design scheme of the agricultural machinery equipment scheduling platform architecture is provided, and the visualization interface of the platform is established via VB programming language. It provides design ideas and theoretical support for the construction of a modern agricultural equipment information scheduling platform.Keywords: case-based reasoning, service blueprint, system design, ANP, VB programming language
Procedia PDF Downloads 17915967 Using Nanofiber-Like Attapulgite Microfiltration Membranes to Treat Oily Wastewater
Authors: Shouyong Zhou, Meisheng Li, Yijiang Zhao
Abstract:
The environmentally acceptable disposal of oily wastewater is a current challenge to many industries. The membrane separation technologies, which is no phase change, without pharmaceutical dosing, reprocessing costs low, less energy consumption, etc., have been widely applied in oily wastewater treatment. In our lab, a kind of low cost ceramic microfiltration membranes with a separation layer of attapulgite nanofibers (attapulgite nanofiber-like microfiltration membranes) has been prepared and applied in the purification of cellulase fermentation broth and TiO2 nanoparticles system successfully. In this paper, this new attapulgite nanofiber-like microfiltration membrane was selected to try to separate water from oily wastewater. The oil-in water emulsion was obtained from mixing 1 g/L engine oil, 0.5 g/L Tween-80, 0.5 g/L Span-80 and distilled water at mild speed in blender for 2 min. The particle size distribution of the oil-in-water emulsion was controlled. The maximum steady flux and COD rejection for a 0.2 um attapulgite nanofiber-like microfiltration membrane can reach about 450 L. m-2. h-1 and 98% at 0.2 MPa. The results obtained in this work indicated that the attapulgite microfiltration membrane may represent a feasible pretreatment for oily wastewater.Keywords: attapulgite, microfiltration membrane, oily wastewater, cross-flow filtration
Procedia PDF Downloads 34015966 Vibration Frequency Analysis of Sandwich Nano-Plate on Visco Pasternak Foundation by Using Modified Couple Stress Theory
Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian
Abstract:
In this research, the free vibration of a rectangular sandwich nano-plate (SNP) made of three smart layers in the visco Pasternak foundation is studied. The core of the sandwich is a piezo magnetic nano-plate integrated with two layers of piezoelectric materials. First-order shear deformation plate theory is utilized to derive the motion equations by using Hamilton’s principle, piezoelectricity, and modified couple stress theory. Elastic medium is modeled by visco Pasternak foundation, where the damping coefficient effect is investigated on the stability of sandwich nano-plate. These equations are solved by the differential quadrature method (DQM), considering different boundary conditions. Results indicate the effect of various parameters such as aspect ratio, thickness ratio, shear correction factor, damping coefficient, and boundary conditions on the dimensionless frequency of sandwich nano-plate. The results are also compared by those available in the literature, and these findings can be used for automotive industry, communications equipment, active noise, stability, and vibration cancellation systems and utilized for designing the magnetostrictive actuator, motor, transducer and sensors in nano and micro smart structures.Keywords: free vibration, modified couple stress theory, sandwich nano-plate, visco Pasternak foundation
Procedia PDF Downloads 14015965 Embedding Knowledge Management in Business Process
Authors: Paul Ihuoma Oluikpe
Abstract:
The purpose of this paper is to explore and highlight the process of creating value for strategy management by embedding knowledge management in the business process. Knowledge management can be seen from a three-dimensional perspective of content, connections and competencies. These dimensions can be embedded in the knowledge processes (create, capture, share, and apply) and operationalized within a business process to effectively create a scenario where knowledge can be focused on enabling a process and the process in turn generates outcomes. The application of knowledge management on business processes of organizations is rare and underreported. Few researches have explored this paradigm although researches have tended to reinforce the notion that competitive advantage sits within the internal aspects of the firm. Given this notion, it is surprising that knowledge management research and practice have not focused sufficiently on the business process which is the basic unit of organizational decision implementation. This research serves to generate understanding on applying KM in business process using a large multinational in Sub-Saharan Africa.Keywords: knowledge management, business process, strategy, multinational
Procedia PDF Downloads 69615964 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow
Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam
Abstract:
Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.Keywords: water hammer, hydraulic transient, pipe systems, characteristics method
Procedia PDF Downloads 13615963 Molecular Dynamics Simulation Study of Sulfonated Polybenzimidazole Polymers as Promising Forward Osmosis Membranes
Authors: Seyedeh Pardis Hosseini
Abstract:
With increased levels of clean and affordable water scarcity crises in many countries, wastewater treatment has been chosen as a viable method to produce freshwater for various consumptions. Even though reverse osmosis dominates the wastewater treatment market, forward osmosis (FO) processes have significant advantages, such as potentially using a renewable and low-grade energy source and improving water quality. FO is an osmotically driven membrane process that uses a high concentrated draw solution and a relatively low concentrated feed solution across a semi-permeable membrane. Among many novel FO membranes that have been introduced over the past decades, polybenzimidazole (PBI) membranes, a class of aromatic heterocyclic-based polymers, have shown high thermal and chemical stability because of their unique chemical structure. However, the studies reviewed indicate that the hydrophilicity of PBI membranes is comparatively low. Hence, there is an urgent need to develop novel FO membranes with modified PBI polymers to promote hydrophilicity. A few studies have been undertaken to improve the PBI hydrophilicity by fabricating mixed matrix polymeric membranes and surface modification. Thereby, in this study, two different sulfonated polybenzimidazole (SPBI) polymers with the same backbone but different functional groups, namely arylsulfonate PBI (PBI-AS) and propylsulfonate PBI (PBI-PS), are introduced as FO membranes and studied via the molecular dynamics (MD) simulation method. The FO simulation box consists of three distinct regions: a saltwater region, a membrane region, and a pure-water region. The pure-water region is situated at the upper part of the simulation box, while the saltwater region, which contains an aqueous salt solution of Na+ and Cl− ions along with water molecules, occupies the lower part of the simulation box. Specifically, the saltwater region includes 710 water molecules and 24 Na+ and 24 Cl− ions, resulting in a combined concentration of 10 weight percent (wt%). The pure-water region comprises 788 water molecules. Both the saltwater and pure-water regions have a density of 1.0 g/cm³. The membrane region, positioned between the saltwater and pure-water regions, is constructed from three types of polymers: PBI, PBI-AS, and PBI-PS, each consisting of three polymer chains with 30 monomers per chain. The structural and thermophysical properties of the polymers, water molecules, and Na+ and Cl− ions were analyzed using the COMPASS forcefield. All simulations were conducted using the BIOVIA Materials Studio 2020 software. By monitoring the variation in the number of water molecules over the simulation time within the saltwater region, the water permeability of the polymer membranes was calculated and subsequently compared. The results indicated that SPBI polymers exhibited higher water permeability compared to PBI polymers. This enhanced permeability can be attributed to the structural and compositional differences between SPBI and PBI polymers, which likely facilitate more efficient water transport through the membrane. Consequently, the adoption of SPBI polymers in the FO process is anticipated to result in significantly improved performance. This improvement could lead to higher water flux rates, better salt rejection, and overall more efficient use of resources in desalination and water purification applications.Keywords: forward osmosis, molecular dynamics simulation, sulfonated polybenzimidazole, water permeability
Procedia PDF Downloads 3115962 Nutrient Availability in River Ecosystems Follows Human Activities More than Climate Warming
Authors: Mohammed Abdulridha Hamdan
Abstract:
To face the water crisis, understanding the role of human activities on nutrient concentrations in aquatic ecosystems needs more investigations compare to extensively studies which have been carried out to understand these impacts on water quality of different aquatic ecosystems. We hypothesized human activates on the catchments of Tigris river may change nutrient concentrations in water along the river. The results showed that phosphate concentration differed significantly among the studied sites due to distributed human activities, while nitrate concentration did not. Phosphate and nitrate concentrations were not affected by water temperature. We concluded that human activities on the surrounding landscapes could be more essential sources for nutrients of aquatic ecosystems than role of ongoing climate warming. Despite the role of warming in driving nutrients availability in aquatic ecosystems, our findings suggest to take the different activities on the surrounding catchments into account in the studies caring about trophic status classification of aquatic ecosystems.Keywords: phosphate, nitrate, anthropogenic, warming
Procedia PDF Downloads 11115961 Nutrient Availability in River Ecosystems Follows Human Activities More than Climate Warming
Authors: Mohammed Abdulridha Hamdan
Abstract:
To face the water crisis, understanding the role of human activities on nutrient concentrations in aquatic ecosystems needs more investigations compare to extensively studies, which have been carried out to understand these impacts on water quality of different aquatic ecosystems. We hypothesized human activates on the catchments of Tigris river may change nutrient concentrations in water along the river. The results showed that phosphate concentration differed significantly among the studied sites due to distributed human activities, while nitrate concentration did not. Phosphate and nitrate concentrations were not affected by water temperature. We concluded that human activities on the surrounding landscapes could be more essential sources for nutrients of aquatic ecosystems than role of ongoing climate warming. Despite the role of warming in driving nutrients availability in aquatic ecosystems, our findings suggest to take the different activities on the surrounding catchments into account in the studies caring about trophic status classification of aquatic ecosystems.Keywords: phosphate, nitrate, Anthropogenic, warming
Procedia PDF Downloads 9115960 The Effect of Wool Mulch on Plant Development in the Light of Soil Physical and Soil Biological Conditions
Authors: Katalin Juhos, Enikő Papdi, Flórián Kovács, Vasileios P. Vasileiadis, Andrea Veres
Abstract:
Mulching techniques can be a solution for better utilization of precipitation and irrigation water and for mitigating soil degradation and drought damages. Waste fibres as alternative biodegradable mulch materials are increasingly coming to the fore. The effect of wool mulch (WM) on water use efficiency of pepper seedlings were investigated in different soil types (sand, clay loam, peat) in a pot experiment. Two semi-field experiments were also set up to investigate the effect of WM-plant interaction on sweet pepper yield in comparison with agro-textile and straw mulches. Soil parameters (moisture, temperature, DHA, β-glucosidase enzymes, permanganate-oxidizable carbon) were measured during the growing season. The effect of WM on yield and biomass was more significant with less frequent irrigation and the greater the water capacity of soils. The microbiological activity was significantly higher in the presence of plants, because of the water retention of WM, the metabolic products of roots and the more balanced soil temperature caused by plants. On the sandy soil, the straw mulch had a significantly better effect on microbiological parameters and yields than the agro-textile and WM. WM is a sustainable practice for improving soil biological parameters and water use efficiency on soils with a higher water capacity.Keywords: β-glucosidase, DHA enzyme activity; labile carbon, straw mulch; plastic mulch, evapotranspira-tion coefficient, soil temperature
Procedia PDF Downloads 7715959 A Straightforward Method for Determining Inorganic Selenium Speciations by Graphite Furnace Atomic Absorption Spectroscopy in Water Samples
Authors: Sahar Ehsani, David James, Vernon Hodge
Abstract:
In this experimental study, total selenium in solution was measured with Graphite Furnace Atomic Absorption Spectroscopy, GFAAS, then chemical reactions with sodium borohydride were used to reduce selenite to hydrogen selenide. Hydrogen selenide was then stripped from the solution by purging the solution with nitrogen gas. Since the two main speciations in oxic waters are usually selenite, Se(IV) and selenate, Se(VI), it was assumed that after Se(IV) is removed, the remaining total selenium was Se(VI). Total selenium measured after stripping gave Se(VI) concentration, and the difference of total selenium measured before and after stripping gave Se(IV) concentration. An additional step of reducing Se(VI) to Se(IV) was performed by boiling the stripped solution under acidic conditions, then removing Se(IV) by a chemical reaction with sodium borohydride. This additional procedure of removing Se(VI) from the solution is useful in rare cases where the water sample is reducing and contains selenide speciation. In this study, once Se(IV) and Se(VI) were both removed from the water sample, the remaining total selenium concentration was zero. The method was tested to determine Se(IV) and Se(VI) in both purified water and synthetic irrigation water spiked with Se(IV) and Se(VI). Average recovery of spiked samples of diluted synthetic irrigation water was 99% for Se(IV) and 97% for Se(VI). Detection limits of the method were 0.11 µg L⁻¹ and 0.32 µg L⁻¹ for Se(IV) and Se(VI), respectively.Keywords: Analytical Method, Graphite Furnace Atomic Absorption Spectroscopy, Selenate, Selenite, Selenium Speciations
Procedia PDF Downloads 14315958 Analysis of Supply Chain Risk Management Strategies: Case Study of Supply Chain Disruptions
Authors: Marcelo Dias Carvalho, Leticia Ishikawa
Abstract:
Supply Chain Risk Management refers to a set of strategies used by companies to avoid supply chain disruption caused by damage at production facilities, natural disasters, capacity issues, inventory problems, incorrect forecasts, and delays. Many companies use the techniques of the Toyota Production System, which in a way goes against a better management of supply chain risks. This paper studies key events in some multinationals to analyze the trade-off between the best supply chain risk management techniques and management policies designed to create lean enterprises. The result of a good balance of these actions is the reduction of losses, increased customer trust in the company and better preparedness to face the general risks of a supply chain.Keywords: just in time, lean manufacturing, supply chain disruptions, supply chain management
Procedia PDF Downloads 33915957 The Emancipation of the Inland Areas Between Depopulation, Smart Community and Living Labs: A Case Study of Sardinia
Authors: Daniela Pisu
Abstract:
The paper deals with the issue of territorial inequalities focused on the gap of the marginalization of inland areas with respect to the centrality of urban centers as they are subjected to an almost unstoppable demographic hemorrhage in a context marked by the tendency to depopulation such as the Sardinian territory, to which are added further and intense phenomena of de-anthropization. The research question is aimed at exploring the functionality of the interventions envisaged by the Piano Nazionale Ripresa Resilienza for the reduction of territorial imbalances in these areas to the extent that it is possible to identify policy strategies aimed at increasing the relational expertise of citizenship, functional to the consolidation of results in a long-term perspective. In order to answer this question, the qualitative case study on the Municipality of Ulàssai (province of Nuoro) is highlighted as the only winner on the island, with the Pilot Project ‘Where nature meets art’, intended for the cultural and social regeneration of small towns. The main findings, which emerged from the analysis of institutional sources and secondary data, highlight the socio-demographic fragility of the territory in the face of the active institutional commitment to make Ulàssai a smart community, starting from the enhancement of natural resources and the artistic heritage of fellow citizen Maria Lai. The findings drawn from the inspections and focus groups with the youth population present the aforementioned project as a generative opportunity for both the economic and social fabric, leveraging the public debates of the living labs, where the process of public communication becomes the main vector for the exercise of the rights of participatory democracy. The qualitative lunge leads to the conclusion that the repercussions envisaged by the PNRR in internal areas will be able to show their self-sustainable effect through colloquial administrations such as that of Ulàssai, capable of seeing in the interactive paradigm of public communication that natural process with which to reduce that historical sense of extraneousness attributed to the institution-citizenship relationship.Keywords: social labs, smart community, depopulation, Sardinia, Piano Nazionale di Ripresa e Resilienza
Procedia PDF Downloads 4315956 Valorization of Dates Nodes as a Carbon Source Using Biological Denitrification
Authors: Ouerdia Benbelkacem Belouanas
Abstract:
Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from waste water and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH.Keywords: biofilm, carbon source, dates nodes, heterotrophic denitrification, nitrate, nitrite
Procedia PDF Downloads 42115955 PitMod: The Lorax Pit Lake Hydrodynamic and Water Quality Model
Authors: Silvano Salvador, Maryam Zarrinderakht, Alan Martin
Abstract:
Open pits, which are the result of mining, are filled by water over time until the water reaches the elevation of the local water table and generates mine pit lakes. There are several specific regulations about the water quality of pit lakes, and mining operations should keep the quality of groundwater above pre-defined standards. Therefore, an accurate, acceptable numerical model predicting pit lakes’ water balance and water quality is needed in advance of mine excavation. We carry on analyzing and developing the model introduced by Crusius, Dunbar, et al. (2002) for pit lakes. This model, called “PitMod”, simulates the physical and geochemical evolution of pit lakes over time scales ranging from a few months up to a century or more. Here, a lake is approximated as one-dimensional, horizontally averaged vertical layers. PitMod calculates the time-dependent vertical distribution of physical and geochemical pit lake properties, like temperature, salinity, conductivity, pH, trace metals, and dissolved oxygen, within each model layer. This model considers the effect of pit morphology, climate data, multiple surface and subsurface (groundwater) inflows/outflows, precipitation/evaporation, surface ice formation/melting, vertical mixing due to surface wind stress, convection, background turbulence and equilibrium geochemistry using PHREEQC and linking that to the geochemical reactions. PitMod, which is used and validated in over 50 mines projects since 2002, incorporates physical processes like those found in other lake models such as DYRESM (Imerito 2007). However, unlike DYRESM PitMod also includes geochemical processes, pit wall runoff, and other effects. In addition, PitMod is actively under development and can be customized as required for a particular site.Keywords: pit lakes, mining, modeling, hydrology
Procedia PDF Downloads 16415954 Modelling, Assessment, and Optimisation of Rules for Selected Umgeni Water Distribution Systems
Authors: Khanyisile Mnguni, Muthukrishnavellaisamy Kumarasamy, Jeff C. Smithers
Abstract:
Umgeni Water is a water board that supplies most parts of KwaZulu Natal with bulk portable water. Currently, Umgeni Water is running its distribution system based on required reservoir levels and demands and does not consider the energy cost at different times of the day, number of pump switches, and background leakages. Including these constraints can reduce operational cost, energy usage, leakages, and increase performance. Optimising pump schedules can reduce energy usage and costs while adhering to hydraulic and operational constraints. Umgeni Water has installed an online hydraulic software, WaterNet Advisor, that allows running different operational scenarios prior to implementation in order to optimise the distribution system. This study will investigate operation scenarios using optimisation techniques and WaterNet Advisor for a local water distribution system. Based on studies reported in the literature, introducing pump scheduling optimisation can reduce energy usage by approximately 30% without any change in infrastructure. Including tariff structures in an optimisation problem can reduce pumping costs by 15%, while including leakages decreases cost by 10%, and pressure drop in the system can be up to 12 m. Genetical optimisation algorithms are widely used due to their ability to solve nonlinear, non-convex, and mixed-integer problems. Other methods such as branch and bound linear programming have also been successfully used. A suitable optimisation method will be chosen based on its efficiency. The objective of the study is to reduce energy usage, operational cost, and leakages, and the feasibility of optimal solution will be checked using the Waternet Advisor. This study will provide an overview of the optimisation of hydraulic networks and progress made to date in multi-objective optimisation for a selected sub-system operated by Umgeni Water.Keywords: energy usage, pump scheduling, WaterNet Advisor, leakages
Procedia PDF Downloads 9715953 Pre-conditioning and Hot Water Sanitization of Reverse Osmosis Membrane for Medical Water Production
Authors: Supriyo Das, Elbir Jove, Ajay Singh, Sophie Corbet, Noel Carr, Martin Deetz
Abstract:
Water is a critical commodity in the healthcare and medical field. The utility of medical-grade water spans from washing surgical equipment, drug preparation to the key element of life-saving therapy such as hydrotherapy and hemodialysis for patients. A properly treated medical water reduces the bioburden load and mitigates the risk of infection, ensuring patient safety. However, any compromised condition during the production of medical-grade water can create a favorable environment for microbial growth putting patient safety at high risk. Therefore, proper upstream treatment of the medical water is essential before its application in healthcare, pharma and medical space. Reverse Osmosis (RO) is one of the most preferred treatments within healthcare industries and is recommended by all International Pharmacopeias to achieve the quality level demanded by global regulatory bodies. The RO process can remove up to 99.5% of constituents from feed water sources, eliminating bacteria, proteins and particles sizes of 100 Dalton and above. The combination of RO with other downstream water treatment technologies such as Electrodeionization and Ultrafiltration meet the quality requirements of various pharmacopeia monographs to produce highly purified water or water for injection for medical use. In the reverse osmosis process, the water from a liquid with a high concentration of dissolved solids is forced to flow through an especially engineered semi-permeable membrane to the low concentration side, resulting in high-quality grade water. However, these specially engineered RO membranes need to be sanitized either chemically or at high temperatures at regular intervals to keep the bio-burden at the minimum required level. In this paper, we talk about Dupont´s FilmTec Heat Sanitizable Reverse Osmosis membrane (HSRO) for the production of medical-grade water. An HSRO element must be pre-conditioned prior to initial use by exposure to hot water (80°C-85°C) for its stable performance and to meet the manufacturer’s specifications. Without pre-conditioning, the membrane will show variations in feed pressure operations and salt rejection. The paper will discuss the critical variables of pre-conditioning steps that can affect the overall performance of the HSRO membrane and demonstrate the data to support the need for pre-conditioning of HSRO elements. Our preliminary data suggests that there can be up to 35 % reduction in flow due to initial heat treatment, which also positively affects the increase in salt rejection. The paper will go into detail about the fundamental understanding of the performance change of HSRO after the pre-conditioning step and its effect on the quality of medical water produced. The paper will also discuss another critical point, “regular hot water sanitization” of these HSRO membranes. Regular hot water sanitization (at 80°C-85°C) is necessary to keep the membrane bioburden free; however, it can negatively impact the performance of the membrane over time. We will demonstrate several data points on hot water sanitization using FilmTec HSRO elements and challenge its robustness to produce quality medical water. The last part of this paper will discuss the construction details of the FilmTec HSRO membrane and features that make it suitable to pre-condition and sanitize at high temperatures.Keywords: heat sanitizable reverse osmosis, HSRO, medical water, hemodialysis water, water for Injection, pre-conditioning, heat sanitization
Procedia PDF Downloads 21615952 Rapid Biosynthesis of Silver-Montmorillonite Nanocomposite Using Water Extract of Satureja hortensis L. and Evaluation of the Antibacterial Capacities
Authors: Sajjad Sedaghat
Abstract:
In this work, facile and green biosynthesis and characterization of silver–montmorillonite (MMT) nanocomposite is reported at room temperature. Silver nanoparticles (Ag–NPs) were synthesized into the interlamellar space of (MMT) by using water extract of Satureja hortensis L as reducing agent. The MMT was suspended in the aqueous AgNO₃ solution, and after the absorption of silver ions, Ag⁺ was reduced using water extract of Satureja hortensis L to Ag°. Evaluation of the antibacterial properties are also reported. The nanocomposite was characterized by ultraviolet-visible spectroscopy (UV–Vis), powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). TEM study showed the formation of nanocomposite using water extract of Satureja hortensis L in the 4.88 – 26.70 nm range and average particles size were 15.79 nm also the XRD study showed that the particles have a face-centered cubic (fcc) structure. The nanocomposite showed the antibacterial properties against Gram-positive and Gram-negative bacteria.Keywords: antibacterial effects, montmorillonite, Satureja hortensis l, transmission electron microscopy, nanocomposite
Procedia PDF Downloads 17215951 Development of Latent Fingerprints on Non-Porous Surfaces Recovered from Fresh and Sea Water
Authors: A. Somaya Madkour, B. Abeer sheta, C. Fatma Badr El Dine, D. Yasser Elwakeel, E. Nermine AbdAllah
Abstract:
Criminal offenders have a fundamental goal not to leave any traces at the crime scene. Some may suppose that items recovered underwater will have no forensic value, therefore, they try to destroy the traces by throwing items in water. These traces are subjected to the destructive environmental effects. This can represent a challenge for Forensic experts investigating finger marks. Accordingly, the present study was conducted to determine the optimal method for latent fingerprints development on non-porous surfaces submerged in aquatic environments at different time interval. The two factors analyzed in this study were the nature of aquatic environment and length of submerged time. In addition, the quality of developed finger marks depending on the used method was also assessed. Therefore, latent fingerprints were deposited on metallic, plastic and glass objects and submerged in fresh or sea water for one, two, and ten days. After recovery, the items were subjected to cyanoacrylate fuming, black powder and small particle reagent processing and the prints were examined. Each print was evaluated according to fingerprint quality assessment scale. The present study demonstrated that the duration of submersion affects the quality of finger marks; the longer the duration, the worse the quality.The best results of visualization were achieved using cyanoacrylate either in fresh or sea water. This study has also revealed that the exposure to sea water had more destructive influence on the quality of detected finger marks.Keywords: fingerprints, fresh water, sea, non-porous
Procedia PDF Downloads 45615950 Decision Making about the Environmental Management Implementation: Incentives and Expectations
Authors: Eva Štěpánková
Abstract:
Environmental management implementation is presently one of the ways of organization success and value improvement. Increasing an organization motivation to environmental measures introduction is caused primarily by the rising pressure of the society that generates various incentives to endeavor for the environmental performance improvement. The aim of the paper is to identify and characterize the key incentives and expectations leading organizations to the environmental management implementation. The author focuses on five businesses of different size and field, operating in the Czech Republic. The qualitative approach and grounded theory procedure are used in research. The results point out that the significant incentives for environmental management implementation represent primarily demands of customers, the opportunity to declare the environmental commitment and image improvement. The researched enterprises less commonly expect the economical contribution, competitive advantage increase or export rate improvement. The results show that marketing contributions are primarily expected from the environmental management implementation.Keywords: environmental management, environmental management system, ISO 14001, Czech Republic
Procedia PDF Downloads 38715949 Water Balance Components under Climate Change in Croatia
Authors: Jelena Bašić, Višnjica Vučetić, Mislav Anić, Tomislav Bašić
Abstract:
Lack of precipitation combined with high temperatures causes great damage to the agriculture and economy in Croatia. Therefore, it is important to understand water circulation and balance. We decided to gain a better insight into the spatial distribution of water balance components (WBC) and their long-term changes in Croatia. WBC are precipitation (P), potential evapotranspiration (PET), actual evapotranspiration (ET), soil moisture content (S), runoff (RO), recharge (R), and soil moisture loss (L). Since measurements of the mentioned components in Croatia are very rare, the Palmer model has been applied to estimate them. We refined method by setting into the account the corrective factor to include influence effects of the wind as well as a maximum soil capacity for specific soil types. We will present one hundred years’ time series of PET and ET showing the trends at few meteorological stations and a comparison of components of two climatological periods. The meteorological data from 109 stations have been used for the spatial distribution map of the WBC of Croatia.Keywords: croatia, long-term trends, the palmer method, water balance components
Procedia PDF Downloads 14315948 Effect of Hydrogen Peroxide Concentration Produced by Cold Atmospheric Plasma on Inactivation of Escherichia Coli in Water
Authors: Zohreh Rashmei
Abstract:
Introduction: Plasma inactivation is one of the emerging technologies in biomedical field and has been applied to the inactivation of microorganisms in water. The inactivation effect has been attributed to the presence of active plasma species, i.e. OH, O, O3, H2O2, UV and electric fields, generated by the discharge of plasma. Material and Method: To evaluate germicidal effects of plasma, the electric spark discharge device was used. After the effect of the plasma samples were collected for culture medium agar plate count. In addition to biological experiments, the concentration of hydrogen peroxide was also measured. Results: The results showed that Plasma is able to inactivate a high concentration of E. coli. After a short period of plasma radiation on the surface of water, the amount log8 reduced the microbial load. Starting plasma radiation on the surface of the water, the measurements show of production and increasing the amount of hydrogen peroxide in water. So that at the end of the experiment, the concentration of hydrogen peroxide to about 100 mg / l increased. Conclusion: Increasing the concentration of hydrogen peroxide is directly related to the reduction of microbial load. The results of E. coli culture in media containing certain concentrations of H2O2 showed that E. coli can not to grow in a medium containing more than 2/5 mg/l of H2O2. Surely we can say that the main cause of killing bacteria is a molecule of H2O2.Keywords: plasma, hydrogen peroxide, disinfection, E. coli
Procedia PDF Downloads 14515947 Viability and Sensitivity of SFN6B (Host-Specific Bacteriophage) towards Shigella Flexneri in Various Water Samples
Authors: Siewchuiang Sia, Gimcheong Tan
Abstract:
Bacteriophages are the most abundant and genetically diverse living entities on earth; they help in regulating and maintaining microbial diversity and balance in its natural ecosystem. In this study, the infectivity of SFN6B tailed phage was investigated in various water samples. Host bacteria (Shigella flexneri) were spiked in sterilized environmental and domestic water samples, followed by SFN6B treatment. Two incubation conditions were selected for this study, 37 oC and room temperature. S. flexneri and SFN6B viability were monitored hourly for consecutive 7 hours and extended viability study for consecutive 4 days. Absorbance of all bacteria spiked water samples were taken to monitor the bacteria count. Results showed reduction in the absorbance of the SFN6B treated water sample as compared to negative control, indicating reduction in bacterial count either due to negative growth or lysis by the lytic bacteriophage. Consistent with the result, SFN6B titer increases for first two days. However, prolong incubation of these cultures reaches equilibrium, between phage and bacteria. Temperature and water sample source also influence the interaction between S. flexneri and SFN6B. Stronger interaction was observed in 37oC as compared to room temperature, where higher bacteria count and phage titer increase were recorded. Availability of nutrient in water sample also plays a crucial role in the interaction between bacteria and phage. Higher nutrient level, such as lake and river waters were observed to give better infectivity and viability of both bacteria and phage as compared to tab water. It is believed that S. flexneri continue to remain viable and able to grow in the present of SFN6B bacteriophage, but the number was closely regulated by surrounding phages. This allows better understanding of the characteristics of SFN6B that could serve as the basis for future studies and applications.Keywords: bacteriophage, Shigella flexneri, infection, microbial diversity
Procedia PDF Downloads 28015946 Assessment of Ground Water Potential Zone: A Case Study of Paramakudi Taluk, Ramanathapuram, Tamilnadu, India
Authors: Shri Devi
Abstract:
This paper was conducted to see the ground water potential zones in Paramakudi taluk, Ramanathapuram,Tamilnadu India with a total areal extent of 745 sq. km. The various thematic map have been prepared for the study such as soil, geology, geomorphology, drainage, land use of the particular study area using the Toposheet of 1: 50000. The digital elevation model (DEM) has been generated from contour interval of 10m and also the slope was prepared. The ground water potential zone of the region was obtained using the weighted overlay analysis for which all the thematic maps were overlayed in arc gis 10.2. For the particular output the ranking has been given for all the parameters of each thematic layer with different weightage such as 25% was given to soil, 25% to geomorphology and land use land cover also 25%, slope 15%, lineament with 5% and drainage streams with 5 percentage. Using these entire potential zone maps was prepared which was overlayed with the village map to check the region which has good, moderate and low groundwater potential zone.Keywords: GIS, ground water, Paramakudi, weighted overlay analysis
Procedia PDF Downloads 34215945 Effect of Waste Dumping on Groundwater Quality at Guntun Layi Funtua, Katsina State
Authors: Isiya Aminu Dabai, Adebola Kayode, Adeosun Kayode Daniel
Abstract:
Rural water supply relies mainly on groundwater exploitation, because it is more accessible, reliable, cheaper to develop and maintain, also with good quality compared to the surface water. Despite these advantages, groundwater has come under pollution threats like waste dumps, mineral exploitation, industrialization etc. This study investigates the effects of an open dumping to the surrounding groundwater. Ten hand dug well water samples were collected from the surroundings and tested. The average result shows that temperature, colour and turbidity to be 8.50 c, 6.1 TCU and 3.1 NTU respectively and pH, conductivity, total dissolved solids, chloride content and hardness to be 7.2, 4.78, 1.8, 5.7, and 3.4 respectively while in the bacteriological test well no. 1, 2, 3, and 5 shows the presence of coliforms and E. Coli bacteria.Keywords: groundwater, pollution, waste, dump site, unsafe, quality
Procedia PDF Downloads 68615944 Water-Energy-Food Nexus Model for India: A Way Forward for Achieving Sustainable Development Goals
Authors: Rajendra Singh, Krishna Mondal, Chandranath Chatterjee
Abstract:
The water, energy, and food (WEF) nexus describes the interconnectedness of these three essential elements of human life. Each of these three sectors depends on the others. India's expanding population, urbanization, and industrialization make WEF nexus management difficult. Coupling and coordination degrees can be used as indicators of a complex system's level of sustainable development. Thus, coupling and coordination of WEF sectors in India are essential for achieving Sustainable Development Goals (SDGs) 2 (zero hunger), 6 (clean water and sanitation), and 7 (affordable and clean energy). This study used a newly developed WEF nexus model and the concept of coupling coordination degree model to examine the coupling and coordination degrees of the WEF nexus at India's sub-national scale (States/Union Territories (UTs)) for the years 2011 and 2021. Results indicate that the WEF nexus coupling degree was reasonably stable among the Indian States/UTs in both years, with all having a coupling degree above 0.90, indicating high-quality coupling. However, the degree of coordination varied spatially and temporally from ‘primary development’ to ‘quality development’ for the Indian States/UTs. In 2021, it went from 53% to 14% intermediate development and 44% to 83% good development compared to 2011. Most Indian States/UTs developed SDG2 more than SDG6 and SDG7. This study also suggests that most States/UTs must implement WEF-related policies and programmes effectively to achieve quality coordinated WEF nexus development. This study may help administrators and policymakers identify States/UTs that need more attention to implement existing or new policies for achieving SDGs 2, 6, and 7.Keywords: WEF nexus model, Pardee-RAND WEF nexus, sustainable development, policy
Procedia PDF Downloads 66