Search results for: multi variable decision making
10321 The Latent Model of Linguistic Features in Korean College Students’ L2 Argumentative Writings: Syntactic Complexity, Lexical Complexity, and Fluency
Authors: Jiyoung Bae, Gyoomi Kim
Abstract:
This study explores a range of linguistic features used in Korean college students’ argumentative writings for the purpose of developing a model that identifies variables which predict writing proficiencies. This study investigated the latent variable structure of L2 linguistic features, including syntactic complexity, the lexical complexity, and fluency. One hundred forty-six university students in Korea participated in this study. The results of the study’s confirmatory factor analysis (CFA) showed that indicators of linguistic features from this study-provided a foundation for re-categorizing indicators found in extant research on L2 Korean writers depending on each latent variable of linguistic features. The CFA models indicated one measurement model of L2 syntactic complexity and L2 learners’ writing proficiency; these two latent factors were correlated with each other. Based on the overall findings of the study, integrated linguistic features of L2 writings suggested some pedagogical implications in L2 writing instructions.Keywords: linguistic features, syntactic complexity, lexical complexity, fluency
Procedia PDF Downloads 17410320 Number of Necessary Parameters for Parametrization of Stabilizing Controllers for two times two RHinf Systems
Authors: Kazuyoshi Mori
Abstract:
In this paper, we consider the number of parameters for the parametrization of stabilizing controllers for RHinf systems with size 2 × 2. Fortunately, any plant of this model can admit doubly coprime factorization. Thus we can use the Youla parameterization to parametrize the stabilizing contollers . However, Youla parameterization does not give itself the minimal number of parameters. This paper shows that the minimal number of parameters is four. As a result, we show that the Youla parametrization naturally gives the parameterization of stabilizing controllers with minimal numbers.Keywords: RHinfo, parameterization, number of parameters, multi-input, multi-output systems
Procedia PDF Downloads 41510319 Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel
Authors: Behzad Panahirad, UğUr Atikol
Abstract:
The current study is based on a combined heat and power system with multi-objectives, driven by biomass. The system consists of a combustion chamber (CC), a single effect absorption cooling system (SEACS), an air conditioning unit (AC), a reheat steam Rankine cycle (RRC), an organic Rankine cycle (ORC) and an electrolyzer. The purpose of this system is to produce hydrogen, electricity, heat, cooling, and air conditioning. All the simulations had been performed by Engineering Equation Solver (EES) software. Pine sawdust is the selected biofuel for the combustion process. The overall utilization factor (εₑₙ) and exergetic efficiency (ψₑₓ) were calculated to be 2.096 and 24.03% respectively. The performed renewable and environmental impact analysis indicated a sustainability index of 1.316 (SI) and a specific CO2 emission of 353.8 kg/MWh. The parametric study is conducted based on the variation of ambient (sink) temperature, biofuel mass flow rate, and boilers outlet temperatures. The parametric simulation showed that the increase in biofuel mass flow rate has a positive effect on the sustainability of the system.Keywords: biomass, exergy assessment, multi-objective plant, CO₂ emission, irreversibility
Procedia PDF Downloads 17410318 Insight-Based Evaluation of a Map-Based Dashboard
Authors: Anna Fredriksson Häägg, Charlotte Weil, Niklas Rönnberg
Abstract:
Map-based dashboards are used for data exploration every day. The present study used an insight-based methodology for evaluating a map-based dashboard that presents research findings of water management and ecosystem services in the Amazon. In addition to analyzing the insights gained from using the dashboard, the evaluation method was compared to standardized questionnaires and task-based evaluations. The result suggests that the dashboard enabled the participants to gain domain-relevant, complex insights regarding the topic presented. Furthermore, the insight-based analysis highlighted unexpected insights and hypotheses regarding causes and potential adaptation strategies for remediation. Although time- and resource-consuming, the insight-based methodology was shown to have the potential of thoroughly analyzing how end users can utilize map-based dashboards for data exploration and decision making. Finally, the insight-based methodology is argued to evaluate tools in scenarios more similar to real-life usage compared to task-based evaluation methods.Keywords: visual analytics, dashboard, insight-based evaluation, geographic visualization
Procedia PDF Downloads 11910317 Classification Method for Turnover While Sleeping Using Multi-Point Unconstrained Sensing Devices
Authors: K. Shiba, T. Kobayashi, T. Kaburagi, Y. Kurihara
Abstract:
Elderly population in the world is increasing, and consequently, their nursing burden is also increasing. In such situations, monitoring and evaluating their daily action facilitates efficient nursing care. Especially, we focus on an unconscious activity during sleep, i.e. turnover. Monitoring turnover during sleep is essential to evaluate various conditions related to sleep. Bedsores are considered as one of the monitoring conditions. Changing patient’s posture every two hours is required for caregivers to prevent bedsore. Herein, we attempt to develop an unconstrained nocturnal monitoring system using a sensing device based on piezoelectric ceramics that can detect the vibrations owing to human body movement on the bed. In the proposed method, in order to construct a multi-points sensing, we placed two sensing devices under the right and left legs at the head-side of an ordinary bed. Using this equipment, when a subject lies on the bed, feature is calculated from the output voltages of the sensing devices. In order to evaluate our proposed method, we conducted an experiment with six healthy male subjects. Consequently, the period during which turnover occurs can be correctly classified as the turnover period with 100% accuracy.Keywords: turnover, piezoelectric ceramics, multi-points sensing, unconstrained monitoring system
Procedia PDF Downloads 19910316 Pricing the Risk Associated to Weather of Variable Renewable Energy Generation
Authors: Jorge M. Uribe
Abstract:
We propose a methodology for setting the price of an insurance contract targeted to manage the risk associated with weather conditions that affect variable renewable energy generation. The methodology relies on conditional quantile regressions to estimate the weather risk of a solar panel. It is illustrated using real daily radiation and weather data for three cities in Spain (Valencia, Barcelona and Madrid) from February 2/2004 to January 22/2019. We also adapt the concepts of value at risk and expected short fall from finance to this context, to provide a complete panorama of what we label as weather risk. The methodology is easy to implement and can be used by insurance companies to price a contract with the aforementioned characteristics when data about similar projects and accurate cash flow projections are lacking. Our methodology assigns a higher price to an insurance product with the stated characteristics in Madrid, compared to Valencia and Barcelona. This is consistent with Madrid showing the largest interquartile range of operational deficits and it is unrelated to the average value deficit, which illustrates the importance of our proposal.Keywords: insurance, weather, vre, risk
Procedia PDF Downloads 15410315 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 4810314 Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation
Authors: U. Yavas, M. Gokasan
Abstract:
Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.Keywords: predictive control, engine control, engine modeling, PID control, feedforward compensation
Procedia PDF Downloads 63910313 MCDM Spectrum Handover Models for Cognitive Wireless Networks
Authors: Cesar Hernández, Diego Giral, Fernando Santa
Abstract:
The spectral handoff is important in cognitive wireless networks to ensure an adequate quality of service and performance for secondary user communications. This work proposes a benchmarking of performance of the three spectrum handoff models: VIKOR, SAW and MEW. Four evaluation metrics are used. These metrics are, accumulative average of failed handoffs, accumulative average of handoffs performed, accumulative average of transmission bandwidth and, accumulative average of the transmission delay. As a difference with related work, the performance of the three spectrum handoff models was validated with captured data of spectral occupancy in experiments realized at the GSM frequency band (824 MHz-849 MHz). These data represent the actual behavior of the licensed users for this wireless frequency band. The results of the comparative show that VIKOR Algorithm provides 15.8% performance improvement compared to a SAW Algorithm and, 12.1% better than the MEW Algorithm.Keywords: cognitive radio, decision making, MEW, SAW, spectrum handoff, VIKOR
Procedia PDF Downloads 44310312 Glycemic Control in Rice Consumption among Households with Diabetes Patients: The Role of Food Security
Authors: Chandanee Wasana Kalansooriya
Abstract:
Dietary behaviour is a crucial factor affecting diabetes control. With increasing rates of diabetes prevalence in Asian countries, examining their dietary patterns, which are largely based on rice, is timely required. It has been identified that higher consumption of some rice varieties is associated with increased risk of type 2 diabetes. Although diabetes patients are advised to consume healthier rice varieties, which contains low glycemic, several conditions, one of which food insecurity, make them difficult to preserve those healthy dietary guidelines. Hence this study tries to investigate how food security affects on making right decisions of rice consumption within diabetes affected households using a sample from Sri Lanka, a country which rice considered as the staple food and records the highest diabetes prevalence rate in South Asia. The study uses data from the Household Income and Expenditure Survey 2016, a nationally representative sample conducted by the Department of Census and Statistics, Sri Lanka. The survey used a two-stage stratified sampling method to cover different sectors and districts of the country and collected micro-data on demographics, health, income and expenditures of different categories. The study uses data from 2547 households which consist of one or more diabetes patients, based on the self-recorded health status. The Household Dietary Diversity Score (HDDS), which constructed based on twelve food groups, is used to measure the level of food security. Rice is categorized into three groups according to their Glycemic Index (GI), high GI, medium GI and low GI, and the likelihood and impact made by food security on each rice consumption categories are estimated using a Two-part Model. The shares of each rice categories out of total rice consumption is considered as the dependent variable to exclude the endogeneity issue between rice consumption and the HDDS. The results indicate that the consumption of medium GI rice is likely to increase with the increasing household food security, but low GI varieties are not. Households in rural and estate sectors are less likely and Tamil ethnic group is more likely to consume low GI rice varieties. Further, an increase in food security significantly decreases the consumption share of low GI rice, while it increases the share of medium GI varieties. The consumption share of low GI rice is largely affected by the ethnic variability. The effects of food security on the likelihood of consuming high GI rice varieties and changing its shares are statistically insignificant. Accordingly, the study concludes that a higher level of food security does not ensure diabetes patients are consuming healthy rice varieties or reducing consumption of unhealthy varieties. Hence policy attention must be directed towards educating people for making healthy dietary choices. Further, the study provides a room for further studies as it reveals considerable ethnic and sectorial differences in making healthy dietary decisions.Keywords: diabetes, food security, glycemic index, rice consumption
Procedia PDF Downloads 10710311 Jordan, Towards Eliminating Preventable Maternal Deaths
Authors: Abdelmanie Suleimat, Nagham Abu Shaqra, Sawsan Majali, Issam Adawi, Heba Abo Shindi, Anas Al Mohtaseb
Abstract:
The Government of Jordan recognizes that maternal mortality constitutes a grave public health problem. Over the past two decades, there has been significant progress in improving the quality of maternal health services, resulting in improved maternal and child health outcomes. Despite these efforts, measurement and analysis of maternal mortality remained a challenge, with significant discrepancies from previous national surveys that inhibited accuracy. In response with support from USAID, the Jordan Maternal Mortality Surveillance Response (JMMSR) System was established to collect, analyze, and equip policymakers with data for decision-making guided by interdisciplinary multi-levelled advisory groups aiming to eliminate preventable maternal deaths, A 2016 Public Health Bylaw required the notification of deaths among women of reproductive age. The JMMSR system was launched in 2018 and continues annually, analyzing data received from health facilities, to guide policy to prevent avoidable deaths. To date, there have been four annual national maternal mortality reports (2018-2021). Data is collected, reviewed by advisory groups, and then consolidated in an annual report to inform and guide the Ministry of Health (MOH); JMMSR collects the necessary information to calculate an accurate maternal mortality ratio and assists in identifying leading causes and contributing factors for each maternal death. Based on this data, national response plans are created. A monitoring and evaluation plan was designed to define, track, and improve implementation through indicators. Over the past four years, one of these indicators, ‘percent of facilities notifying respective health directorates of all deaths of women of reproductive age,’ increased annually from 82.16%, 92.95%, and 92.50% to 97.02%, respectively. The Government of Jordan demonstrated commitment to the JMMSR system by designating the MOH to primarily host the system and lead the development and dissemination of policies and procedures to standardize implementation. The data was translated into practical and evidence-based recommendations. The successful impact of results deepened the understanding of maternal mortality in Jordan, which convinced the MOH to amend the Bylaw now mandating electronic reporting of all births and neonatal deaths from health facilities to empower the JMMSR system, by developing a stillbirths and neonatal mortality surveillance and response system.Keywords: maternal health, maternal mortality, preventable maternal deaths, maternal morbidity
Procedia PDF Downloads 4410310 Predicting Potential Protein Therapeutic Candidates from the Gut Microbiome
Authors: Prasanna Ramachandran, Kareem Graham, Helena Kiefel, Sunit Jain, Todd DeSantis
Abstract:
Microbes that reside inside the mammalian GI tract, commonly referred to as the gut microbiome, have been shown to have therapeutic effects in animal models of disease. We hypothesize that specific proteins produced by these microbes are responsible for this activity and may be used directly as therapeutics. To speed up the discovery of these key proteins from the big-data metagenomics, we have applied machine learning techniques. Using amino acid sequences of known epitopes and their corresponding binding partners, protein interaction descriptors (PID) were calculated, making a positive interaction set. A negative interaction dataset was calculated using sequences of proteins known not to interact with these same binding partners. Using Random Forest and positive and negative PID, a machine learning model was trained and used to predict interacting versus non-interacting proteins. Furthermore, the continuous variable, cosine similarity in the interaction descriptors was used to rank bacterial therapeutic candidates. Laboratory binding assays were conducted to test the candidates for their potential as therapeutics. Results from binding assays reveal the accuracy of the machine learning prediction and are subsequently used to further improve the model.Keywords: protein-interactions, machine-learning, metagenomics, microbiome
Procedia PDF Downloads 37810309 An Efficient Hybrid Approach Based on Multi-Agent System and Emergence Method for the Integration of Systematic Preventive Maintenance Policies
Authors: Abdelhadi Adel, Kadri Ouahab
Abstract:
This paper proposes a hybrid algorithm for the integration of systematic preventive maintenance policies in hybrid flow shop scheduling to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling.Keywords: multi-agent systems, emergence, genetic algorithm, makespan, systematic maintenance, scheduling, hybrid flow shop scheduling
Procedia PDF Downloads 34010308 A Novel Meta-Heuristic Algorithm Based on Cloud Theory for Redundancy Allocation Problem under Realistic Condition
Authors: H. Mousavi, M. Sharifi, H. Pourvaziri
Abstract:
Redundancy Allocation Problem (RAP) is a well-known mathematical problem for modeling series-parallel systems. It is a combinatorial optimization problem which focuses on determining an optimal assignment of components in a system design. In this paper, to be more practical, we have considered the problem of redundancy allocation of series system with interval valued reliability of components. Therefore, during the search process, the reliabilities of the components are considered as a stochastic variable with a lower and upper bounds. In order to optimize the problem, we proposed a simulated annealing based on cloud theory (CBSAA). Also, the Monte Carlo simulation (MCS) is embedded to the CBSAA to handle the random variable components’ reliability. This novel approach has been investigated by numerical examples and the experimental results have shown that the CBSAA combining MCS is an efficient tool to solve the RAP of systems with interval-valued component reliabilities.Keywords: redundancy allocation problem, simulated annealing, cloud theory, monte carlo simulation
Procedia PDF Downloads 41610307 A Machine Learning Decision Support Framework for Industrial Engineering Purposes
Authors: Anli Du Preez, James Bekker
Abstract:
Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.Keywords: Data analytics, Industrial engineering, Machine learning, Value creation
Procedia PDF Downloads 17510306 Modelling Water Usage for Farming
Authors: Ozgu Turgut
Abstract:
Water scarcity is a problem for many regions which requires immediate action, and solutions cannot be postponed for a long time. It is known that farming consumes a significant portion of usable water. Although in recent years, the efforts to make the transition to dripping or spring watering systems instead of using surface watering started to pay off. It is also known that this transition is not necessarily translated into an increase in the capacity dedicated to other water consumption channels such as city water or power usage. In order to control and allocate the water resource more purposefully, new watering systems have to be used with monitoring abilities that can limit the usage capacity for each farm. In this study, a decision support model which relies on a bi-objective stochastic linear optimization is proposed, which takes crop yield and price volatility into account. The model generates annual planting plans as well as water usage limits for each farmer in the region while taking the total value (i.e., profit) of the overall harvest. The mathematical model is solved using the L-shaped method optimally. The decision support model can be especially useful for regional administrations to plan next year's planting and water incomes and expenses. That is why not only a single optimum but also a set of representative solutions from the Pareto set is generated with the proposed approach.Keywords: decision support, farming, water, tactical planning, optimization, stochastic, pareto
Procedia PDF Downloads 7710305 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 7810304 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion
Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin
Abstract:
This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection
Procedia PDF Downloads 48210303 MARTI and MRSD: Newly Developed Isolation-Damping Devices with Adaptive Hardening for Seismic Protection of Structures
Authors: Murast Dicleli, Ali SalemMilani
Abstract:
In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MRSD) is a patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable-via-design post-elastic stiffness. The mentioned property is a result of MRSD’s kinematic configuration which produces this geometric hardening, rather than being a secondary large-displacement effect. Additionally, the new system is capable of reaching high force and displacement capacities, shows high levels of damping, and very stable cyclic response. The device has gone through many stages of design refinement, multiple prototype verification tests and development of design guide-lines and computer codes to facilitate its implementation in practice. Practicality of the new device, as offspring of an academic sphere, is assured through extensive collaboration with industry in its final design stages, prototyping and verification test programs.Keywords: seismic, isolation, damper, adaptive stiffness
Procedia PDF Downloads 45710302 A Multi-Cluster Enterprise Framework for Evolution of Knowledge System among Enterprises, Governments and Research Institutions
Authors: Sohail Ahmed, Ke Xing
Abstract:
This research theoretically explored the evolution mechanism of enterprise technological innovation capability system (ETICS) from the perspective of complex adaptive systems (CAS). Starting from CAS theory, this study proposed an analytical framework for ETICS, its concepts and theory by integrating CAS methodology into the management of technological innovation capability of enterprises and discusses how to use the principles of complexity to analyze the composition, evolution and realization of the technological innovation capabilities in complex dynamic environment. This paper introduces the concept and interaction of multi-agent, the theoretical background of CAS and summarizes the sources of technological innovation, the elements of each subject and the main clusters of adaptive interactions and innovation activities. The concept of multi-agents is applied through the linkages of enterprises, research institutions and government agencies with the leading enterprises in industrial settings. The study was exploratory based on CAS theory. Theoretical model is built by considering technological and innovation literature from foundational to state of the art projects of technological enterprises. On this basis, the theoretical model is developed to measure the evolution mechanism of enterprise technological innovation capability system. This paper concludes that the main characteristics for evolution in technological systems are based on enterprise’s research and development personal, investments in technological processes and innovation resources are responsible for the evolution of enterprise technological innovation performance. The research specifically enriched the application process of technological innovation in institutional networks related to enterprises.Keywords: complex adaptive system, echo model, enterprise knowledge system, research institutions, multi-agents.
Procedia PDF Downloads 7410301 Evaluation of the Architect-Friendliness of LCA-Based Environmental Impact Assessment Tools
Authors: Elke Meex, Elke Knapen, Griet Verbeeck
Abstract:
The focus of sustainable building is gradually shifting from energy efficiency towards the more global environmental impact of building design during all life-cycle stages. In this context, many tools have been developed that use a LCA-approach to assess the environmental impact on a whole building level. Since the building design strongly influences the final environmental performance and the architect plays a key role in the design process, it is important that these tools are adapted to his work method and support the decision making from the early design phase on. Therefore, a comparative evaluation of the degree of architect-friendliness of some LCA tools on building level is made, based on an evaluation framework specifically developed for the architect’s viewpoint. In order to allow comparison of the results, a reference building has been designed, documented for different design phases and entered in all software tools. The evaluation according to the framework shows that the existing tools are not very architect-friendly. Suggestions for improvement are formulated.Keywords: architect-friendliness, design supportive value, evaluation framework, tool comparison
Procedia PDF Downloads 54510300 Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform
Authors: Temidayo Otunniyi
Abstract:
This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction.Keywords: software defined radio, channelization, critical sample rate, over-sample rate
Procedia PDF Downloads 15210299 The Money Supply Effect on Hong Kong’s Post-1997 Asian Financial Crisis Property Market
Authors: Keith Dominic T. Li
Abstract:
The soaring prices of residential properties in Hong Kong has become a social problem that even the middle class is having dif?iculties in purchasing homes. In making policies to curb the prices, it is important to determine the factors that contribute to the property in?lation. Many researches attribute this in?lation to macroeconomic factors especially the interest rate. However, it is important to remember that Hong Kong is under a Currency Board system which makes its interest rate exogenously determined. This research aims to show the signi?icance of the money supply on Hong Kong residential property prices in post-1997 Asian Financial Crisis period. Using money supply data, macroeconomic fundamentals, and demographic variables from 2000Q1 to 2013Q2, the factors contributed to residential property price in?lation are estimated to calculate the share of each explanatory variable in disparity. It is found that the Hong Kong property market is mainly driven by investment and that the in?lation on Hong Kong residential property prices can explained by the increase in the Hang Seng Index and in the money supply M2.Keywords: real estate, Hong Kong, property market, monetary economics, monetary policy
Procedia PDF Downloads 53510298 Open Educational Resource in Online Mathematics Learning
Authors: Haohao Wang
Abstract:
Technology, multimedia in Open Educational Resources, can contribute positively to student performance in an online instructional environment. Student performance data of past four years were obtained from an online course entitled Applied Calculus (MA139). This paper examined the data to determine whether multimedia (independent variable) had any impact on student performance (dependent variable) in online math learning, and how students felt about the value of the technology. Two groups of student data were analyzed, group 1 (control) from the online applied calculus course that did not use multimedia instructional materials, and group 2 (treatment) of the same online applied calculus course that used multimedia instructional materials. For the MA139 class, results indicate a statistically significant difference (p = .001) between the two groups, where group 1 had a final score mean of 56.36 (out of 100), group 2 of 70.68. Additionally, student testimonials were discussed in which students shared their experience in learning applied calculus online with multimedia instructional materials.Keywords: online learning, open educational resources, multimedia, technology
Procedia PDF Downloads 37910297 Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable
Authors: Azeddine El-Hassouny, Chandrashekhar Meshram, Geraldin Nanfack
Abstract:
In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32.Keywords: label noise, deep learning, discrete latent variable, variational inference, MNIST, CIFAR32
Procedia PDF Downloads 13210296 Robust Stabilization against Unknown Consensus Network
Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha
Abstract:
This paper considers a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. Applying known robust stabilization results, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.Keywords: single agent control, multi-agent system, transfer function, graph angle
Procedia PDF Downloads 45410295 Indicators to Assess the Quality of Health Services
Authors: Muyatdinova Aigul, Aitkaliyeva Madina
Abstract:
The article deals with the evaluation of the quality of medical services on the basis of quality indicators. For this purpose allocated initially the features of the medical services market. The Features of the market directly affect on the evaluation process that takes a multi-level and multi-stakeholder nature. Unlike ordinary goods market assessment of medical services does not only market. Such an assessment is complemented by continuous internal and external evaluation, including experts and accrediting bodies. In the article highlighted the composition of indicators for a comprehensive evaluationKeywords: health care market, quality of health services, indicators of care quality
Procedia PDF Downloads 43810294 Optical and Electrochromic Properties of All-Solid-State Electrochromic Device Consisting of Amorphous WO₃ and Ni(OH)₂
Authors: Ta-Huang Sun, Ming-Hao Hsieh, Min-Chuan Wang, Der-Jun Jan
Abstract:
Electrochromism refers to the persistent and reversible change of optical properties by an applied voltage pulse. There are many transition metal oxides exhibiting electrochromism, e.g. oxides of W, Ni, Ir, V, Ti, Co and Mo. Organic materials especially some conducting polymers such as poly(aniline), poly(3, 4-propylene- dioxythiophene) also received much attention for electrochromic (EC) applications. Electrochromic materials attract considerable interest because of their potential applications, such as information displays, smart windows, variable reflectance mirrors, and variable-emittance thermal radiators. In this study, the EC characteristics are investigated on an all-solid-state EC device composed of a-WO₃ and Ni(OH)₂ with a Ta₂O₅ protective layer which is prepared by magnetron sputtering. It is found that the transmittance modulation increases with decreasing the film thickness of Ta₂O₅. On the other hand, the transmittance modulation is 57% as the Ni(OH)₂/ITO is prepared by the linear-sweep potential cycling of the sputter-deposited Ta₂O₅/NiO/ITO in a 0.5 M LiClO₄+H₂O electrolyte. However, when Ni(OH)₂/ITO is prepared by a 0.01 M HCl electrolyte, the transmittance modulation of EC device can be improved to 61%.Keywords: electrochromic device, tungsten oxide, nickel, Ta₂O₅
Procedia PDF Downloads 29510293 Sailing/Anchoring: Home-making and Aspirations of Non-Majority Female Migrants in Shenzhen, China
Authors: Meiyun Meng
Abstract:
Urban China is now undergoing social transformation based on its rapid economic growth, developing its individualism and feminism. This paper approaches emergent relationships between female individuals’ everyday lives and urban China through internal migration, home-making practices and life-course perspectives. Focusing on Shenzhen, it explores how ten highly educated female migrants pursue aspirations of accommodating ‘non-majority’ identities, such as lesbians, divorced, or childless women, in urban China. Based on life stories and home video tours, this paper finds how these women develop non-majority lifestyles to negotiate their aspirations. On the one hand, they ‘sail’ away from past/present situations where collectivist and hetero-patriarchal norms marginalised their non-majority identities. On the other hand, they ‘anchor’ in places where ‘new’ socio-cultural contexts allow female individuals to pursue alternative opportunities and preferential lifestyles. This paper provides fresh insights to interpret the social transformation in urban China, under the collectivist culture and hetero-patriarchal norms, through the lens of individual everyday home-making practices.Keywords: home-making practices, internal migration, highly educated women, shenzhen, transforming urban China
Procedia PDF Downloads 9610292 A Cost-Effective Evaluation of Proper Control Process of Air-Cooled Heat Exchanger
Authors: Ali Ghobadi, Eisa Bakhoda, Hamid R. Javdan
Abstract:
One of the key factors in air cooled heat exchangers operation is the proper control of process stream outlet temperature. In this study, performances of two different air cooled heat exchangers have been considered, one of them condenses Propane and the other one cools LPG streams. In order to predict operation of these air coolers at different operating conditions. The results of simulations were applied for both economical evaluations and operational considerations for using convenient air cooler control system. In this paper, using On-Off fans method and installing variable speed drivers have been studied. Finally, the appropriate methods for controlling outlet temperature of process fluid streams as well as saving energy consumption were proposed. Using On-Off method for controlling studied Propane condenser by multiple fans is proper; while controlling LPG air cooler with lesser fans by means of two variable speed drivers is economically convenient.Keywords: air cooled heat exchanger, simulation, economical evaluation, energy, process control
Procedia PDF Downloads 415