Search results for: closed form solution
9807 Nanosilver Containing Biodegradable Bionanocomposites for Antimicrobial Application: Design, Preparation and Study
Authors: Nino Kupatadze, Shorena Tskhadadze, Mzevinar Bedinashvili, David Tugushi, Ramaz Katsarava
Abstract:
Surgical device-associated infection and biofilm formation are some of the major problems in biomedicine for today. The losing protection ability of conventional antimicrobial-drugs leads to the challenges in the current antibiotic therapy, the most serious of which is antibiotic resistance. Our strategy to overcome the biofilm formation consists in coating devices with polymeric film containing nanosilver(AgNPs) as a bactericidal agent. Such bionanocomposites are also promising as wound dressing materials. For this purpose, we have developed a new generation of AgNPs containing polymeric composites in which amino acid based biodegradable poly(ester amide)s (PEAs) were served as both matrices and AgNPs stabilizers. The AgNPs were formed by photochemical (daylight) reduction of AgNO3 in ethanol solution. The formation of AgNPs was monitored by coloring the solution in brownish-red and appearance of the absorption maximum at 420-430 nm in UV spectrum. Comparative studies of PEAs with polyvinylpyrrolidone (PVP) as particle stabilizers were carried out. It was found that PVP is better stabilizer in terms of particles yield and stability. Therefore, in subsequent experiments blends of PEAs and PVP were used as stabilizers for fabricating AgNPs. As expected, PVP increased the stabilizing effect and this apparently observed in the UV spectrum of the samples after 7 h daylight irradiation: for pure PVP λmax = 430 nm, D = 2.03, for pure PEA λmax= 420 nm, D = 0.65, and for the blend of PVP and PEA λmax = 435 nm, D = 1.88. Further study of the obtained nanobiocomposites is in progress now.Keywords: biodegradation, bionanocompositions, polymer, nanosilver
Procedia PDF Downloads 3429806 The Results of the Study of Clinical Forms of Actinic Keratosis in Uzbekistan
Authors: Ayubova Nargiza Mirzabixulaevna, Kiryakov Dmitriy Andreyevich
Abstract:
Relevance: According to experts from the World Health Organization, in 80% of cases, the causes of skin cancer are external factors: polluted air, radioactive substances, solar flares, and free radicals. In dermatology, one of the most common related to obligate diseases is actinic keratosis. Actinic keratosis (AC) is an area of abnormal proliferation and differentiation of keratinocytes, which carry the risk of progression into invasive squamous cell carcinoma of the skin. The purpose of the study is to study the prevalence of various forms of actinic keratosis among the population of Uzbekistan. Materials and methods of research: The study is based on the observation and clinical laboratory examination of 96 patients who were divided by gender and age. Women made up 45% and men made up 55%. The youngest patient was 43 years old, and the oldest was 92 years old. The control group consisted of 40 patients. The following clinical signs were evaluated: peeling, hyperkeratosis, erythema, pigmentation, atrophy. Results: Studies have shown that of all forms of actinic keratosis, erythematous (36%), hyperkeratotic (27%), pigmented (12%), cutaneous horn (7.0%), atrophic (7.0%), Actinic cheilitis (6%), lichenoid (5%) are common. Conclusion: Thus, the data we have obtained indicate that the main and pronounced clinical sign in the erythematous form is erythema and the hyperkeratic form is often found. With cutaneous horn, there is a sharp hyperkeratosis of the epidermis.Keywords: actinic keratosis, patient, skin cancer, obligate diseases
Procedia PDF Downloads 279805 Development of a Firmware Downloader for AVR Microcontrollers for Educational Purposes
Authors: Jungho Moon, Lae Jeong Park
Abstract:
This paper introduces the development of a firmware downloader for students attending microcontroller-related courses taught by the authors In the courses, AVR microcontroller experiment kits are used for programming exercise and the AVR microcontroller is programmed through a serial communication interface using a bootloader preinstalled on it. To use the bootloader, a matching firmware downloader that runs on a host computer and communicates with the bootloader is also required. When firmware downloading is completed, the serial port used for it needs to be closed. If the downloaded firmware uses serial communication, the serial port needs to be reopened in a serial terminal. As a result, the programmer of the AVR board switches from the downloader program and the serial terminal and vice versa. It is a simple task but quite a hassle to do each time new firmware needs downloading. To provide a more convenient programming environment for the courses, the authors developed a downloader program that includes a serial terminal in it. The program operates in downloader or terminal mode and the mode switching is performed automatically; therefore manual mode switching is not necessary. The feature provides a more convenient development environment by eliminating the need for manual mode switching each time firmware downloading is required.Keywords: bootloader, firmware downloader, microcontroller, serial communication
Procedia PDF Downloads 1949804 Design of an Acoustic System for Small-Scale Power Plants
Authors: Mohammadreza Judaki, Hosein Mohammadnezhad Shourkaei
Abstract:
Usually, noise generated by industrial units, is a pollution and disturbs people and causes problems for human health and sometimes these units will be closed because they cannot eliminate this pollution. Small-scale power plants usually are built close to residential areas, and noise generated by these power plants is an important factor in choosing their location and their design. Materials used to reduce noise are studied by measuring their absorption and reflection index numerically and experimentally. We can use MIKI model (Yasushi Miki, 1990) to simulate absorption index by using software like Ansys or Soundflow and compare calculation results with experimental simulation data. We consider high frequency sounds of power plant engines octave band diagram because dB value of high frequency noise is more noticeable for human ears. To prove this, in this study we first will study calculating octave band of engines exhausts and then we will study acoustic behavior of materials that we will use in high frequencies and this will give us our optimum noise reduction plan.Keywords: acoustic materials, eliminating engine noise, octave level diagram, power plant noise
Procedia PDF Downloads 1449803 The Mediating Effect of Resilience on the Relationship between Cultural Identity and Self-Concordance among Tibetan, Han and Hui Students
Authors: Chunhua Ma
Abstract:
Background: There is a relationship between cultural identity and psychological health. Resilience is an important factor of psychological health, and cultural identity will protect the resilience. The research showed that the cultural identity, resilience, and self-concordance of students from different cultures. It should be a theoretical basis to improve mental health of different nationalities students. And the role of resilience factors for adults’ cultural identity and self-concordance was deserve studied. Aims: The current study aimed to examine the relationship between cultural identity and self-concordance among Chinese academician from 3 minorities, postulating mediating by resilience. Methods: This study used cross-sectional and correlational design. Participants were 328 Chinese aged between 18 and 25 years. Data was collected via self-reports including both closed and opened questions. Results: Linear regression analysis controlling for age, gender, the result showed that: (a) Cultural identity was related to self-concordance, resilience was related to self-concordance and cultural identity was related to resilience, (b) Resilience mediated the link between cultural identity and self-concordance, respectively. Discussion: Our findings suggested that resilience and cultural identity are important factors in self-concordance. If minority college students realized the heterogeneous culture, it would alleviate their psychological conflict, stimulate their strength potential and improve their self-concordance.Keywords: cultural identity, resilience, self-concordance, mediating effect
Procedia PDF Downloads 4119802 Magnetodielectric Studies of Substituted La₂NiMnO₆ Double Perovskites
Authors: Pravin M. Tirmali, Sagar M. Mane, Snehal L. Kadam, Shriniwas B. Kulkarni
Abstract:
The La₂NiMnO₆ has been extensively studied for its ferromagnetic and magneto-dielectric properties. The La₂NiMnO₆ double perovskite is modified by partial substitution at B site by Fe transition metal. The La₂Ni₁₋ₓFeₓMnO₆ powder samples were synthesized by hydroxide co-precipitation method. The precipitate was dried and fine griended to form powder and pellet samples (2cm dia.) using hydraulic press. The powder and pellet samples of La₂Ni₁₋ₓFeₓMnO₆ were calcined at high temperature 1200°C to form a pure and stable composition. The nano polar regions (NPR) around Ni²⁺ or Mn⁴⁺ ions due to the cationic antisite disorder gives dielectric relaxation through their mutual interaction. The magneto-dielectric behavior is observed in substituted La₂NiMnO₆ shows Maxwell-Wagner and Debye relaxation due to grain boundary, interface and antisite defects. The magneto-dielectric properties of substituted La₂NiMnO₆ pellet sample were probed by Impedance spectroscopy measurements. The structural and magnetic investigations were also carried out by XRD, FESEM and VSM measurements of substituted La₂NiMnO₆ of powder samples. The synthesized La₂Ni₁₋ₓFeₓMnO₆ powder samples are polycrystalline and ferromagnetic in nature. The La₂Ni₁₋ₓFeₓMnO₆ samples exhibit ferromagnetic disorder with transition temperature near room temperature.Keywords: La₂NiMnO₆, nano polar regions (NPR), antisite defects, magnetodielctric
Procedia PDF Downloads 2139801 Carbohydrate Intake Estimation in Type I Diabetic Patients Described by UVA/Padova Model
Authors: David A. Padilla, Rodolfo Villamizar
Abstract:
In recent years, closed loop control strategies have been developed in order to establish a healthy glucose profile in type 1 diabetic mellitus (T1DM) patients. However, the controller itself is unable to define a suitable reference trajectory for glucose. In this paper, a control strategy Is proposed where the shape of the reference trajectory is generated bases in the amount of carbohydrates present during the digestive process, due to the effect of carbohydrate intake. Since there no exists a sensor to measure the amount of carbohydrates consumed, an estimator is proposed. Thus this paper presents the entire process of designing a carbohydrate estimator, which allows estimate disturbance for a predictive controller (MPC) in a T1MD patient, the estimation will be used to establish a profile of reference and improve the response of the controller by providing the estimated information of ingested carbohydrates. The dynamics of the diabetic model used are due to the equations described by the UVA/Padova model of the T1DMS simulator, the system was developed and simulated in Simulink, taking into account the noise and limitations of the glucose control system actuators.Keywords: estimation, glucose control, predictive controller, MPC, UVA/Padova
Procedia PDF Downloads 2619800 The Development of a Conceptual Framework for Assessing Neighborhood Sustainability in South Africa
Authors: Benedict Okundaye, Patricia Tzortzopoulos, Yun Gao
Abstract:
Scholars and international organisations have contended that developing nations lack the technical expertise, infrastructure, and ability to cope with or prepare for the neighbourhood’s sustainable development as Sustainable Development Goals, mainly targeting goal 11 unimpressive accomplishments. Both wealthy and impoverished communities are facing increasing issues due to rapid urbanisation and pandemics, particularly in Africa. The global neighbourhood challenges, especially in developing countries such as South Africa, include pollution poverty, energy poverty, digital poverty, environmental degradation, social exclusion, and socioeconomic inequalities. With the problematic international sustainability assessment tools lingering, few researchers have produced frameworks to engage the local contexts, but improvements are still required. This research anchors on developing a people-centred, flexible, and adaptable neighbourhood sustainability assessment framework that becomes a tool to assess the characteristics of neighbourhood sustainability in South Africa. The conceptual framework employs a variety of approaches, including broader dimensional factors, a closed-ended questionnaire, and statistical analysis to improve on and complement other existing frameworks.Keywords: participation, development, inclusion, urbanism, cities, resilience
Procedia PDF Downloads 909799 A Resolution on Ideal University Teachers Perspective of Turkish Students
Authors: Metin Özkan
Abstract:
In the last decade, Turkish higher education has been expanded dramatically. With this expansion, Turkey has come a long way in establishing an efficient system of higher education which is moving into a ‘mass’ system with institutions spanning the whole country. This expansion as a quantitative target leads to questioning the quality of higher education services. Especially, the qualities of higher education services depend on mainly quality of educators. Qualities of educators are most important in Turkish higher education system due to rapid rise in the number of universities and students. Therefore, it is seen important that reveals the portrait of ideal university teacher from the point of view student enrolled in Turkish higher education system. The purpose of this current study is to determine the portrait of ideal university teacher according to the views of Turkish Students. This research is carried out with descriptive scanning method and combined and mixed of qualitative and quantitative methodologies. Research data of qualitative section were collected at Gaziantep University with the participation of 45 students enrolled in 15 different faculties. Quantitative section was performed on 217 students. The data were obtained through semi-structured interview and “Ideal University Teacher Assessment” form developed by the researcher. The interview form consists of basically two parts. The first part of the interview was about personal information, the second part included questions about the characteristic of ideal university teacher. The questions which constitute the second part of the interview are; "what is a good university teacher like?” and “What human qualities and professional skills should a university teacher have? ". Assessment form which was created from the qualitative data obtained from interviews was used to attain scaling values for pairwise comparison and ranking judgment. According to study results, it has been found that ideal university teacher characteristics include the features like patient, tolerant, comprehensive and tolerant. Ideal university teacher, besides, implement the teaching methods like encouraging the students’ critical thinking, accepting the students’ recommendations on how to conduct the lesson and making use of the new technologies etc. Motivating and respecting the students, adopting a participative style, adopting a sincere way of manner also constitute the ideal university features relationships with students.Keywords: faculty, higher education, ideal university teacher, teacher behavior
Procedia PDF Downloads 2089798 Psychometric Properties of the Sensory Processing Measure Preschool-Home among Children with Autism in Saudi Arabia
Authors: Shahad Alkhalifah, Jonh Wright
Abstract:
Autism spectrum disorder (ASD) is a pervasive developmental disorder associated, for 42% to 88% of people with ASD, with sensory processing disorders. Sensory processing disorders (SPD) impact daily functioning, and it is, therefore, essential to be able to diagnose them accurately. Currently, however, there is no assessment tool available for the Saudi Arabia (SA) population that would cover a wider enough age range. Therefore, this study aimed to assess the psychometric properties of the Sensory Processing Measure Preschool-Home Form (SPM-P) when used in English, with a population of English-speaking Saudi participants. This was chosen due to time limitations and the urgency in providing practitioners with appropriate tools. Using a convenience sampling approach group of caregivers of typically developing (TD) children and a group of caregivers for children with ASD were recruited (N = 40 and N = 16, respectively), and completed the SPM-P Home Form. Participants were also invited to complete it again after two weeks for test-retest reliability, and respectively, nine and five agreed. Reliability analyses suggested some issues with a few items when used in the Saudi culture, and, along with interscale correlations, it highlighted concerns with the factor structure. However, it was also found that the SPM-P Home has good criterion-based validity, and it is, therefore, suggested that it can be used until a tool is developed through translation and cultural adaptation. It is also suggested that the current factor structure of SPM-P Home is reassessed using a large sample.Keywords: autism, sensory, assessment, reliability, sensory processing dysfunction, preschool, validity
Procedia PDF Downloads 2309797 A Bottom-Up Approach for the Synthesis of Highly Ordered Fullerene-Intercalated Graphene Hybrids
Authors: A. Kouloumpis, P. Zygouri, G. Potsi, K. Spyrou, D. Gournis
Abstract:
Much of the research effort on graphene focuses on its use as building block for the development of new hybrid nanostructures with well-defined dimensions and behavior suitable for applications among else in gas storage, heterogeneous catalysis, gas/liquid separations, nanosensing and biology. Towards this aim, here we describe a new bottom-up approach, which combines the self-assembly with the Langmuir Schaefer technique, for the production of fullerene-intercalated graphene hybrid materials. This new method uses graphene nanosheets as a template for the grafting of various fullerene C60 molecules (pure C60, bromo-fullerenes, C60Br24, and fullerols, C60(OH)24) in a bi-dimensional array, and allows for perfect layer-by-layer growth with control at the molecular level. Our film preparation approach involves a bottom-up layer-by-layer process that includes the formation of a hybrid organo-graphene Langmuir film hosting fullerene molecules within its interlayer spacing. A dilute water solution of chemically oxidized graphene (GO) was used as subphase on the Langmuir-Blodgett deposition system while an appropriate amino surfactant (that binds covalently with the GO) was applied for the formation of hybridized organo-GO. After the horizontal lift of a hydrophobic substrate, a surface modification of the GO platelets was performed by bringing the surface of the transferred Langmuir film in contact with a second amino surfactant solution (capable to interact strongly with the fullerene derivatives). In the final step, the hybrid organo-graphene film was lowered in the solution of the appropriate fullerene derivative. Multilayer films were constructed by repeating this procedure. Hybrid fullerene-based thin films deposited on various hydrophobic substrates were characterized by X-ray diffraction (XRD) and X-ray reflectivity (XRR), FTIR, and Raman spectroscopies, Atomic Force Microscopy, and optical measurements. Acknowledgments. This research has been co‐financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)‐Research Funding Program: THALES. Investing in knowledge society through the European Social Fund (no. 377285).Keywords: hybrids, graphene oxide, fullerenes, langmuir-blodgett, intercalated structures
Procedia PDF Downloads 3279796 Fluorescent Analysis of Gold Nanoclusters-Wool Keratin Addition to Copper Ions
Authors: Yao Xing, Hong Ling Liu, Wei Dong Yu
Abstract:
With the increase of global population, it is of importance for the safe water supply, while, the water-monitoring method with the capability of rapidness, low-cost, green and robustness remains unsolved. In this paper, gold nanoclusters-wool keratin is added into copper ions measured by fluorescent method in order to probe copper ions in aqueous solution. The fluorescent results show that gold nanoclusters-wool keratin exhibits high stability of pHs, while it is sensitive to temperature and time. Based on Gauss fitting method, the results exhibit that the slope of gold nanoclusters-wool keratin with pH resolution under acidic condition is higher compared to it under alkaline solutions. Besides, gold nanoclusters-wool keratin added into copper ions shows a fluorescence turn-off response transferring from red to blue under UV light, leading to the dramatically decreased fluorescent intensity of gold nanoclusters-wool keratin solution located at 690 nm. Moreover, the limited concentration of copper ions tested by gold nanoclusters-wool keratin system is around 1 µmol/L, which meets the need of detection standards. The fitting slope of Stern-Volmer plot at low concentration of copper ions is larger than it at high concentrations, which indicates that aggregated gold nanoclusters are from small amounts to large numbers with the increasing concentration of copper ions. It is expected to provide novel method and materials for copper ions testing with low cost, high efficiency, and easy operability.Keywords: gold nanoclusters, copper ions, wool keratin, fluorescence
Procedia PDF Downloads 2529795 Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development
Authors: Anand Kishore Kola, G. Uday Bhaskar Babu, Kotturi Ajay Kumar
Abstract:
The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV).Keywords: modern dynamic systems, fractional order controllers, maximum-sensitivity, IMC-PID controllers, Smith predictor, IAE and TV
Procedia PDF Downloads 659794 Toxicity Analysis of Metal Coating Industry Wastewaters by Phytotoxicity Method
Authors: Sukru Dursun, Zeynep Cansu Ayturan, Mostafa Maroof
Abstract:
Metal coating which is important method used for protecting metals against oxidation and corrosion, decreasing friction, protecting metals from chemicals, easing cleaning of the metals. There are several methods used for metal coating such as hot-dip galvanizing, thermal spraying, electroplating and sherardizing. Method which will be used for metal coating depends on the type of metal. The materials mostly used for coating are zinc, nickel, brass, chrome, gold, cadmium, copper, brass, and silver. Within these materials, chrome ion has significant negative impacts on human, other living organisms and environment. Moreover, especially on human chrome may cause lung cancer, stomach ulcer, kidney and liver function disorders and death. Therefore, wastewaters of metal coating industry including chrome should be treated very carefully. In this study, wastewater containing chrome produced by metal coating industry was analysed with phytotoxicity method that is based on measuring the reaction of some plant species against different concentrations of chrome solution. Main plants used for phytotoxicity tests are Lepidium sativum and Lemna minor. Owing to phytotoxicity test, assessing the negative effects of chrome which may harm plants and offering more accurate wastewater treatment techniques against chromium wastewater is possible. Furthermore, the results taken from phytotoxicity tests were analysed with respect to their variance and their importance against different concentrations of chrome solution were determined.Keywords: metal coating wastewater, chrome, phytotoxicity, Lepidium sativum, Lemna minor
Procedia PDF Downloads 3239793 Microstructure and Mechanical Properties of A201 Alloys with Additions of Si
Authors: Suzan Abd El Majid, Menachem Bamberger, Alexander Katsman
Abstract:
Two Al-4 wt. % Cu based alloys, A201 and A201+Si were investigated in the as-cast, solution treated and aged conditions. The addition of Si was used to improve the castability of the basic alloy. The all investigated alloys in the as-cast condition contained a eutectic structure along grain boundaries (GBs) with the composition Al-50at. %Cu that was found by HRSEM EDS. Addition of Si refined the grain structure and changed the amount of the eutectic regions, their size and shape. Additionally, the A201+Si microstructure contained Si rods and small amount of Al6Mn4Cu3Fe2Si-phase. Solution treatment (ST) at 550°C for ~ 20 hours resulted in a slight dissolution of the eutectic structure in the A201 alloy while substantial dissolution and change of the eutectic composition was detected in the A201+Si alloy. After ST, the A201alloy contained θ-Al2Cu, Al5Cu2Mn3 and Al9Cu7Mn3(Fe) phases associated to the GBs, while the ST A201+Si alloy contained θ-Al2Cu, Al6Mn4Cu3(Fe,Si) and Si94Mn3Al2Cu phases. Precipitation hardening during aging at 170°C was investigated for both alloys. The microhardness of the ST A201alloy increased during aging and reached the maximum value ~ 140 HV after 2 h of aging. Initial microhardness of the ST A201+Si alloy was distinctly higher than one of the ST A201 alloy, but it decreased during the first hour of aging, then increased and reached the same maximum value ~ 140 HV after ~ 4 h of aging. It was concluded that the Si addition influenced the precipitation sequence and slowed down the age hardening process. The Si induced grain refining and evolution of the eutectic structure during the heat treatments applied are discussed.Keywords: A201 alloys, castability, microstructure, micro-hardness
Procedia PDF Downloads 2929792 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang
Abstract:
Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing
Procedia PDF Downloads 709791 Re-Introduction of the Red-Necked Ostrich (Struthio camelus camelus) in Fenced Protected Area of Central Semi-Arid Area in Saudi Arabia
Authors: M. Zafar-ul Islam
Abstract:
The Arabian Ostrich Struthio camelus syriacus is a distinct subspecies that became extinct in the wild during the mid-20th century, due to over-hunting and commercial exploitation. The extant of S. c. camelus, a red-necked form that occurs in Northeastern Africa and is considered the most closely related, and possibly the same subspecies as the extinct Arabian form has been chosen for the reintroduction in 1988-89 by obtaining red-necked ostrich from Sudan from a private collection. Few birds were translocated to Mahazat as-Sayd protected area in 25 ha fenced enclosure in 1994. Until now a total of 96 red-necked ostrich have been released in fenced Mahazat as-Sayd, and the estimated population is between 125 to 150 individuals. Since captive flock of ostriches were translocated to Mahazat, their survival rate increased (>41%) by the end of 2000. On an average 22-30 chicks are hatched annually. A total of 137 ostriches recorded dead over the period of 13 years during the drought period. One of the key questions is what proportion of birds makes use of the supplementary food and water provisions, and what happens to those birds that do not use it? Captive-bred and wild-born adult and young ostriches died of starvation and thirst, despite being provisioned with alfalfa and water in several years. The present population of ostrich in Mahazat is more than 300.Keywords: red-necked ostrich, Struthio camelus camelus, reintroduction, Saudi Arabia, drought
Procedia PDF Downloads 3119790 Use of AI for the Evaluation of the Effects of Steel Corrosion in Mining Environments
Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento
Abstract:
Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH and, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics. Acknowledgments: This work has been supported by MCIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.Keywords: carbon steel, corrosion, acid mine drainage, artificial intelligence, fuzzy logic
Procedia PDF Downloads 209789 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method
Authors: Michael G. Pantelyat
Abstract:
Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.Keywords: electromagnetic devices, multiphysics, numerical analysis, simulation and design
Procedia PDF Downloads 3869788 Influence of Bed Depth on Performance of Wire Screen Packed Bed Solar Air Heater
Authors: Vimal Kumar Chouksey, S. P. Sharma
Abstract:
This paper deals with theoretical analysis of performance of solar air collector having its duct packed with blackened wire screen matrices. The heat transfer equations for two-dimensional fully developed fluid flows under quasi-steady-state conditions have been developed in order to analyze the effect of bed depth on performance. A computer programme is developed in C++ language to estimate the temperature rise of entering air for evaluation of performance by solving the governing equations numerically using relevant correlations for heat transfer coefficient for packed bed systems. Results of air temperature rise and thermal efficiency obtained from the analysis have been compared with available experimental results and results have been found fairly in closed agreement. It has been found that there is considerable enhancement in performance with packed bed collector upto a certain total bed depth. Effect of total bed depth on efficiency show that there is an upper limiting value of total bed depth beyond which the thermal efficiency begins to fall again and this type of characteristics behavior is observed at all mass flow rate.Keywords: plane collector, solar air heater, solar energy, wire screen packed bed
Procedia PDF Downloads 2369787 State Estimator Performance Enhancement: Methods for Identifying Errors in Modelling and Telemetry
Authors: M. Ananthakrishnan, Sunil K Patil, Koti Naveen, Inuganti Hemanth Kumar
Abstract:
State estimation output of EMS forms the base case for all other advanced applications used in real time by a power system operator. Ensuring tuning of state estimator is a repeated process and cannot be left once a good solution is obtained. This paper attempts to demonstrate methods to improve state estimator solution by identifying incorrect modelling and telemetry inputs to the application. In this work, identification of database topology modelling error by plotting static network using node-to-node connection details is demonstrated with examples. Analytical methods to identify wrong transmission parameters, incorrect limits and mistakes in pseudo load and generator modelling are explained with various cases observed. Further, methods used for active and reactive power tuning using bus summation display, reactive power absorption summary, and transformer tap correction are also described. In a large power system, verifying all network static data and modelling parameter on regular basis is difficult .The proposed tuning methods can be easily used by operators to quickly identify errors to obtain the best possible state estimation performance. This, in turn, can lead to improved decision-support capabilities, ultimately enhancing the safety and reliability of the power grid.Keywords: active power tuning, database modelling, reactive power, state estimator
Procedia PDF Downloads 79786 Improving the Accuracy of Stress Intensity Factors Obtained by Scaled Boundary Finite Element Method on Hybrid Quadtree Meshes
Authors: Adrian W. Egger, Savvas P. Triantafyllou, Eleni N. Chatzi
Abstract:
The scaled boundary finite element method (SBFEM) is a semi-analytical numerical method, which introduces a scaling center in each element’s domain, thus transitioning from a Cartesian reference frame to one resembling polar coordinates. Consequently, an analytical solution is achieved in radial direction, implying that only the boundary need be discretized. The only limitation imposed on the resulting polygonal elements is that they remain star-convex. Further arbitrary p- or h-refinement may be applied locally in a mesh. The polygonal nature of SBFEM elements has been exploited in quadtree meshes to alleviate all issues conventionally associated with hanging nodes. Furthermore, since in 2D this results in only 16 possible cell configurations, these are precomputed in order to accelerate the forward analysis significantly. Any cells, which are clipped to accommodate the domain geometry, must be computed conventionally. However, since SBFEM permits polygonal elements, significantly coarser meshes at comparable accuracy levels are obtained when compared with conventional quadtree analysis, further increasing the computational efficiency of this scheme. The generalized stress intensity factors (gSIFs) are computed by exploiting the semi-analytical solution in radial direction. This is initiated by placing the scaling center of the element containing the crack at the crack tip. Taking an analytical limit of this element’s stress field as it approaches the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary conditions, the geometry correction factor is obtained, and the gSIFs are then evaluated based on their formal definition. Since the SBFEM solution is constructed as a power series, not unlike mode superposition in FEM, the two modes contributing to the singular response of the element can be easily identified in post-processing. Compared to the extended finite element method (XFEM) this approach is highly convenient, since neither enrichment terms nor a priori knowledge of the singularity is required. Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with hybrid quadtrees employing linear elements, this does not always hold. Nevertheless, it has been shown that crack propagation schemes are highly effective even given very coarse discretization since they only rely on the ratio of mode one to mode two gSIFs. The absolute values of the gSIFs may still be subject to large errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from the approximation space of the cracked element, thus limiting the error in the gSIFs to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the cracked element, which elevates the amount of modes present in the solution. The resulting numerical description of the element is highly accurate, with the main error source now stemming from its boundary displacement solution. Numerical examples show that this post-processing procedure can significantly improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes resulting from hybrid quadtrees.Keywords: linear elastic fracture mechanics, generalized stress intensity factors, scaled finite element method, hybrid quadtrees
Procedia PDF Downloads 1469785 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study
Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio Domenico Grieco, Emanuela Guerriero
Abstract:
Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from Sanofi Aventis, a French pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.Keywords: constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries
Procedia PDF Downloads 6189784 Mixed Matrix Membranes Based on [M₂(DOBDC)] (M = Mg, Co, Ni) and Polydimethylsiloxane for CO₂/N₂ Separation
Authors: Hyunuk Kim, Yang No Yun, Muhammad Sohail, Jong-Ho Moon, Young Cheol Park
Abstract:
Metal-organic frameworks (MOFs), which are emerging absorbents assembled from metal ions and organic ligands, have attracted attention for their permanent porosity and design of tunable pore size. These microporous materials showed interesting properties for CO₂ storage and separation. In particular, MOFs with high surface area and open metal sites showed the remarkable adsorption capacity and selectivity for CO₂. [Mg₂ (DOBDC)] (DOBDC = 2,5-dioxidobenzene-1,4-dicarboxylate) (MOF-74 or CPO-27) is a well-known absorbent showing an exceptionally high CO₂ sorption capacity at low partial pressure and room temperature. In this work, we synthesized [M₂(DOBDC)(DMF)₂] (M = Mg, Co, Ni) and determined their single-crystal structures by X-ray crystallography. The removal of coordinated guest molecules generates Lewis acidic sites and showed high CO₂ adsorption affinity. Both CO₂ adsorption capacity and surface area are much higher than reported values in literature. To fabricate MMMs, microcrystalline [M₂ (DOBDC)(DMF)₂] was synthesized by microwave reaction and dispersed in PDMS solution. The MMMs with a various amount of [M₂ (DOBDC)(DMF) ₂] in PDMS were fabricated by a solution casting method. [M₂ (DOBDC)(DMF)₂]@PDMS membrane showed higher CO2 permeability and CO₂/N₂ selectivity than those of PDMS. Therefore, we believe that MMMs combining polymer and MOFs provide new materials for CO₂ separation technology.Keywords: metal-organic frameworks, mixed matrix membrane, CO2/N2 separation, polydimethylsiloxane (PDMS)
Procedia PDF Downloads 2069783 Development of Low-Cost Vibro-Acoustic, and Fire-Resistant, Insulation Material from Natural and Sustainable Sources
Authors: K. Nasir, S. Ahmad, A. Khan, H. Benkreira
Abstract:
The topic of the research is to develop sustainable fire-resistant materials for vibration and acoustic damping of structure and airborne noises from sustainable recycled materials and biodegradable binders. The paper reports, methods and techniques of enhancing fire resistive, vibration and acoustic properties of building insulation materials made from natural resources like wood and recycled materials like rubber and textile waste. The structures are designed to optimize the number, size and stratification of closed (heat insulating) and open (noise insulating) pores. The samples produced are tested for their heat and noise insulating properties, including vibration damping and their structural properties (airflow resistivity, porosity, tortuosity and elastic modulus). The structural properties are then used in theoretical models to check the acoustic insulation measurements. Initial data indicate that one layer of such material can yield as much as 18 times more damping, increasing the loss factor by 18%.Keywords: fire resistant, vibration damping, acoustic material, vibro-acoustic, thermal insulation, sustainable material, low cost materials, recycled materials, construction material
Procedia PDF Downloads 1349782 Mathematical Modelling of Slag Formation in an Entrained-Flow Gasifier
Authors: Girts Zageris, Vadims Geza, Andris Jakovics
Abstract:
Gasification processes are of great interest due to their generation of renewable energy in the form of syngas from biodegradable waste. It is, therefore, important to study the factors that play a role in the efficiency of gasification and the longevity of the machines in which gasification takes place. This study focuses on the latter, aiming to optimize an entrained-flow gasifier by reducing slag formation on its walls to reduce maintenance costs. A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification into account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, the effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and possible solutions for decreasing a number of undesirable deposits are proposed. Additionally, an estimate of the impact of different factors such as temperature, gas properties and gas content, and different forces acting on the particles undergoing gasification is given.Keywords: biomass particles, gasification, slag formation, turbulence k-ε modelling
Procedia PDF Downloads 2869781 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method
Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez
Abstract:
Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics
Procedia PDF Downloads 929780 Information Communication Technology Based Road Traffic Accidents’ Identification, and Related Smart Solution Utilizing Big Data
Authors: Ghulam Haider Haidaree, Nsenda Lukumwena
Abstract:
Today the world of research enjoys abundant data, available in virtually any field, technology, science, and business, politics, etc. This is commonly referred to as big data. This offers a great deal of precision and accuracy, supportive of an in-depth look at any decision-making process. When and if well used, Big Data affords its users with the opportunity to produce substantially well supported and good results. This paper leans extensively on big data to investigate possible smart solutions to urban mobility and related issues, namely road traffic accidents, its casualties, and fatalities based on multiple factors, including age, gender, location occurrences of accidents, etc. Multiple technologies were used in combination to produce an Information Communication Technology (ICT) based solution with embedded technology. Those technologies include principally Geographic Information System (GIS), Orange Data Mining Software, Bayesian Statistics, to name a few. The study uses the Leeds accident 2016 to illustrate the thinking process and extracts thereof a model that can be tested, evaluated, and replicated. The authors optimistically believe that the proposed model will significantly and smartly help to flatten the curve of road traffic accidents in the fast-growing population densities, which increases considerably motor-based mobility.Keywords: accident factors, geographic information system, information communication technology, mobility
Procedia PDF Downloads 2089779 Mitigating Acid Mine Drainage Pollution: A Case Study In the Witwatersrand Area of South Africa
Authors: Elkington Sibusiso Mnguni
Abstract:
In South Africa, mining has been a key economic sector since the discovery of gold in 1886 in the Witwatersrand region, where the city of Johannesburg is located. However, some mines have since been decommissioned, and the continuous pumping of acid mine drainage (AMD) also stopped causing the AMD to rise towards the ground surface. This posed a serious environmental risk to the groundwater resources and river systems in the region. This paper documents the development and extent of the environmental damage as well as the measures implemented by the government to alleviate such damage. The study will add to the body of knowledge on the subject of AMD treatment to prevent environmental degradation. The method used to gather and collate relevant data and information was the desktop study. The key findings include the social and environmental impact of the AMD, which include the pollution of water sources for domestic use leading to skin and other health problems and the loss of biodiversity in some areas. It was also found that the technical intervention of constructing a plant to pump and treat the AMD using the high-density sludge technology was the most effective short-term solution available while a long-term solution was being explored. Some successes and challenges experienced during the implementation of the project are also highlighted. The study will be a useful record of the current status of the AMD treatment interventions in the region.Keywords: acid mine drainage, groundwater resources, pollution, river systems, technical intervention, high density sludge
Procedia PDF Downloads 1869778 Spoken Subcorpus of the Kazakh Language: History, Content, Methodology
Authors: Kuralay Bimoldaevna Kuderinova, Beisenkhan Samal
Abstract:
The history of creating a linguistic corpus in Kazakh linguistics begins only in 2016. Though within this short period of time, the linguistic corpus has become a national corpus and its several subcorpora, namely historical, cultural, spoken, dialectological, writers’ subcorpus, proverbs subcorpus and poetic texts subcorpus, have appeared and are working effectively. Among them, the spoken corpus has its own characteristics. The Kazakh language is one of the languages belonging to the Kypchak-Nogai group of Turkic peoples. The Kazakh language is a language that, as a part of the former Soviet Union, was directly influenced by the Russian language and underwent major changes in its spoken and written forms. After the Republic of Kazakhstan gained independence, the Kazakh language received the status of the state language in 1991. However, today, the prestige of the Russian language is still higher than that of the Kazakh language. Therefore, the direct influence of the Russian language on the structure, style, and vocabulary of the Kazakh language continues. In particular, it can be said that the national practice of the spoken language is disappearing, as the spoken form of Kazakh is not used in official gatherings and events of state importance. In this regard, it is very important to collect and preserve examples of spoken language. Recording exemplary spoken texts, converting them into written form, and providing their audio along with orphoepic explanations will serve as a valuable tool for teaching and learning the Kazakh language. Therefore, the report will cover interesting aspects and scientific foundations related to the creation, content, and methodology of the oral subcorpus of the Kazakh language.Keywords: spoken corpus, Kazakh language, orthoepic norm, LLM
Procedia PDF Downloads 8