Search results for: neural tube defect
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2802

Search results for: neural tube defect

672 Packaging Processes for the Implantable Medical Microelectronics

Authors: Chung-Yu Wu, Chia-Chi Chang, Wei-Ming Chen, Pu-Wei Wu, Shih-Fan Chen, Po-Chun Chen

Abstract:

Electrostimulation medical devices for neural diseases require electroactive and biocompatible materials to transmit signals from electrodes to targeting tissues. Protection of surrounding tissues has become a great challenge for long-term implants. In this study, we designed back-end processes with compatible, efficient, and reliable advantages over the current state-of-the-art. We explored a hermetic packaging process with high quality of adhesion and uniformity as the biocompatible devices for long-term implantation. This approach is able to provide both excellent biocompatibility and protection to the biomedical electronic devices by performing conformal coating of biocompatible materials. We successfully developed a packaging process that is capable of exposing the stimulating electrode and cover all other faces of chip with high quality of protection to prevent leakage of devices and body fluid.

Keywords: biocompatible package, medical microelectronics, surface coating, long-term implantation

Procedia PDF Downloads 525
671 Credit Risk Assessment Using Rule Based Classifiers: A Comparative Study

Authors: Salima Smiti, Ines Gasmi, Makram Soui

Abstract:

Credit risk is the most important issue for financial institutions. Its assessment becomes an important task used to predict defaulter customers and classify customers as good or bad payers. To this objective, numerous techniques have been applied for credit risk assessment. However, to our knowledge, several evaluation techniques are black-box models such as neural networks, SVM, etc. They generate applicants’ classes without any explanation. In this paper, we propose to assess credit risk using rules classification method. Our output is a set of rules which describe and explain the decision. To this end, we will compare seven classification algorithms (JRip, Decision Table, OneR, ZeroR, Fuzzy Rule, PART and Genetic programming (GP)) where the goal is to find the best rules satisfying many criteria: accuracy, sensitivity, and specificity. The obtained results confirm the efficiency of the GP algorithm for German and Australian datasets compared to other rule-based techniques to predict the credit risk.

Keywords: credit risk assessment, classification algorithms, data mining, rule extraction

Procedia PDF Downloads 183
670 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario

Authors: Sarita Agarwal, Deepika Delsa Dean

Abstract:

Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.

Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation

Procedia PDF Downloads 131
669 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning

Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj

Abstract:

Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.

Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net

Procedia PDF Downloads 157
668 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.

Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation

Procedia PDF Downloads 268
667 Minimally Invasive versus Conventional Sternotomy for Aortic Valve Replacement: A Systematic Review and Meta-Analysis

Authors: Ahmed Shaboub, Yusuf Jasim Althawadi, Shadi Alaa Abdelaal, Mohamed Hussein Abdalla, Hatem Amr Elzahaby, Mohamed Mohamed, Hazem S. Ghaith, Ahmed Negida

Abstract:

Objectives: We aimed to compare the safety and outcomes of the minimally invasive approaches versus conventional sternotomy procedures for aortic valve replacement. Methods: We conducted a PRISMA-compliant systematic review and meta-analysis. We ran an electronic search of PubMed, Cochrane CENTRAL, Scopus, and Web of Science to identify the relevant published studies. Data were extracted and pooled as standardized mean difference (SMD) or risk ratio (RR) using StataMP version 17 for macOS. Results: Forty-one studies with a total of 15,065 patients were included in this meta-analysis (minimally invasive approaches n=7231 vs. conventional sternotomy n=7834). The pooled effect size showed that minimally invasive approaches had lower mortality rate (RR 0.76, 95%CI [0.59 to 0.99]), intensive care unit and hospital stays (SMD -0.16 and -0.31, respectively), ventilation time (SMD -0.26, 95%CI [-0.38 to -0.15]), 24-h chest tube drainage (SMD -1.03, 95%CI [-1.53 to -0.53]), RBCs transfusion (RR 0.81, 95%CI [0.70 to 0.93]), wound infection (RR 0.66, 95%CI [0.47 to 0.92]) and acute renal failure (RR 0.65, 95%CI [0.46 to 0.93]). However, minimally invasive approaches had longer operative time, cross-clamp, and bypass times (SMD 0.47, 95%CI [0.22 to 0.72], SMD 0.27, 95%CI [0.07 to 0.48], and SMD 0.37, 95%CI [0.20 to 0.45], respectively). There were no differences between the two groups in blood loss, endocarditis, cardiac tamponade, stroke, arrhythmias, pneumonia, pneumothorax, bleeding reoperation, tracheostomy, hemodialysis, or myocardial infarction (all P>0.05). Conclusion: Current evidence showed higher safety and better operative outcomes with minimally invasive aortic valve replacement compared to the conventional approach. Future RCTs with long-term follow-ups are recommended.

Keywords: aortic replacement, minimally invasive, sternotomy, mini-sternotomy, aortic valve, meta analysis

Procedia PDF Downloads 123
666 High-Intensity, Short-Duration Electric Pulses Induced Action Potential in Animal Nerves

Authors: Jiahui Song, Ravindra P. Joshi

Abstract:

The use of high-intensity, short-duration electric pulses is a promising development with many biomedical applications. The uses include irreversible electroporation for killing abnormal cells, reversible poration for drug and gene delivery, neuromuscular manipulation, and the shrinkage of tumors, etc. High intensity, short-duration electric pulses result in the creation of high-density, nanometer-sized pores in the cellular membrane. This electroporation amounts to localized modulation of the transverse membrane conductance, and effectively provides a voltage shunt. The electrically controlled changes in the trans-membrane conductivity could be used to affect neural traffic and action potential propagation. A rat was taken as the representative example in this research. The simulation study shows the pathway from the sensorimotor cortex down to the spinal motoneurons, and effector muscles could be reversibly blocked by using high-intensity, short-duration electrical pulses. Also, actual experimental observations were compared against simulation predictions.

Keywords: action potential, electroporation, high-intensity, short-duration

Procedia PDF Downloads 269
665 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: texture classification, texture descriptor, SIFT, SURF, ORB

Procedia PDF Downloads 371
664 Evaluation of Nuts as a Source of Selenium in Diet

Authors: Renata Markiewicz-Żukowska, Patryk Nowakowski, Sylwia K. Naliwajko, Jakub M. Bołtryk, Katarzyna Socha, Anna Puścion-Jakubik, Jolanta Soroczyńska, Maria H. Borawska

Abstract:

Selenium (Se) is an essential element for human health. As an integral part of glutathione peroxidase, it has antioxidant, anti-inflammatory and anticancer activities. Unfortunately, Se dietary intake is often insufficient, especially in regions where the soil is low in Se. Therefore, in search for good sources of Se, the content of this element in food products should be monitored. Food product can be considered as a source of Se when its standard portion covers above 15% of recommended daily allowance. In the case of nuts, 42g is recognized as the standard portion. The aim of this study was to determine the Se content in nuts and to answer the question of whether the studied nuts can be considered as a source of Se in the diet. The material for the study consisted of 10 types of nuts (12 samples of each one): almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios and walnuts. The nuts were mineralized using microwave technique (Berghof, Germany). The content of Se was determined by atomic absorption spectrometry method with electrothermal atomization in a graphite tube with Zeeman background correction (Hitachi, Japan). The accuracy of the method was verified on certified reference material: Simulated Diet D. The statistical analysis was performed using Statistica v. 13.0 software. Statistical significance was determined at p < 0.05 level. The highest content of Se was found in Brazil nuts (4566.21 ± 3393.9 µg/kg) and the lowest in almonds (36.07 ± 18.8 µg/kg). A standard portion (42g) of almonds, brazil nuts, cashews, hazelnuts, macadamia nuts, peanuts, pecans, pine nuts, pistachios and walnuts covers the recommended daily allowance for Se respectively in: 2, 192, 28, 2, 16, 7, 4, 3, 12, 6%. Brazil nuts, cashews and macadamia nuts can be considered as a good source of Se in diet.

Keywords: atomic absorption spectrometry, diet, nuts, selenium

Procedia PDF Downloads 186
663 Purification of Zr from Zr-Hf Resources Using Crystallization in HF-HCl Solvent Mixture

Authors: Kenichi Hirota, Jifeng Wang, Sadao Araki, Koji Endo, Hideki Yamamoto

Abstract:

Zirconium (Zr) has been used as a fuel cladding tube for nuclear reactors, because of the excellent corrosion resistance and the low adsorptive material for neutron. Generally speaking, the natural resource of Zr is often containing Hf that has similar properties. The content of Hf in the Zr resources is about 2~4 wt%. In the industrial use, the content of Hf in Zr resources should be lower than the 100 ppm. However, the separation of Zr and Hf is not so easy, because of similar chemical and physical properties such as melting point, boiling point and things. Solvent extraction method has been applied for the separation of Zr and Hf from Zr natural resources. This method can separate Hf with high efficiency (Hf < 100ppm), however, it needs much amount of organic solvents for solvent extraction and the cost of its disposal treatment is high. Therefore, we attached attention for the fractional crystallization. This separation method depends on the solubility difference of Zr and Hf in the solvent. In this work, hexafluorozirconate (hafnate) (K2Zr(Hf)F6) was used as model compound. Solubility of K2ZrF6 in water showed lower than that of K2HfF6. By repeating of this treatment, it is possible to purify Zr, practically. In this case, 16-18 times of recrystallization stages were needed for its high purification. The improvement of the crystallization process was carried out in this work. Water, hydrofluoric acid (HF) and hydrofluoric acid (HF) +hydrochloric acid (HCl) mixture were chosen as solvent for dissolution of Zr and Hf. In the experiment, 10g of K2ZrF6 was added to each solvent of 100mL. Each solution was heated for 1 hour at 353K. After 1h of this operation, they were cooled down till 293K, and were held for 5 hours at 273K. Concentration of Zr or Hf was measured using ICP analysis. It was found that Hf was separated from Zr-Hf mixed compound with high efficiency, when HF-HCl solution was used for solvent of crystallization. From the comparison of the particle size of each crystal by SEM, it was confirmed that the particle diameter of the crystal showed smaller size with decreasing of Hf content. This paper concerned with purification of Zr from Zr-Hf mixture using crystallization method.

Keywords: crystallization, zirconium, hafnium, separation

Procedia PDF Downloads 438
662 Predictive Models of Ruin Probability in Retirement Withdrawal Strategies

Authors: Yuanjin Liu

Abstract:

Retirement withdrawal strategies are very important to minimize the probability of ruin in retirement. The ruin probability is modeled as a function of initial withdrawal age, gender, asset allocation, inflation rate, and initial withdrawal rate. The ruin probability is obtained based on the 2019 period life table for the Social Security, IRS Required Minimum Distribution (RMD) Worksheets, US historical bond and equity returns, and inflation rates using simulation. Several popular machine learning algorithms of the generalized additive model, random forest, support vector machine, extreme gradient boosting, and artificial neural network are built. The model validation and selection are based on the test errors using hyperparameter tuning and train-test split. The optimal model is recommended for retirees to monitor the ruin probability. The optimal withdrawal strategy can be obtained based on the optimal predictive model.

Keywords: ruin probability, retirement withdrawal strategies, predictive models, optimal model

Procedia PDF Downloads 74
661 Experimental Analyses of Thermoelectric Generator Behavior Using Two Types of Thermoelectric Modules for Marine Application

Authors: A. Nour Eddine, D. Chalet, L. Aixala, P. Chessé, X. Faure, N. Hatat

Abstract:

Thermal power technology such as the TEG (Thermo-Electric Generator) arouses significant attention worldwide for waste heat recovery. Despite the potential benefits of marine application due to the permanent heat sink from sea water, no significant studies on this application were to be found. In this study, a test rig has been designed and built to test the performance of the TEG on engine operating points. The TEG device is built from commercially available materials for the sake of possible economical application. Two types of commercial TEM (thermo electric module) have been studied separately on the test rig. The engine data were extracted from a commercial Diesel engine since it shares the same principle in terms of engine efficiency and exhaust with the marine Diesel engine. An open circuit water cooling system is used to replicate the sea water cold source. The characterization tests showed that the silicium-germanium alloys TEM proved a remarkable reliability on all engine operating points, with no significant deterioration of performance even under sever variation in the hot source conditions. The performance of the bismuth-telluride alloys was 100% better than the first type of TEM but it showed a deterioration in power generation when the air temperature exceeds 300 °C. The temperature distribution on the heat exchange surfaces revealed no useful combination of these two types of TEM with this tube length, since the surface temperature difference between both ends is no more than 10 °C. This study exposed the perspective of use of TEG technology for marine engine exhaust heat recovery. Although the results suggested non-sufficient power generation from the low cost commercial TEM used, it provides valuable information about TEG device optimization, including the design of heat exchanger and the types of thermo-electric materials.

Keywords: internal combustion engine application, Seebeck, thermo-electricity, waste heat recovery

Procedia PDF Downloads 245
660 Application of Deep Learning in Colorization of LiDAR-Derived Intensity Images

Authors: Edgardo V. Gubatanga Jr., Mark Joshua Salvacion

Abstract:

Most aerial LiDAR systems have accompanying aerial cameras in order to capture not only the terrain of the surveyed area but also its true-color appearance. However, the presence of atmospheric clouds, poor lighting conditions, and aerial camera problems during an aerial survey may cause absence of aerial photographs. These leave areas having terrain information but lacking aerial photographs. Intensity images can be derived from LiDAR data but they are only grayscale images. A deep learning model is developed to create a complex function in a form of a deep neural network relating the pixel values of LiDAR-derived intensity images and true-color images. This complex function can then be used to predict the true-color images of a certain area using intensity images from LiDAR data. The predicted true-color images do not necessarily need to be accurate compared to the real world. They are only intended to look realistic so that they can be used as base maps.

Keywords: aerial LiDAR, colorization, deep learning, intensity images

Procedia PDF Downloads 168
659 Analysis of Expression of SP and NOS in the Porcine Nodose Ganglion (NG) Sensory Neurons Supplying Prepyloric Stomach Region after Intragastric Hydrochloric Acid Infusion

Authors: Liliana Rytel, Jarosław Całka

Abstract:

One of the diseases that are very common health problem of modern man is the stomach hyperacidity. It is well known that this pathological state, during which gastric glands secrete too much of hydrochloric acid can be caused due to various factors such as stress, eating habits, alcohol, smoking and some, especially anti-inflammatory drugs. Moreover, hyperacidity is recognized as one of factors leading to development of peptic ulcer disease. Therefore, we analyzed expression of substance P (SP) and neuronal isoform of nitric oxide synthase (nNOS) in the porcine nodose ganglion sensory neurons innervating prepyloric stomach region in physiological state and following intragastric infusion of hydrochloric acid. The study was performed on 8 immature gilts of the Large White Polish breed. All animals were injected retrograde marker Fast Blue (FB) into the anterior prepyloric stomach wall. After injections of FB, pigs were divided into two groups: control (group C; n = 4) and experimental (HCL group, n = 4) and after convalescence period of 23 days, animals of HCL group were subjected to renewed anaesthesia. Then, 0.25 M aqueous solution of hydrochloric acid with a dose of 5 ml/kg body weight was administered intragastrically with use of a stomach tube. On 28th day, all control and HCL pigs were euthanized and bilateral reght (rNG) and left (lNG) were collected. Cryostat sections were processed for double immunofluorescence using anibodies against SP and NOS. Immunofluorescence staining in the even-numbered ganglia nodes showed the presence of FB-positive cells expressing SP (45,9 ± 3,38% in rNG and 60,4 ± 1,71% in lNG), and nNOS (34,9 ± 6,83% in rNG and 49,9 ± 9,32% in lNG). In HCL group increased expression of both SP (54,8 ± 5,34% in rNG and 56,9 ± 3,28 % in lNG) as well as nNOS (54,9 ± 4,45% in rNG and 52,5 ± 2,17 % in lNG) in FB+ perikaria was found. The acquired results suggest that SP and nNOS are neurotransmitters and/ or neuromodulators participating in the sensory regulation of the prepyloric region of porcine stomach function as well as their potential role in development of the stomach inflamatory state.

Keywords: nNOS, nodose ganglion, pig, SP

Procedia PDF Downloads 304
658 Absorption Behavior of Some Acids During Chemical Aging of HDPE-100 Polyethylene

Authors: Berkas Khaoula

Abstract:

Based on selection characteristics, high-density polyethylene (HDPE) extruded pipes are among the most economical and durable materials as well-designed solutions for water and gas transmission systems. The main reasons for such a choice are the high quality-performance ratio and the long-term service durability under aggressive conditions. Due to inevitable interactions with soils of different chemical compositions and transported fluids, aggressiveness becomes a key factor in studying resilient strength and life prediction limits. This phenomenon is known as environmental stress cracking resistance (ESCR). In this work, the effect of 3 acidic environments (5% acetic, 20% hydrochloric and 20% sulfuric) on HDPE-100 samples (~10x11x24 mm3). The results presented in the form (Δm/m0, %) as a function of √t indicate that the absorption, in the case of strong acids (HCl and H2SO4), evolves towards negative values involving material losses such as antioxidants and some additives. On the other hand, acetic acid and deionized water (DW) give a form of linear Fickean (LF) and B types, respectively. In general, the acids cause a slow but irreversible alteration of the chemical structure, composition and physical integrity of the polymer. The DW absorption is not significant (~0.02%) for an immersion duration of 69 days. Such results are well accepted in actual applications, while changes caused by acidic environments are serious and must be subjected to particular monitoring of the OIT factor (Oxidation Induction Time). After 55 days of aging, the H2SO4 and HCl media showed particular values with a loss of % mass in the interval [0.025-0.038] associated with irreversible chemical reactions as well as physical degradations. This state is usually explained by hydrolysis of the polymer, causing the loss of functions and causing chain scissions. These results are useful for designing and estimating the lifetime of the tube in service and in contact with adverse environments.

Keywords: HDPE, environmental stress cracking, absorption, acid media, chemical aging

Procedia PDF Downloads 90
657 Real Time Acquisition and Psychoacoustic Analysis of Brain Wave

Authors: Shweta Singh, Dipali Bansal, Rashima Mahajan

Abstract:

Psychoacoustics has become a potential area of research due to the growing interest of both laypersons and medical and mental health professionals. Non-invasive brain computer interface like Electroencephalography (EEG) is widely being used in this field. An attempt has been made in this paper to examine the response of EEG signals to acoustic stimuli further analysing the brain electrical activity. The real time EEG is acquired for 6 participants using a cost effective and portable EMOTIV EEG neuron headset. EEG data analysis is further done using EMOTIV test bench, EDF browser and EEGLAB (MATLAB Tool) application software platforms. Spectral analysis of acquired neural signals (AF3 channel) using these software platforms are clearly indicative of increased brain activity in various bands. The inferences drawn from such an analysis have significant correlation with subject’s subjective reporting of the experiences. The results suggest that the methodology adopted can further be used to assist patients with sleeping and depressive disorders.

Keywords: OM chant, spectral analysis, EDF browser, EEGLAB, EMOTIV, real time acquisition

Procedia PDF Downloads 283
656 Suitable Die Shaping for a Rectangular Shape Bottle by Application of FEM and AI Technique

Authors: N. Ploysook, R. Rugsaj, C. Suvanjumrat

Abstract:

The characteristic requirement for producing rectangular shape bottles was a uniform thickness of the plastic bottle wall. Die shaping was a good technique which controlled the wall thickness of bottles. An advance technology which was the finite element method (FEM) for blowing parison to be a rectangular shape bottle was conducted to reduce waste plastic from a trial and error method of a die shaping and parison control method. The artificial intelligent (AI) comprised of artificial neural network and genetic algorithm was selected to optimize the die gap shape from the FEM results. The application of AI technique could optimize the suitable die gap shape for the parison blow molding which did not depend on the parison control method to produce rectangular bottles with the uniform wall. Particularly, this application can be used with cheap blow molding machines without a parison controller therefore it will reduce cost of production in the bottle blow molding process.

Keywords: AI, bottle, die shaping, FEM

Procedia PDF Downloads 239
655 Intrusion Detection Using Dual Artificial Techniques

Authors: Rana I. Abdulghani, Amera I. Melhum

Abstract:

With the abnormal growth of the usage of computers over networks and under the consideration or agreement of most of the computer security experts who said that the goal of building a secure system is never achieved effectively, all these points led to the design of the intrusion detection systems(IDS). This research adopts a comparison between two techniques for network intrusion detection, The first one used the (Particles Swarm Optimization) that fall within the field (Swarm Intelligence). In this Act, the algorithm Enhanced for the purpose of obtaining the minimum error rate by amending the cluster centers when better fitness function is found through the training stages. Results show that this modification gives more efficient exploration of the original algorithm. The second algorithm used a (Back propagation NN) algorithm. Finally a comparison between the results of two methods used were based on (NSL_KDD) data sets for the construction and evaluation of intrusion detection systems. This research is only interested in clustering the two categories (Normal and Abnormal) for the given connection records. Practices experiments result in intrude detection rate (99.183818%) for EPSO and intrude detection rate (69.446416%) for BP neural network.

Keywords: IDS, SI, BP, NSL_KDD, PSO

Procedia PDF Downloads 383
654 Housing Price Prediction Using Machine Learning Algorithms: The Case of Melbourne City, Australia

Authors: The Danh Phan

Abstract:

House price forecasting is a main topic in the real estate market research. Effective house price prediction models could not only allow home buyers and real estate agents to make better data-driven decisions but may also be beneficial for the property policymaking process. This study investigates the housing market by using machine learning techniques to analyze real historical house sale transactions in Australia. It seeks useful models which could be deployed as an application for house buyers and sellers. Data analytics show a high discrepancy between the house price in the most expensive suburbs and the most affordable suburbs in the city of Melbourne. In addition, experiments demonstrate that the combination of Stepwise and Support Vector Machine (SVM), based on the Mean Squared Error (MSE) measurement, consistently outperforms other models in terms of prediction accuracy.

Keywords: house price prediction, regression trees, neural network, support vector machine, stepwise

Procedia PDF Downloads 233
653 Application of Generalized Autoregressive Score Model to Stock Returns

Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke

Abstract:

The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.

Keywords: generalized autoregressive score model, South Africa, stock returns, time-varying

Procedia PDF Downloads 502
652 Risk Tolerance and Individual Worthiness Based on Simultaneous Analysis of the Cognitive Performance and Emotional Response to a Multivariate Situational Risk Assessment

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

A method and system for neuropsychological performance test, comprising a mobile terminal, used to interact with a cloud server which stores user information and is logged into by the user through the terminal device; the user information is directly accessed through the terminal device and is processed by artificial neural network, and the user information comprises user facial emotions information, performance test answers information and user chronometrics. This assessment is used to evaluate the cognitive performance and emotional response of the subject to a series of dichotomous questions describing various situations of daily life and challenging the users' knowledge, values, ethics, and principles. In industrial applications, the timing of this assessment will depend on the users' need to obtain a service from a provider, such as opening a bank account, getting a mortgage or an insurance policy, authenticating clearance at work, or securing online payments.

Keywords: artificial intelligence, neurofinance, neuropsychology, risk management

Procedia PDF Downloads 140
651 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 212
650 Language Processing of Seniors with Alzheimer’s Disease: From the Perspective of Temporal Parameters

Authors: Lai Yi-Hsiu

Abstract:

The present paper aims to examine the language processing of Chinese-speaking seniors with Alzheimer’s disease (AD) from the perspective of temporal cues. Twenty healthy adults, 17 healthy seniors, and 13 seniors with AD in Taiwan participated in this study to tell stories based on two sets of pictures. Nine temporal cues were fetched and analyzed. Oral productions in Mandarin Chinese were compared and discussed to examine to what extent and in what way these three groups of participants performed with significant differences. Results indicated that the age effects were significant in filled pauses. The dementia effects were significant in mean duration of pauses, empty pauses, filled pauses, lexical pauses, normalized mean duration of filled pauses and lexical pauses. The findings reported in the current paper help characterize the nature of language processing in seniors with or without AD, and contribute to the interactions between the AD neural mechanism and their temporal parameters.

Keywords: language processing, Alzheimer’s disease, Mandarin Chinese, temporal cues

Procedia PDF Downloads 448
649 Create a Brand Value Assessment Model to Choosing a Cosmetic Brand in Tehran Combining DEMATEL Techniques and Multi-Stage ANFIS

Authors: Hamed Saremi, Suzan Taghavy, Seyed Mohammad Hanif Sanjari, Mostafa Kahali

Abstract:

One of the challenges in manufacturing and service companies to provide a product or service is recognized Brand to consumers in target markets. They provide most of their processes under the same capacity. But the constant threat of devastating internal and external resources to prevent a rise Brands and more companies are recognizing the stages are bankrupt. This paper has tried to identify and analyze effective indicators of brand equity and focuses on indicators and presents a model of intelligent create a model to prevent possible damage. In this study, the identified indicators of brand equity are based on literature study and according to expert opinions, set of indicators By techniques DEMATEL Then to used Multi-Step Adaptive Neural-Fuzzy Inference system (ANFIS) to design a multi-stage intelligent system for assessment of brand equity.

Keywords: brand, cosmetic product, ANFIS, DEMATEL

Procedia PDF Downloads 418
648 Rare DCDC2 Mutation Causing Renal-Hepatic Ciliopathy

Authors: Atitallah Sofien, Bouyahia Olfa, Attar Souleima, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir

Abstract:

Introduction: Ciliopathies are a spectrum of diseases that have in common a defect in the synthesis of ciliary proteins. It is a rare cause of neonatal cholestasis. Clinical presentation varies extremely, and the main affected organs are the kidneys, liver, and pancreas. Methodology: This is a descriptive case report of a newborn who was admitted for exploration of neonatal cholestasis in the Paediatric Department C at the Children’s Hospital of Tunis, where the investigations concluded with a rare genetic mutation. Results: This is the case of a newborn male with no family history of hepatic and renal diseases, born to consanguineous parents, and from a well-monitored uneventful pregnancy. He developed jaundice on the second day of life, for which he received conventional phototherapy in the neonatal intensive care unit. He was admitted at 15 days for mild bronchiolitis. On clinical examination, intense jaundice was noted with normal stool and urine colour. Initial blood work showed an elevation in conjugated bilirubin and a high gamma-glutamyl transferase level. Transaminases and prothrombin time were normal. Abdominal sonography revealed hepatomegaly, splenomegaly, and undifferentiated renal cortex with bilateral medullar micro-cysts. Kidney function tests were normal. The infant received ursodeoxycholic acid and vitamin therapy. Genetic testing showed a homozygous mutation in the DCDC2 gene that hadn’t been documented before confirming the diagnosis of renal-hepatic ciliopathy. The patient has regular follow-ups, and his conjugated bilirubin and gamma-glutamyl transferase levels have been decreasing. Conclusion: Genetic testing has revolutionized the approach to etiological diagnosis in pediatric cholestasis. It enables personalised treatment strategies to better enhance the quality of life of patients and prevent potential complications following adequate long-term monitoring.

Keywords: cholestasis, newborn, ciliopathy, DCDC2, genetic

Procedia PDF Downloads 63
647 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning

Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker

Abstract:

Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.

Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16

Procedia PDF Downloads 153
646 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases

Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury

Abstract:

Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.

Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification

Procedia PDF Downloads 93
645 The Role of Artificial Intelligence in Concrete Constructions

Authors: Ardalan Tofighi Soleimandarabi

Abstract:

Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.

Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability

Procedia PDF Downloads 20
644 Feasibility Study and Energy Conversion Evaluation of Agricultural Waste Gasification in the Pomelo Garden, Taiwan

Authors: Yi-Hao Pai, Wen-Feng Chen

Abstract:

The planting area of Pomelo in Hualien, Taiwan amounts to thousands of hectares. Especially in the blooming season of Pomelo, it is an important producing area for Pomelo honey, and it is also a good test field for promoting the "Under-forest Economy". However, in the current Pomelo garden planting and management operations, the large amount of agricultural waste generated by the pruning of the branches causes environmental sanitation concerns, which can lead to the hiding of pests or the infection of the Pomelo tree, and indirectly increase the health risks of bees. Therefore, how to deal with the pruning of the branches and avoid open burning is a topic of social concern in recent years. In this research, afeasibility study evaluating energy conversion efficiency through agricultural waste gasification from the Pomelo garden, Taiwan, is demonstrated. we used a high-temperature gasifier to convert the pruning of the branches into syngas and biochar. In terms of syngas composition and calorific value assessment, we use the biogas monitoring system for analysis. Then, we used Raman spectroscopy and electron microscopy (EM) to diagnose the microstructure and surface morphology of biochar. The results indicate that the 1 ton of pruning of the branches can produce 1797.03m3 of syngas, corresponding to a calorific value of 9.1MJ/m3. The main components of the gas include CH4, H2, CO, and CO2, and the corresponding gas composition ratio is 16.8%, 7.1%, 13.7%, and 24.5%. Through the biomass syngas generator with a conversion efficiency of 30% for power generation, a total of 1,358kWh can be obtained per ton of pruning of the branches. In the research of biochar, its main characteristics in Raman spectroscopy are G bands and D bands. The first-order G and D bands are at 1580 and 1350 cm⁻¹, respectively. The G bands originates from the in-plane tangential stretching of the C−C bonds in the graphitic structure, and theD band corresponds to scattering from local defects or disorders present in carbon. The area ratio of D and G peaks (D/G) increases with the decrease of reaction temperature. The larger the D/G, the higher the defect concentration and the higher the porosity. This result is consistent with the microstructure displayed by SEM. The study is expected to be able to reuse agricultural waste and promote the development of agricultural and green energy circular economy.

Keywords: agricultural waste, gasification, energy conversion, pomelo garden

Procedia PDF Downloads 143
643 Prosodic Characteristics of Post Traumatic Stress Disorder Induced Speech Changes

Authors: Jarek Krajewski, Andre Wittenborn, Martin Sauerland

Abstract:

This abstract describes a promising approach for estimating post-traumatic stress disorder (PTSD) based on prosodic speech characteristics. It illustrates the validity of this method by briefly discussing results from an Arabic refugee sample (N= 47, 32 m, 15 f). A well-established standardized self-report scale “Reaction of Adolescents to Traumatic Stress” (RATS) was used to determine the ground truth level of PTSD. The speech material was prompted by telling about autobiographical related sadness inducing experiences (sampling rate 16 kHz, 8 bit resolution). In order to investigate PTSD-induced speech changes, a self-developed set of 136 prosodic speech features was extracted from the .wav files. This set was adapted to capture traumatization related speech phenomena. An artificial neural network (ANN) machine learning model was applied to determine the PTSD level and reached a correlation of r = .37. These results indicate that our classifiers can achieve similar results to those seen in speech-based stress research.

Keywords: speech prosody, PTSD, machine learning, feature extraction

Procedia PDF Downloads 92