Search results for: online learning management system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30924

Search results for: online learning management system

28794 Waste Management in Africa

Authors: Peter Ekene Egwu

Abstract:

Waste management is of critical importance in Africa for reasons related to public health, human dignity, climate resilience and environmental preservation. However, delivering waste management services requires adequate funding, which has generally been lacking in a context where the generation of waste is outpacing the development of waste management infrastructure in most cities. The sector represents a growing percentage of cities’ greenhouse gas (GHG) emissions, and some of the African cities profiled in this study are now designing waste management strategies with emission reduction in mind.

Keywords: management waste material, Africa, uses of new technology to manage waste, waste management

Procedia PDF Downloads 76
28793 The Use of Webquests in Developing Inquiry Based Learning: Views of Teachers and Students in Qatar

Authors: Abdullah Abu-Tineh, Carol Murphy, Nigel Calder, Nasser Mansour

Abstract:

This paper reports on an aspect of e-learning in developing inquiry-based learning (IBL). We present data on the views of teachers and students in Qatar following a professional development programme intended to help teachers implement IBL in their science and mathematics classrooms. Key to this programme was the use of WebQuests. Views of the teachers and students suggested that WebQuests helped students to develop technical skills, work collaboratively and become independent in their learning. The use of WebQuests also enabled a combination of digital and non-digital tools that helped students connect ideas and enhance their understanding of topics.

Keywords: digital technology, inquiry-based learning, mathematics and science education, professional development

Procedia PDF Downloads 143
28792 Formal Verification of Cache System Using a Novel Cache Memory Model

Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang

Abstract:

Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.

Keywords: cache system, formal verification, novel model, system on chip (SoC)

Procedia PDF Downloads 496
28791 Perspectives of Saudi Students on Reasons for Seeking Private Tutors in English

Authors: Ghazi Alotaibi

Abstract:

The current study examined and described the views of secondary school students and their parents on their reasons for seeking private tutors in English. These views were obtained through two group interviews with the students and parents separately. Several causes were brought up during the two interviews. These causes included difficulty of the English language, weak teacher performance, the need to pass exams with high marks, lack of parents’ follow-up of student school performance, social pressure, variability in student comprehension levels at school, weak English foundation in previous school years, repeated student absence from school, large classes, as well as English teachers’ heavy teaching loads. The study started with a description of the EFL educational system in Saudi Arabia and concluded with recommendations for the improvement of the school learning environment.

Keywords: english, learning difficulty, private tutoring, Saudi, teaching practices, learning environment

Procedia PDF Downloads 456
28790 Preliminary Experience in Multiple Green Health Hospital Construction

Authors: Ming-Jyh Chen, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang

Abstract:

Introduction: Social responsibility is the key to sustainable organizational development. Under the ground Green Health Hospital Declaration signed by our superintendent, we have launched comprehensive energy conservation management in medical services, the community, and the staff’s life. To execute environment-friendly promotion with robust strategies, we build up a low-carbon medical system and community with smart green public construction promotion as well as intensifying energy conservation education and communication. Purpose/Methods: With the support of the board and the superintendent, we construct an energy management team, commencing with an environment-friendly system, management, education, and ISO 50001 energy management system; we have ameliorated energy performance and energy efficiency and continuing. Results: In the year 2021, we have achieved multiple goals. The energy management system efficiently controls diesel, natural gas, and electricity usage. About 5% of the consumption is saved when compared to the numbers from 2018 and 2021. Our company develops intelligent services and promotes various paperless electronic operations to provide people with a vibrant and environmentally friendly lifestyle. The goal is to save 68.6% on printing and photocopying by reducing 35.15 million sheets of paper yearly. We strengthen the concept of environmental protection classification among colleagues. In the past two years, the amount of resource recycling has reached more than 650 tons, and the resource recycling rate has reached 70%. The annual growth rate of waste recycling is about 28 metric tons. Conclusions: To build a green medical system with “high efficacy, high value, low carbon, low reliance,” energy stewardship, economic prosperity, and social responsibility are our principles when it comes to formulation of energy conservation management strategies, converting limited sources to efficient usage, developing clean energy, and continuing with sustainable energy.

Keywords: energy efficiency, environmental education, green hospital, sustainable development

Procedia PDF Downloads 79
28789 Effective Learning and Testing Methods in School-Aged Children

Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharrazi

Abstract:

When we teach, we have two critical elements at our disposal to help students: learning styles as well as testing styles. There are many different ways in which educators can effectively teach their students; verbal learning and experience-based learning. Lecture as a form of verbal learning style is a traditional arrangement in which teachers are more active and share information verbally with students. In experienced-based learning as the process of through, students learn actively through hands-on learning materials and observing teachers or others. Meanwhile, standard testing or assessment is the way to determine progress toward proficiency. Teachers and instructors mainly use essay (requires written responses), multiple choice questions (includes the correct answer and several incorrect answers as distractors), or open-ended questions (respondents answers it with own words). The current study focused on exploring an effective teaching style and testing methods as the function of age over school ages. In the present study, totally 410 participants were selected randomly from four grades (2ⁿᵈ, 4ᵗʰ, 6ᵗʰ, and 8ᵗʰ). Each subject was tested individually in one session lasting around 50 minutes. In learning tasks, the participants were presented three different instructions for learning materials (learning by doing, learning by observing, and learning by listening). Then, they were tested via different standard assessments as free recall, cued recall, and recognition tasks. The results revealed that generally students remember more of what they do and what they observe than what they hear. The age effect was more pronounced in learning by doing than in learning by observing, and learning by listening, becoming progressively stronger in the free-recall, cued-recall, and recognition tasks. The findings of this study indicated that learning by doing and free recall task is more age sensitive, suggesting that both of them are more strategic and more affected by developmental differences. Pedagogically, these results denoted that learning by modeling and engagement in program activities have the special role for learning. Moreover, the findings indicated that the multiple-choice questions can produce the best performance for school-aged children but is less age-sensitive. By contrast, the essay as essay can produce the lowest performance but is more age-sensitive. It will be very helpful for educators to know that what types of learning styles and test methods are most effective for students in each school grade.

Keywords: experience-based learning, learning style, school-aged children, testing methods, verbal learning

Procedia PDF Downloads 202
28788 Empowering a New Frontier in Heart Disease Detection: Unleashing Quantum Machine Learning

Authors: Sadia Nasrin Tisha, Mushfika Sharmin Rahman, Javier Orduz

Abstract:

Machine learning is applied in a variety of fields throughout the world. The healthcare sector has benefited enormously from it. One of the most effective approaches for predicting human heart diseases is to use machine learning applications to classify data and predict the outcome as a classification. However, with the rapid advancement of quantum technology, quantum computing has emerged as a potential game-changer for many applications. Quantum algorithms have the potential to execute substantially faster than their classical equivalents, which can lead to significant improvements in computational performance and efficiency. In this study, we applied quantum machine learning concepts to predict coronary heart diseases from text data. We experimented thrice with three different features; and three feature sets. The data set consisted of 100 data points. We pursue to do a comparative analysis of the two approaches, highlighting the potential benefits of quantum machine learning for predicting heart diseases.

Keywords: quantum machine learning, SVM, QSVM, matrix product state

Procedia PDF Downloads 94
28787 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children

Authors: Budhvin T. Withana, Sulochana Rupasinghe

Abstract:

The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.

Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science

Procedia PDF Downloads 114
28786 Learning Motivation Factors for Pre-Cadets in Armed Forces Academies Preparatory School, Ministry of Defense

Authors: Prachya Kamonphet

Abstract:

The purposes of this research were to study the learning motivation factors for Pre-cadets in Armed Forces Academies Preparatory School, Ministry of Defense. The subjects were 320 Pre-cadets (from all 3-year classes of Pre-cadets, the academic year 2015). The research instruments were questionnaires. The collected data were analyzed by means of Descriptive Statistic and One-Way Analysis of Variance. The results of this study were as follows: The relation between the Pre-cadets’ average grade and the motivation in studying was significance.In the aspect of the environment related to Pre-cadets’ families and the motivation in studying.In the aspect of the environment related to Pre-cadets’ studying, it was found that teaching method, learning place, educational media, relationship between teachers and Pre-cadets, relationship between Pre-cadets and their friends, and relationship between Pre-cadets and the commanders were significant.

Keywords: learning motivation factors, learning motivation, armed forces academies preparatory school, learning

Procedia PDF Downloads 242
28785 Online Monitoring and Control of Continuous Mechanosynthesis by UV-Vis Spectrophotometry

Authors: Darren A. Whitaker, Dan Palmer, Jens Wesholowski, James Flaherty, John Mack, Ahmad B. Albadarin, Gavin Walker

Abstract:

Traditional mechanosynthesis has been performed by either ball milling or manual grinding. However, neither of these techniques allow the easy application of process control. The temperature may change unpredictably due to friction in the process. Hence the amount of energy transferred to the reactants is intrinsically non-uniform. Recently, it has been shown that the use of Twin-Screw extrusion (TSE) can overcome these limitations. Additionally, TSE enables a platform for continuous synthesis or manufacturing as it is an open-ended process, with feedstocks at one end and product at the other. Several materials including metal-organic frameworks (MOFs), co-crystals and small organic molecules have been produced mechanochemically using TSE. The described advantages of TSE are offset by drawbacks such as increased process complexity (a large number of process parameters) and variation in feedstock flow impacting on product quality. To handle the above-mentioned drawbacks, this study utilizes UV-Vis spectrophotometry (InSpectroX, ColVisTec) as an online tool to gain real-time information about the quality of the product. Additionally, this is combined with real-time process information in an Advanced Process Control system (PharmaMV, Perceptive Engineering) allowing full supervision and control of the TSE process. Further, by characterizing the dynamic behavior of the TSE, a model predictive controller (MPC) can be employed to ensure the process remains under control when perturbed by external disturbances. Two reactions were studied; a Knoevenagel condensation reaction of barbituric acid and vanillin and, the direct amidation of hydroquinone by ammonium acetate to form N-Acetyl-para-aminophenol (APAP) commonly known as paracetamol. Both reactions could be carried out continuously using TSE, nuclear magnetic resonance (NMR) spectroscopy was used to confirm the percentage conversion of starting materials to product. This information was used to construct partial least squares (PLS) calibration models within the PharmaMV development system, which relates the percent conversion to product to the acquired UV-Vis spectrum. Once this was complete, the model was deployed within the PharmaMV Real-Time System to carry out automated optimization experiments to maximize the percentage conversion based on a set of process parameters in a design of experiments (DoE) style methodology. With the optimum set of process parameters established, a series of PRBS process response tests (i.e. Pseudo-Random Binary Sequences) around the optimum were conducted. The resultant dataset was used to build a statistical model and associated MPC. The controller maximizes product quality whilst ensuring the process remains at the optimum even as disturbances such as raw material variability are introduced into the system. To summarize, a combination of online spectral monitoring and advanced process control was used to develop a robust system for optimization and control of two TSE based mechanosynthetic processes.

Keywords: continuous synthesis, pharmaceutical, spectroscopy, advanced process control

Procedia PDF Downloads 177
28784 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning

Procedia PDF Downloads 230
28783 Urban Corridor Management Strategy Based on Intelligent Transportation System

Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain

Abstract:

Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads.

Keywords: congestion, ITS strategies, mobility, safety

Procedia PDF Downloads 443
28782 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 73
28781 Data Analysis Tool for Predicting Water Scarcity in Industry

Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse

Abstract:

Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.

Keywords: data mining, industry, machine Learning, shortage, water resources

Procedia PDF Downloads 121
28780 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea

Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim

Abstract:

Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.

Keywords: deep learning, algae concentration, remote sensing, satellite

Procedia PDF Downloads 183
28779 The Use of Bimodal Subtitles on Netflix English Movies in Enhancing Vocabulary

Authors: John Lloyd Angolluan, Jennile Caday, Crystal Mae Estrella, Reike Alliyah Taladua, Zion Michael Ysulat

Abstract:

One of the requirements of having the ability to communicate in English is by having adequate vocabulary. Nowadays, people are more engaged in watching movie streams on which they can watch movies in a very portable way, such as Netflix. Wherein Netflix became global demand for online media has taken off in recent years. This research aims to know whether the use of bimodal subtitles on Netflix English movies can enhance vocabulary. This study is quantitative and utilizes a descriptive method, and this study aims to explore the use of bimodal subtitles on Netflix English movies to enhance the vocabulary of students. The respondents of the study were the selected Second-year English majors of Rizal Technological University Pasig and Boni Campus using the purposive sampling technique. The researcher conducted a survey questionnaire through the use of Google Forms. In this study, the weighted mean was used to evaluate the student's responses to the statement of the problems of the study of the use of bimodal subtitles on Netflix English movies. The findings of this study revealed that the bimodal subtitle on Netflix English movies enhanced students’ vocabulary learning acquisition by providing learners with access to large amounts of real and comprehensible language input, whether accidentally or intentionally, and it turns out that bimodal subtitles on Netflix English movies help students recognize vocabulary, which has a positive impact on their vocabulary building. Therefore, the researchers advocate that watching English Netflix movies enhances students' vocabulary by using bimodal subtitled movie material during their language learning process, which may increase their motivation and the usage of bimodal subtitles in learning new vocabulary. Bimodal subtitles need to be incorporated into educational film activities to provide students with a vast amount of input to expand their vocabulary.

Keywords: bimodal subtitles, Netflix, English movies, vocabulary, subtitle, language, media

Procedia PDF Downloads 85
28778 A Comparative Analysis of Solid Waste Treatment Technologies on Cost and Environmental Basis

Authors: Nesli Aydin

Abstract:

Waste management decision making in developing countries has moved towards being more pragmatic, transparent, sustainable and comprehensive. Turkey is required to make its waste related legislation compatible with European Legislation as it is a candidate country of the European Union. Improper Turkish practices such as open burning and open dumping practices must be abandoned urgently, and robust waste management systems have to be structured. The determination of an optimum waste management system in any region requires a comprehensive analysis in which many criteria are taken into account by stakeholders. In conducting this sort of analysis, there are two main criteria which are evaluated by waste management analysts; economic viability and environmentally friendliness. From an analytical point of view, a central characteristic of sustainable development is an economic-ecological integration. It is predicted that building a robust waste management system will need significant effort and cooperation between the stakeholders in developing countries such as Turkey. In this regard, this study aims to provide data regarding the cost and environmental burdens of waste treatment technologies such as an incinerator, an autoclave (with different capacities), a hydroclave and a microwave coupled with updated information on calculation methods, and a framework for comparing any proposed scenario performances on a cost and environmental basis.

Keywords: decision making, economic viability, environmentally friendliness, waste management systems

Procedia PDF Downloads 305
28777 A Learning Automata Based Clustering Approach for Underwater ‎Sensor Networks to Reduce Energy Consumption

Authors: Motahareh Fadaei

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: clustering, energy consumption‎, learning automata, underwater sensor networks

Procedia PDF Downloads 314
28776 Speaker Recognition Using LIRA Neural Networks

Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul

Abstract:

This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.

Keywords: extreme learning, LIRA neural classifier, speaker identification, voice recognition

Procedia PDF Downloads 177
28775 A Study of Learning Achievement for Heat Transfer by Using Experimental Sets of Convection with the Predict-Observe-Explain Teaching Technique

Authors: Wanlapa Boonsod, Nisachon Yangprasong, Udomsak Kitthawee

Abstract:

Thermal physics education is a complicated and challenging topic to discuss in any classroom. As a result, most students tend to be uninterested in learning this topic. In the current study, a convection experiment set was devised to show how heat can be transferred by a convection system to a thermoelectric plate until a LED flashes. This research aimed to 1) create a natural convection experimental set, 2) study learning achievement on the convection experimental set with the predict-observe-explain (POE) technique, and 3) study satisfaction for the convection experimental set with the predict-observe-explain (POE) technique. The samples were chosen by purposive sampling and comprised 28 students in grade 11 at Patumkongka School in Bangkok, Thailand. The primary research instrument was the plan for predict-observe-explain (POE) technique on heat transfer using a convection experimental set. Heat transfer experimental set by convection. The instruments used to collect data included a heat transfer achievement model by convection, a Satisfaction Questionnaire after the learning activity, and the predict-observe-explain (POE) technique for heat transfer using a convection experimental set. The research format comprised a one-group pretest-posttest design. The data was analyzed by GeoGebra program. The statistics used in the research were mean, standard deviation and t-test for dependent samples. The results of the research showed that achievement on heat transfer using convection experimental set was composed of thermo-electrics on the top side attached to the heat sink and another side attached to a stainless plate. Electrical current was displayed by the flashing of a 5v LED. The entire set of thermo-electrics was set up on the top of the box and heated by an alcohol burner. The achievement of learning was measured with the predict-observe-explain (POE) technique, with the natural convection experimental set statistically higher than before learning at a 0.01 level. Satisfaction with POE for physics learning of heat transfer by using convection experimental set was at a high level (4.83 from 5.00).

Keywords: convection, heat transfer, physics education, POE

Procedia PDF Downloads 218
28774 Didacticization of Code Switching as a Tool for Bilingual Education in Mali

Authors: Kadidiatou Toure

Abstract:

Mali has started experimentation of teaching the national languages at school through the convergent pedagogy in 1987. Then, it is in 1994 that it will become widespread with eleven of the thirteen former national languages used at primary school. The aim was to improve the Malian educational system because the use of French as the only medium of instruction was considered a contributing factor to the significant number of student dropouts and the high rate of repetition. The Convergent pedagogy highlights the knowledge acquired by children at home, their vision of the world and especially the knowledge they have of their mother tongue. That pedagogy requires the use of a specific medium only during classroom practices and teachers have been trained in this sense. The specific medium depends on the learning content, which sometimes is French, other times, it is the national language. Research has shown that bilingual learners do not only use the required medium in their learning activities, but they code switch. It is part of their learning processes. Currently, many scholars agree on the importance of CS in bilingual classes, and teachers have been told about the necessity of integrating it into their classroom practices. One of the challenges of the Malian bilingual education curriculum is the question of ‘effective languages management’. Theoretically, depending on the classrooms, an average have been established for each of the involved language. Following that, teachers make use of CS differently, sometimes, it favors the learners, other times, it contributes to the development of some linguistic weaknesses. The present research tries to fill that gap through a tentative model of didactization of CS, which simply means the practical management of the languages involved in the bilingual classrooms. It is to know how to use CS for effective learning. Moreover, the didactization of CS tends to sensitize the teachers about the functional role of CS so that they may overcome their own weaknesses. The overall goal of this research is to make code switching a real tool for bilingual education. The specific objectives are: to identify the types of CS used during classroom activities to present the functional role of CS for the teachers as well as the pupils. to develop a tentative model of code-switching, which will help the teachers in transitional classes of bilingual schools to recognize the appropriate moment for making use of code switching in their classrooms. The methodology adopted is a qualitative one. The study is based on recorded videos of teachers of 3rd year of primary school during their classroom activities and interviews with the teachers in order to confirm the functional role of CS in bilingual classes. The theoretical framework adopted is the typology of CS proposed by Poplack (1980) to identify the types of CS used. The study reveals that teachers need to be trained on the types of CS and the different functions they assume and on the consequences of inappropriate use of language alternation.

Keywords: bilingual curriculum, code switching, didactization, national languages

Procedia PDF Downloads 71
28773 Enhancing Code Security with AI-Powered Vulnerability Detection

Authors: Zzibu Mark Brian

Abstract:

As software systems become increasingly complex, ensuring code security is a growing concern. Traditional vulnerability detection methods often rely on manual code reviews or static analysis tools, which can be time-consuming and prone to errors. This paper presents a distinct approach to enhancing code security by leveraging artificial intelligence (AI) and machine learning (ML) techniques. Our proposed system utilizes a combination of natural language processing (NLP) and deep learning algorithms to identify and classify vulnerabilities in real-world codebases. By analyzing vast amounts of open-source code data, our AI-powered tool learns to recognize patterns and anomalies indicative of security weaknesses. We evaluated our system on a dataset of over 10,000 open-source projects, achieving an accuracy rate of 92% in detecting known vulnerabilities. Furthermore, our tool identified previously unknown vulnerabilities in popular libraries and frameworks, demonstrating its potential for improving software security.

Keywords: AI, machine language, cord security, machine leaning

Procedia PDF Downloads 36
28772 On the Effectiveness of Educational Technology on the Promotion of Exceptional Children or Children with Special Needs

Authors: Nasrin Badrkhani

Abstract:

The increasing use of educational technologies has created a tremendous transformation in all fields and most importantly, in the field of education and learning. In recent decades, traditional learning approaches have undergone fundamental changes with the emergence of new learning technologies. Research shows that suitable educational tools play an effective role in the transmission, comprehension, and impact of educational concepts. These tools provide a tangible basis for thinking and constructing concepts, resulting in an increased interest in learning. They provide real and true experiences to students and convey educational meanings and concepts more quickly and clearly. It can be said that educational technology, as an active and modern teaching method, with capabilities such as engaging multiple senses in the educational process and involving the learner, makes the learning environment more flexible. It effectively impacts the skills of children with special needs by addressing their specific needs. Teachers are no longer the sole source of information, and students are not mere recipients of information. They are considered the main actors in the field of education and learning. Since education is one of the basic rights of every human being and children with special needs face unique challenges and obstacles in education, these challenges can negatively affect their abilities and learning. To combat these challenges, one of the ways is to use educational technologies for more diverse, effective learning. Also, the use of educational technology for students with special needs has increasingly proven effective in boosting their self-confidence and helping them overcome learning challenges, enhancing their learning outcomes.

Keywords: communication technology, students with special needs, self-confidence, raising the expectations and progress

Procedia PDF Downloads 13
28771 Building Information Management Advantages, Adaptation, and Challenges of Implementation in Kabul Metropolitan Area

Authors: Mohammad Rahim Rahimi, Yuji Hoshino

Abstract:

Building Information Management (BIM) at recent years has widespread consideration on the Architecture, Engineering and Construction (AEC). BIM has been bringing innovation in AEC industry and has the ability to improve the construction industry with high quality, reduction time and budget of project. Meanwhile, BIM support model and process in AEC industry, the process include the project time cycle, estimating, delivery and generally the way of management of project but not limited to those. This research carried the BIM advantages, adaptation and challenges of implementation in Kabul region. Capital Region Independence Development Authority (CRIDA) have responsibilities to implement the development projects in Kabul region. The method of study were considers on advantages and reasons of BIM performance in Afghanistan based on online survey and data. Besides that, five projects were studied, the reason of consideration were many times design revises and changes. Although, most of the projects had problems regard to designing and implementation stage, hence in canal project was discussed in detail with the main reason of problems. Which were many time changes and revises due to the lack of information, planning, and management. In addition, two projects based on BIM utilization in Japan were also discussed. The Shinsuizenji Station and Oita River dam projects. Those are implemented and implementing consequently according to the BIM requirements. The investigation focused on BIM usage, project implementation process. Eventually, the projects were the comparison with CRIDA and BIM utilization in Japan. The comparison will focus on the using of the model and the way of solving the problems based upon on the BIM. In conclusion, that BIM had the capacity to prevent many times design changes and revises. On behalf of achieving those objectives are required to focus on data management and sharing, BIM training and using new technology.

Keywords: construction information management, implementation and adaptation of BIM, project management, developing countries

Procedia PDF Downloads 129
28770 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.

Keywords: artificial intelligence, neurofinance, neuropsychology, risk management

Procedia PDF Downloads 138
28769 Investigating the Impact of Enterprise Resource Planning System and Supply Chain Operations on Competitive Advantage and Corporate Performance (Case Study: Mamot Company)

Authors: Mohammad Mahdi Mozaffari, Mehdi Ajalli, Delaram Jafargholi

Abstract:

The main purpose of this study is to investigate the impact of the system of ERP (Enterprise Resource Planning) and SCM (Supply Chain Management) on the competitive advantage and performance of Mamot Company. The methods for collecting information in this study are library studies and field research. A questionnaire was used to collect the data needed to determine the relationship between the variables of the research. This questionnaire contains 38 questions. The direction of the current research is applied. The statistical population of this study consists of managers and experts who are familiar with the SCM system and ERP. Number of statistical society is 210. The sampling method is simple in this research. The sample size is 136 people. Also, among the distributed questionnaires, Reliability of the Cronbach's Alpha Cronbach's Questionnaire is evaluated and its value is more than 70%. Therefore, it confirms reliability. And formal validity has been used to determine the validity of the questionnaire, and the validity of the questionnaire is confirmed by the fact that the score of the impact is greater than 1.5. In the present study, one variable analysis was used for central indicators, dispersion and deviation from symmetry, and a general picture of the society was obtained. Also, two variables were analyzed to test the hypotheses; measure the correlation coefficient between variables using structural equations, SPSS software was used. Finally, multivariate analysis was used with statistical techniques related to the SPLS structural equations to determine the effects of independent variables on the dependent variables of the research to determine the structural relationships between the variables. The results of the test of research hypotheses indicate that: 1. Supply chain management practices have a positive impact on the competitive advantage of the Mammoth industrial complex. 2. Supply chain management practices have a positive impact on the performance of the Mammoth industrial complex. 3. Planning system Organizational resources have a positive impact on the performance of the Mammoth industrial complex. 4. The system of enterprise resource planning has a positive impact on Mamot's competitive advantage. 5.The competitive advantage has a positive impact on the performance of the Mammoth industrial complex 6.The system of enterprise resource planning Mamot Industrial Complex Supply Chain Management has a positive impact. The above results indicate that the system of enterprise resource planning and supply chain management has an impact on the competitive advantage and corporate performance of Mamot Company.

Keywords: enterprise resource planning, supply chain management, competitive advantage, Mamot company performance

Procedia PDF Downloads 98
28768 Urban Transport System Resilience Guidelines

Authors: Evangelia Gaitanidou, Evangelos Bekiaris

Abstract:

Considering that resilience implies the ability of a system to adapt continuously in order to respond to its operational goals, a system is considered as more or less resilient depending on the level and time of recovering from disruptive events and/or shocks to its initial state. Regarding transport systems, enhancing resilience is considered imperative for two main reasons: Such systems provide critical support to every socio-economic activity, while being one of the most important economic sectors and, secondly, the paths that convey people, goods and information, are the same through which risks are propagated. RESOLUTE (RESilience management guidelines and Operationalization appLied to Urban Transport Environment) Horizon 2020 research project is answering those needs, by proposing and testing a set of guidelines for resilience management of the urban transport system. The methods and steps towards this goal, through a step-wise methodology, taking into account established models like FRAM (Functional Resonance Analysis Model), and upon gathering existing practices are described in this paper, together with an overview of the produced guidelines. The overall aim is to create a framework which public transport authorities could consult and apply, for rendering their infrastructure resilient against natural disaster and other threats.

Keywords: guidelines, infrastructure, resilience, transport

Procedia PDF Downloads 249
28767 Managing Multiple Change Projects in Supply Chains: A Case Study of a Moroccan Multi-Technical Services Company

Authors: Abdelouahab Errida, Bouchra Lotfi, Elalami Semma

Abstract:

In this paper, we try to address the topic of multiple change management by adopting an engineered research methodology, conducted within a Moroccan company during its implementation of several change projects that aim at improving its supply chain management performance. Firstly, we present the key concepts related to our research, namely change management, multiproject management and supply chain management. Then, we try to assess how the change management and multi-project management are applied in this company. Finally, we try to propose an approach that will help managers in dealing with multiple change projects. This approach proposes to integrate change management, project management and multi-project management for managing change projects according to three organizational levels: executive level, project portfolio level and change project level.

Keywords: change management, multi-project management, project management, change portfolio, supply chain management,

Procedia PDF Downloads 236
28766 Educational Practices and Brain Based Language Learning

Authors: Dur-E- Shahwar

Abstract:

Much attention has been given to ‘bridging the gap’ between neuroscience and educational practice. In order to gain a better understanding of the nature of this gap and of possibilities to enable the linking process, we have taken a boundary perspective on these two fields and the brain-based learning approach, focusing on boundary-spanning actors, boundary objects, and boundary work. In 26 semi-structured interviews, neuroscientists and education professionals were asked about their perceptions in regard to the gap between science and practice and the role they play in creating, managing, and disrupting this boundary. Neuroscientists and education professionals often hold conflicting views and expectations of both brain-based learning and of each other. This leads us to argue that there are increased prospects for a neuro-scientifically informed learning practice if science and practice work together as equal stakeholders in developing and implementing neuroscience research.

Keywords: language learning, explore, educational practices, mentalist, practice

Procedia PDF Downloads 337
28765 Guidelines for Enhancing the Learning Environment by the Integration of Design Flexibility and Immersive Technology: The Case of the British University in Egypt’s Classrooms

Authors: Eman Ayman, Gehan Nagy

Abstract:

The learning environment has four main parameters that affect its efficiency which they are: pedagogy, user, technology, and space. According to Morrone, enhancing these parameters to be adaptable for future developments is essential. The educational organization will be in need of developing its learning spaces. Flexibility of design an immersive technology could be used as tools for this development. when flexible design concepts are used, learning spaces that can accommodate a variety of teaching and learning activities are created. To accommodate the various needs and interests of students, these learning spaces are easily reconfigurable and customizable. The immersive learning opportunities offered by technologies like virtual reality, augmented reality, and interactive displays, on the other hand, transcend beyond the confines of the traditional classroom. These technological advancements could improve learning. This thesis highlights the problem of the lack of innovative, flexible learning spaces in educational institutions. It aims to develop guidelines for enhancing the learning environment by the integration of flexible design and immersive technology. This research uses a mixed method approach, both qualitative and quantitative: the qualitative section is related to the literature review theories and case studies analysis. On the other hand, the quantitative section will be identified by the results of the applied studies of the effectiveness of redesigning a learning space from its traditional current state to a flexible technological contemporary space that will be adaptable to many changes and educational needs. Research findings determine the importance of flexibility in learning spaces' internal design as it enhances the space optimization and capability to accommodate the changes and record the significant contribution of immersive technology that assists the process of designing. It will be summarized by the questionnaire results and comparative analysis, which will be the last step of finalizing the guidelines.

Keywords: flexibility, learning space, immersive technology, learning environment, interior design

Procedia PDF Downloads 93