Search results for: Vapor Extraction
245 Application of Deep Learning and Ensemble Methods for Biomarker Discovery in Diabetic Nephropathy through Fibrosis and Propionate Metabolism Pathways
Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei
Abstract:
Diabetic nephropathy (DN) is a major complication of diabetes, with fibrosis and propionate metabolism playing critical roles in its progression. Identifying biomarkers linked to these pathways may provide novel insights into DN diagnosis and treatment. This study aims to identify biomarkers associated with fibrosis and propionate metabolism in DN. Analyze the biological pathways and regulatory mechanisms of these biomarkers. Develop a machine learning model to predict DN-related biomarkers and validate their functional roles. Publicly available transcriptome datasets related to DN (GSE96804 and GSE104948) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/gds), and 924 propionate metabolism-related genes (PMRGs) and 656 fibrosis-related genes (FRGs) were identified. The analysis began with the extraction of DN-differentially expressed genes (DN-DEGs) and propionate metabolism-related DEGs (PM-DEGs), followed by the intersection of these with fibrosis-related genes to identify key intersected genes. Instead of relying on traditional models, we employed a combination of deep neural networks (DNNs) and ensemble methods such as Gradient Boosting Machines (GBM) and XGBoost to enhance feature selection and biomarker discovery. Recursive feature elimination (RFE) was coupled with these advanced algorithms to refine the selection of the most critical biomarkers. Functional validation was conducted using convolutional neural networks (CNN) for gene set enrichment and immunoinfiltration analysis, revealing seven significant biomarkers—SLC37A4, ACOX2, GPD1, ACE2, SLC9A3, AGT, and PLG. These biomarkers are involved in critical biological processes such as fatty acid metabolism and glomerular development, providing a mechanistic link to DN progression. Furthermore, a TF–miRNA–mRNA regulatory network was constructed using natural language processing models to identify 8 transcription factors and 60 miRNAs that regulate these biomarkers, while a drug–gene interaction network revealed potential therapeutic targets such as UROKINASE–PLG and ATENOLOL–AGT. This integrative approach, leveraging deep learning and ensemble models, not only enhances the accuracy of biomarker discovery but also offers new perspectives on DN diagnosis and treatment, specifically targeting fibrosis and propionate metabolism pathways.Keywords: diabetic nephropathy, deep neural networks, gradient boosting machines (GBM), XGBoost
Procedia PDF Downloads 4244 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions
Authors: Erva Akin
Abstract:
– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.Keywords: artificial intelligence, copyright, data governance, machine learning
Procedia PDF Downloads 83243 Automated Transformation of 3D Point Cloud to BIM Model: Leveraging Algorithmic Modeling for Efficient Reconstruction
Authors: Radul Shishkov, Orlin Davchev
Abstract:
The digital era has revolutionized architectural practices, with building information modeling (BIM) emerging as a pivotal tool for architects, engineers, and construction professionals. However, the transition from traditional methods to BIM-centric approaches poses significant challenges, particularly in the context of existing structures. This research introduces a technical approach to bridge this gap through the development of algorithms that facilitate the automated transformation of 3D point cloud data into detailed BIM models. The core of this research lies in the application of algorithmic modeling and computational design methods to interpret and reconstruct point cloud data -a collection of data points in space, typically produced by 3D scanners- into comprehensive BIM models. This process involves complex stages of data cleaning, feature extraction, and geometric reconstruction, which are traditionally time-consuming and prone to human error. By automating these stages, our approach significantly enhances the efficiency and accuracy of creating BIM models for existing buildings. The proposed algorithms are designed to identify key architectural elements within point clouds, such as walls, windows, doors, and other structural components, and to translate these elements into their corresponding BIM representations. This includes the integration of parametric modeling techniques to ensure that the generated BIM models are not only geometrically accurate but also embedded with essential architectural and structural information. Our methodology has been tested on several real-world case studies, demonstrating its capability to handle diverse architectural styles and complexities. The results showcase a substantial reduction in time and resources required for BIM model generation while maintaining high levels of accuracy and detail. This research contributes significantly to the field of architectural technology by providing a scalable and efficient solution for the integration of existing structures into the BIM framework. It paves the way for more seamless and integrated workflows in renovation and heritage conservation projects, where the accuracy of existing conditions plays a critical role. The implications of this study extend beyond architectural practices, offering potential benefits in urban planning, facility management, and historic preservation.Keywords: BIM, 3D point cloud, algorithmic modeling, computational design, architectural reconstruction
Procedia PDF Downloads 60242 Building up Regional Innovation Systems (RIS) for Development: The Case Study of the State of Mexico, México
Authors: Jose Luis Solleiro, Rosario Castanon, Laura Elena Martinez
Abstract:
The State of Mexico is an administrative entity of Mexico, and it is one of the most important territories due to its great economic and social impact for the whole country, especially since it contributes with more than eight of the national Gross Domestic Product (GDP). The State of Mexico has a population of over seventeen million people and host very important business and productive industries such as Automotive, Chemicals, Pharmaceutical, and Agri-food. In 2017, the State Development Plan (Plan Estatal de Desarrollo in Spanish) which is a policy document that rules State's economic actions and integrates the bases for sectoral and regional programs to achieve regional development), raised innovation as a key aspect to boost competitiveness and productivity of the State of Mexico. Therefore, in line with this proposal, in 2018 the Mexican Council for Science and Technology (COMECYT for its acronym in Spanish), an institution in charge of promoting public science and technology policies in the State of Mexico, took actions towards building up the State´s Innovation System. Hence, the main objective of this paper is to review and analyze the process to create RIS in the State of Mexico. We focus on the key elements of the process, the diverse actors that were involved in it, the activities that were carried out and the identification of the challenges, findings, successes, and failures of the intended exercise. The methodology used to analyze the structure of the Innovation System of the State of Mexico is based on two elements: the case study and the research-action approach. The main objective of the paper, the case study was based on semi-structured interviews with key actors who have participated in the process of launching the RIS of the State of Mexico. Additionally, we analyzed the information reports and other documents that were elaborated during the process of shaping the State's innovation system. Finally, the results obtained in the process were also examined. The relevance of this investigation fundamentally rests in two elements: 1) keeping documental record of the process of building a RIS in Mexico; and 2) carrying out the analysis of this case study recognizing the importance of knowledge extraction and dissemination, so that lessons on this matter may be useful for similar experiences in the future. We conclude that in Mexico, documentation and analysis efforts related to the formation of RIS and interaction processes between innovation ecosystem actors are scarce, so documents like are of great importance, especially since it generates a series of findings and recommendations for the building of RIS.Keywords: regional innovation systems, innovation, development, competitiveness
Procedia PDF Downloads 116241 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice
Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha
Abstract:
Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics
Procedia PDF Downloads 64240 Purification of Bacillus Lipopeptides for Diverse Applications
Authors: Vivek Rangarajan, Kim G. Clarke
Abstract:
Bacillus lipopeptides are biosurfactants with wide ranging applications in the medical, food, agricultural, environmental and cosmetic industries. They are produced as a mix of three families, surfactin, iturin and fengycin, each comprising a large number of homologues of varying functionalities. Consequently, the method and degree of purification of the lipopeptide cocktail becomes particularly important if the functionality of the lipopeptide end-product is to be maximized for the specific application. However, downstream processing of Bacillus lipopeptides is particularly challenging due to the subtle variations observed in the different lipopeptide homologues and isoforms. To date, the most frequently used lipopeptide purification operations have been acid precipitation, solvent extraction, membrane ultrafiltration, adsorption and size exclusion. RP-HPLC (reverse phase high pressure liquid chromatography) also has potential for fractionation of the lipopeptide homologues. In the studies presented here, membrane ultrafiltration and RP-HPLC were evaluated for lipopeptide purification to different degrees of purities for maximum functionality. Batch membrane ultrafiltration using 50 kDa polyether sulphone (PES) membranes resulted in lipopeptide recovery of about 68% for surfactin and 82 % for fengycin. The recovery was further improved to 95% by using size-conditioned lipopeptide micelles. The conditioning of lipopeptides with Ca2+ ions resulted in uniformly sized micelles with average size of 96.4 nm and a polydispersity index of 0.18. The size conditioning also facilitated removal of impurities (molecular weight ranging between 2335-3500 Da) through operation of the system under dia-filtration mode, in a way similar to salt removal from protein by dialysis. The resultant purified lipopeptide was devoid of macromolecular impurities and could ideally suit applications in the cosmetic and food industries. Enhanced purification using RP-HPLC was carried out in an analytical C18 column, with the aim to fractionate lipopeptides into their constituent homologues. The column was eluted with mobile phase comprising acetonitrile and water over an acetonitrile gradient, 35% - 80%, over 70 minutes. The gradient elution program resulted in as many as 41 fractions of individual lipopeptide homologues. The efficacy test of these fractions against fungal phytopathogens showed that first 21 fractions, identified to be homologues of iturins and fengycins, displayed maximum antifungal activities, suitable for biocontrol in the agricultural industry. Thus, in the current study, the downstream processing of lipopeptides leading to tailor-made products for selective applications was demonstrated using two major downstream unit operations.Keywords: bacillus lipopeptides, membrane ultrafiltration, purification, RP-HPLC
Procedia PDF Downloads 204239 Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils
Authors: Mir Md. Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen
Abstract:
Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used.Keywords: copper, Klara, lime, N100, phytoextraction
Procedia PDF Downloads 145238 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 72237 Effects of Bleaching Procedures on Dentine Sensitivity
Authors: Suhayla Reda Al-Banai
Abstract:
Problem Statement: Tooth whitening was used for over one hundred and fifty year. The question concerning the whiteness of teeth is a complex one since tooth whiteness will vary from individual to individual, dependent on age and culture, etc. Tooth whitening following treatment may be dependent on the type of whitening system used to whiten the teeth. There are a few side-effects to the process, and these include tooth sensitivity and gingival irritation. Some individuals may experience no pain or sensitivity following the procedure. Purpose: To systematically review the available published literature until 31st December 2021 to identify all relevant studies for inclusion and to determine whether there was any evidence demonstrating that the application of whitening procedures resulted in the tooth sensitivity. Aim: Systematically review the available published works of literature to identify all relevant studies for inclusion and to determine any evidence demonstrating that application of 10% & 15% carbamide peroxide in tooth whitening procedures resulted in tooth sensitivity. Material and Methods: Following a review of 70 relevant papers from searching both electronic databases (OVID MEDLINE and PUBMED) and hand searching of relevant written journals, 49 studies were identified, 42 papers were subsequently excluded, and 7 studies were finally accepted for inclusion. The extraction of data for inclusion was conducted by two reviewers. The main outcome measures were the methodology and assessment used by investigators to evaluate tooth sensitivity in tooth whitening studies. Results: The reported evaluation of tooth sensitivity during tooth whitening procedures was based on the subjective response of subjects rather than a recognized methodology for evaluating. One of the problems in evaluating was the lack of homogeneity in study design. Seven studies were included. The studies included essential features namely: randomized group, placebo controls, doubleblind and single-blind. Drop-out was obtained from two of included studies. Three of the included studies reported sensitivity at the baseline visit. Two of the included studies mentioned the exclusion criteria Conclusions: The results were inconclusive due to: Limited number of included studies, the study methodology, and evaluation of DS reported. Tooth whitening procedures adversely affect both hard and soft tissues in the oral cavity. Sideeffects are mild and transient in nature. Whitening solutions with greater than 10% carbamide peroxide causes more tooth sensitivity. Studies using nightguard vital bleaching with 10% carbamide peroxide reported two side effects tooth sensitivity and gingival irritation, although tooth sensitivity was more prevalent than gingival irritationKeywords: dentine, sensitivity, bleaching, carbamide peroxde
Procedia PDF Downloads 69236 Radical Scavenging Activity of Protein Extracts from Pulse and Oleaginous Seeds
Authors: Silvia Gastaldello, Maria Grillo, Luca Tassoni, Claudio Maran, Stefano Balbo
Abstract:
Antioxidants are nowadays attractive not only for the countless benefits to the human and animal health, but also for the perspective of use as food preservative instead of synthetic chemical molecules. In this study, the radical scavenging activity of six protein extracts from pulse and oleaginous seeds was evaluated. The selected matrices are Pisum sativum (yellow pea from two different origins), Carthamus tinctorius (safflower), Helianthus annuus (sunflower), Lupinus luteus cv Mister (lupin) and Glycine max (soybean), since they are economically interesting for both human and animal nutrition. The seeds were grinded and proteins extracted from 20mg powder with a specific vegetal-extraction kit. Proteins have been quantified through Bradford protocol and scavenging activity was revealed using DPPH assay, based on radical DPPH (2,2-diphenyl-1-picrylhydrazyl) absorbance decrease in the presence of antioxidants molecules. Different concentrations of the protein extract (1, 5, 10, 50, 100, 500 µg/ml) were mixed with DPPH solution (DPPH 0,004% in ethanol 70% v/v). Ascorbic acid was used as a scavenging activity standard reference, at the same six concentrations of protein extracts, while DPPH solution was used as control. Samples and standard were prepared in triplicate and incubated for 30 minutes in dark at room temperature, the absorbance was read at 517nm (ABS30). Average and standard deviation of absorbance values were calculated for each concentration of samples and standard. Statistical analysis using t-students and p-value were performed to assess the statistical significance of the scavenging activity difference between the samples (or standard) and control (ABSctrl). The percentage of antioxidant activity has been calculated using the formula [(ABSctrl-ABS30)/ABSctrl]*100. The obtained results demonstrate that all matrices showed antioxidant activity. Ascorbic acid, used as standard, exhibits a 96% scavenging activity at the concentration of 500 µg/ml. At the same conditions, sunflower, safflower and yellow peas revealed the highest antioxidant performance among the matrices analyzed, with an activity of 74%, 68% and 70% respectively (p < 0.005). Although lupin and soybean exhibit a lower antioxidant activity compared to the other matrices, they showed a percentage of 46 and 36 respectively. All these data suggest the possibility to use undervalued edible matrices as antioxidants source. However, further studies are necessary to investigate a possible synergic effect of several matrices as well as the impact of industrial processes for a large-scale approach.Keywords: antioxidants, DPPH assay, natural matrices, vegetal proteins
Procedia PDF Downloads 430235 Bioleaching of Metals Contained in Spent Catalysts by Acidithiobacillus thiooxidans DSM 26636
Authors: Andrea M. Rivas-Castillo, Marlenne Gómez-Ramirez, Isela Rodríguez-Pozos, Norma G. Rojas-Avelizapa
Abstract:
Spent catalysts are considered as hazardous residues of major concern, mainly due to the simultaneous presence of several metals in elevated concentrations. Although hydrometallurgical, pyrometallurgical and chelating agent methods are available to remove and recover some metals contained in spent catalysts; these procedures generate potentially hazardous wastes and the emission of harmful gases. Thus, biotechnological treatments are currently gaining importance to avoid the negative impacts of chemical technologies. To this end, diverse microorganisms have been used to assess the removal of metals from spent catalysts, comprising bacteria, archaea and fungi, whose resistance and metal uptake capabilities differ depending on the microorganism tested. Acidophilic sulfur oxidizing bacteria have been used to investigate the biotreatment and extraction of valuable metals from spent catalysts, namely Acidithiobacillus thiooxidans and Acidithiobacillus ferroxidans, as they present the ability to produce leaching agents such as sulfuric acid and sulfur oxidation intermediates. In the present work, the ability of A. thiooxidans DSM 26636 for the bioleaching of metals contained in five different spent catalysts was assessed by growing the culture in modified Starkey mineral medium (with elemental sulfur at 1%, w/v), and 1% (w/v) pulp density of each residue for up to 21 days at 30 °C and 150 rpm. Sulfur-oxidizing activity was periodically evaluated by determining sulfate concentration in the supernatants according to the NMX-k-436-1977 method. The production of sulfuric acid was assessed in the supernatants as well, by a titration procedure using NaOH 0.5 M with bromothymol blue as acid-base indicator, and by measuring pH using a digital potentiometer. On the other hand, Inductively Coupled Plasma - Optical Emission Spectrometry was used to analyze metal removal from the five different spent catalysts by A. thiooxidans DSM 26636. Results obtained show that, as could be expected, sulfuric acid production is directly related to the diminish of pH, and also to highest metal removal efficiencies. It was observed that Al and Fe are recurrently removed from refinery spent catalysts regardless of their origin and previous usage, although these removals may vary from 9.5 ± 2.2 to 439 ± 3.9 mg/kg for Al, and from 7.13 ± 0.31 to 368.4 ± 47.8 mg/kg for Fe, depending on the spent catalyst proven. Besides, bioleaching of metals like Mg, Ni, and Si was also obtained from automotive spent catalysts, which removals were of up to 66 ± 2.2, 6.2±0.07, and 100±2.4, respectively. Hence, the data presented here exhibit the potential of A. thiooxidans DSM 26636 for the simultaneous bioleaching of metals contained in spent catalysts from diverse provenance.Keywords: bioleaching, metal removal, spent catalysts, Acidithiobacillus thiooxidans
Procedia PDF Downloads 139234 Acrylic Microspheres-Based Microbial Bio-Optode for Nitrite Ion Detection
Authors: Siti Nur Syazni Mohd Zuki, Tan Ling Ling, Nina Suhaity Azmi, Chong Kwok Feng, Lee Yook Heng
Abstract:
Nitrite (NO2-) ion is used prevalently as a preservative in processed meat. Elevated levels of nitrite also found in edible bird’s nests (EBNs). Consumption of NO2- ion at levels above the health-based risk may cause cancer in humans. Spectrophotometric Griess test is the simplest established standard method for NO2- ion detection, however, it requires careful control of pH of each reaction step and susceptible to strong oxidants and dyeing interferences. Other traditional methods rely on the use of laboratory-scale instruments such as GC-MS, HPLC and ion chromatography, which cannot give real-time response. Therefore, it is of significant need for devices capable of measuring nitrite concentration in-situ, rapidly and without reagents, sample pretreatment or extraction step. Herein, we constructed a microspheres-based microbial optode for visual quantitation of NO2- ion. Raoutella planticola, the bacterium expressing NAD(P)H nitrite reductase (NiR) enzyme has been successfully extracted by microbial technique from EBN collected from local birdhouse. The whole cells and the lipophilic Nile Blue chromoionophore were physically absorbed on the photocurable poly(n-butyl acrylate-N-acryloxysuccinimide) [poly (nBA-NAS)] microspheres, whilst the reduced coenzyme NAD(P)H was covalently immobilized on the succinimide-functionalized acrylic microspheres to produce a reagentless biosensing system. Upon the NiR enzyme catalyzes the oxidation of NAD(P)H to NAD(P)+, NO2- ion is reduced to ammonium hydroxide, and that a colour change from blue to pink of the immobilized Nile Blue chromoionophore is perceived as a result of deprotonation reaction increasing the local pH in the microspheres membrane. The microspheres-based optosensor was optimized with a reflectance spectrophotometer at 639 nm and pH 8. The resulting microbial bio-optode membrane could quantify NO2- ion at 0.1 ppm and had a linear response up to 400 ppm. Due to the large surface area to mass ratio of the acrylic microspheres, it allows efficient solid state diffusional mass transfer of the substrate to the bio-recognition phase, and achieve the steady state response as fast as 5 min. The proposed optical microbial biosensor requires no sample pre-treatment step and possesses high stability as the whole cell biocatalyst provides protection to the enzymes from interfering substances, hence it is suitable for measurements in contaminated samples.Keywords: acrylic microspheres, microbial bio-optode, nitrite ion, reflectometric
Procedia PDF Downloads 445233 A Geographical Spatial Analysis on the Benefits of Using Wind Energy in Kuwait
Authors: Obaid AlOtaibi, Salman Hussain
Abstract:
Wind energy is associated with many geographical factors including wind speed, climate change, surface topography, environmental impacts, and several economic factors, most notably the advancement of wind technology and energy prices. It is the fastest-growing and least economically expensive method for generating electricity. Wind energy generation is directly related to the characteristics of spatial wind. Therefore, the feasibility study for the wind energy conversion system is based on the value of the energy obtained relative to the initial investment and the cost of operation and maintenance. In Kuwait, wind energy is an appropriate choice as a source of energy generation. It can be used in groundwater extraction in agricultural areas such as Al-Abdali in the north and Al-Wafra in the south, or in fresh and brackish groundwater fields or remote and isolated locations such as border areas and projects away from conventional power electricity services, to take advantage of alternative energy, reduce pollutants, and reduce energy production costs. The study covers the State of Kuwait with an exception of metropolitan area. Climatic data were attained through the readings of eight distributed monitoring stations affiliated with Kuwait Institute for Scientific Research (KISR). The data were used to assess the daily, monthly, quarterly, and annual available wind energy accessible for utilization. The researchers applied the Suitability Model to analyze the study by using the ArcGIS program. It is a model of spatial analysis that compares more than one location based on grading weights to choose the most suitable one. The study criteria are: the average annual wind speed, land use, topography of land, distance from the main road networks, urban areas. According to the previous criteria, the four proposed locations to establish wind farm projects are selected based on the weights of the degree of suitability (excellent, good, average, and poor). The percentage of areas that represents the most suitable locations with an excellent rank (4) is 8% of Kuwait’s area. It is relatively distributed as follows: Al-Shqaya, Al-Dabdeba, Al-Salmi (5.22%), Al-Abdali (1.22%), Umm al-Hayman (0.70%), North Wafra and Al-Shaqeeq (0.86%). The study recommends to decision-makers to consider the proposed location (No.1), (Al-Shqaya, Al-Dabdaba, and Al-Salmi) as the most suitable location for future development of wind farms in Kuwait, this location is economically feasible.Keywords: Kuwait, renewable energy, spatial analysis, wind energy
Procedia PDF Downloads 146232 Biofilm Text Classifiers Developed Using Natural Language Processing and Unsupervised Learning Approach
Authors: Kanika Gupta, Ashok Kumar
Abstract:
Biofilms are dense, highly hydrated cell clusters that are irreversibly attached to a substratum, to an interface or to each other, and are embedded in a self-produced gelatinous matrix composed of extracellular polymeric substances. Research in biofilm field has become very significant, as biofilm has shown high mechanical resilience and resistance to antibiotic treatment and constituted as a significant problem in both healthcare and other industry related to microorganisms. The massive information both stated and hidden in the biofilm literature are growing exponentially therefore it is not possible for researchers and practitioners to automatically extract and relate information from different written resources. So, the current work proposes and discusses the use of text mining techniques for the extraction of information from biofilm literature corpora containing 34306 documents. It is very difficult and expensive to obtain annotated material for biomedical literature as the literature is unstructured i.e. free-text. Therefore, we considered unsupervised approach, where no annotated training is necessary and using this approach we developed a system that will classify the text on the basis of growth and development, drug effects, radiation effects, classification and physiology of biofilms. For this, a two-step structure was used where the first step is to extract keywords from the biofilm literature using a metathesaurus and standard natural language processing tools like Rapid Miner_v5.3 and the second step is to discover relations between the genes extracted from the whole set of biofilm literature using pubmed.mineR_v1.0.11. We used unsupervised approach, which is the machine learning task of inferring a function to describe hidden structure from 'unlabeled' data, in the above-extracted datasets to develop classifiers using WinPython-64 bit_v3.5.4.0Qt5 and R studio_v0.99.467 packages which will automatically classify the text by using the mentioned sets. The developed classifiers were tested on a large data set of biofilm literature which showed that the unsupervised approach proposed is promising as well as suited for a semi-automatic labeling of the extracted relations. The entire information was stored in the relational database which was hosted locally on the server. The generated biofilm vocabulary and genes relations will be significant for researchers dealing with biofilm research, making their search easy and efficient as the keywords and genes could be directly mapped with the documents used for database development.Keywords: biofilms literature, classifiers development, text mining, unsupervised learning approach, unstructured data, relational database
Procedia PDF Downloads 169231 Distinguishing between Bacterial and Viral Infections Based on Peripheral Human Blood Tests Using Infrared Microscopy and Multivariate Analysis
Authors: H. Agbaria, A. Salman, M. Huleihel, G. Beck, D. H. Rich, S. Mordechai, J. Kapelushnik
Abstract:
Viral and bacterial infections are responsible for variety of diseases. These infections have similar symptoms like fever, sneezing, inflammation, vomiting, diarrhea and fatigue. Thus, physicians may encounter difficulties in distinguishing between viral and bacterial infections based on these symptoms. Bacterial infections differ from viral infections in many other important respects regarding the response to various medications and the structure of the organisms. In many cases, it is difficult to know the origin of the infection. The physician orders a blood, urine test, or 'culture test' of tissue to diagnose the infection type when it is necessary. Using these methods, the time that elapses between the receipt of patient material and the presentation of the test results to the clinician is typically too long ( > 24 hours). This time is crucial in many cases for saving the life of the patient and for planning the right medical treatment. Thus, rapid identification of bacterial and viral infections in the lab is of great importance for effective treatment especially in cases of emergency. Blood was collected from 50 patients with confirmed viral infection and 50 with confirmed bacterial infection. White blood cells (WBCs) and plasma were isolated and deposited on a zinc selenide slide, dried and measured under a Fourier transform infrared (FTIR) microscope to obtain their infrared absorption spectra. The acquired spectra of WBCs and plasma were analyzed in order to differentiate between the two types of infections. In this study, the potential of FTIR microscopy in tandem with multivariate analysis was evaluated for the identification of the agent that causes the human infection. The method was used to identify the infectious agent type as either bacterial or viral, based on an analysis of the blood components [i.e., white blood cells (WBC) and plasma] using their infrared vibrational spectra. The time required for the analysis and evaluation after obtaining the blood sample was less than one hour. In the analysis, minute spectral differences in several bands of the FTIR spectra of WBCs were observed between groups of samples with viral and bacterial infections. By employing the techniques of feature extraction with linear discriminant analysis (LDA), a sensitivity of ~92 % and a specificity of ~86 % for an infection type diagnosis was achieved. The present preliminary study suggests that FTIR spectroscopy of WBCs is a potentially feasible and efficient tool for the diagnosis of the infection type.Keywords: viral infection, bacterial infection, linear discriminant analysis, plasma, white blood cells, infrared spectroscopy
Procedia PDF Downloads 223230 Oncology and Phytomedicine in the Advancement of Cancer Therapy for Better Patient Care
Authors: Hailemeleak Regassa
Abstract:
Traditional medicines use medicinal plants as a source of ingredients, and many modern medications are indirectly derived from plants. Consumers in affluent nations are growing disenchanted with contemporary healthcare and looking for alternatives. Oxidative stress is the primary cause of multiple diseases, and exogenous antioxidant supplementation or strengthening the body's endogenous antioxidant defenses are potential ways to counteract the negative effects of oxidative damage. Plants can biosynthesize non-enzymatic antioxidants that can reduce ROS-induced oxidative damage. Aging often aids the propagation and development of carcinogenesis, and older animals and older people exhibit increased vulnerability to tumor promoters. Cancer is a major public health issue, with several anti-cancer medications in clinical use. Potential drugs such as flavopiridol, roscovitine, combretastatin A-4, betulinic acid, and silvestrol are in the clinical or preclinical stages of research. Methodology: Microbial Growth media, Dimethyl sulfoxide (DMSO), methanol, ethyl acetate, and n-hexane were obtained from Himedia Labs, Mumbai, India. plant were collected from the Herbal Garden of Shoolini University campus, Solan, India (Latitude - 30.8644° N and longitude - 77.1184° E). The identity was confirmed by Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (H.P.), India, and documented in Voucher specimens - UHF- Herbarium no. 13784; vide book no. 3818 Receipt No. 086. The plant materials were washed with tap water, and 0.1% mercury chloride for 2 minutes, rinsed with distilled water, air dried, and kept in a hot air oven at 40ºc on blotting paper until all the water evaporated and became well dried for grinding. After drying, the plant materials were grounded using a mixer grinder into fine powder transferred into airtight containers with proper labeling, and stored at 4ºc for future use (Horablaga et al., 2023). The extraction process was done according to Altemimi et al., 2017. The 5g powder was mixed with 15 ml of the respective solvents (n-hexane, ethyl acetate, and methanol), and kept for 4-5 days on the platform shaker. The solvents used are based on their increasing polarity index. Then the extract was centrifuged at 10,000rpm for 5 minutes and filtered using No.1 Whatman filter paper.Keywords: cancer, phytomedicine, medicinal plants, oncology
Procedia PDF Downloads 69229 Contribution of the Corn Milling Industry to a Global and Circular Economy
Authors: A. B. Moldes, X. Vecino, L. Rodriguez-López, J. M. Dominguez, J. M. Cruz
Abstract:
The concept of the circular economy is focus on the importance of providing goods and services sustainably. Thus, in a future it will be necessary to respond to the environmental contamination and to the use of renewables substrates by moving to a more restorative economic system that drives towards the utilization and revalorization of residues to obtain valuable products. During its evolution our industrial economy has hardly moved through one major characteristic, established in the early days of industrialization, based on a linear model of resource consumption. However, this industrial consumption system will not be maintained during long time. On the other hand, there are many industries, like the corn milling industry, that although does not consume high amount of non renewable substrates, they produce valuable streams that treated accurately, they could provide additional, economical and environmental, benefits by the extraction of interesting commercial renewable products, that can replace some of the substances obtained by chemical synthesis, using non renewable substrates. From this point of view, the use of streams from corn milling industry to obtain surface-active compounds will decrease the utilization of non-renewables sources for obtaining this kind of compounds, contributing to a circular and global economy. However, the success of the circular economy depends on the interest of the industrial sectors in the revalorization of their streams by developing relevant and new business models. Thus, it is necessary to invest in the research of new alternatives that reduce the consumption of non-renewable substrates. In this study is proposed the utilization of a corn milling industry stream to obtain an extract with surfactant capacity. Once the biosurfactant is extracted, the corn milling stream can be commercialized as nutritional media in biotechnological process or as animal feed supplement. Usually this stream is combined with other ingredients obtaining a product namely corn gluten feed or may be sold separately as a liquid protein source for beef and dairy feeding, or as a nutritional pellet binder. Following the productive scheme proposed in this work, the corn milling industry will obtain a biosurfactant extract that could be incorporated in its productive process replacing those chemical detergents, used in some point of its productive chain, or it could be commercialized as a new product of the corn manufacture. The biosurfactants obtained from corn milling industry could replace the chemical surfactants in many formulations, and uses, and it supposes an example of the potential that many industrial streams could offer for obtaining valuable products when they are manage properly.Keywords: biosurfactantes, circular economy, corn, sustainability
Procedia PDF Downloads 261228 Oat βeta Glucan Attenuates the Development of Atherosclerosis and Improves the Intestinal Barrier Function by Reducing Bacterial Endotoxin Translocation in APOE-/- MICE
Authors: Dalal Alghawas, Jetty Lee, Kaisa Poutanen, Hani El-Nezami
Abstract:
Oat β-glucan a water soluble non starch linear polysaccharide has been approved as a cholesterol lowering agent by various food safety administrations and is commonly used to reduce the risk of heart disease. The molecular weight of oat β-glucan can vary depending on the extraction and fractionation methods. It is not clear whether the molecular weight has a significant impact at reducing the acceleration of atherosclerosis. The aim of this study was to investigate three different oat β-glucan fractionations on the development of atherosclerosis in vivo. With special focus on plaque stability and the intestinal barrier function. To test this, ApoE-/- female mice were fed a high fat diet supplemented with oat bran, high molecular weight (HMW) oat β-glucan fractionate and low molecular weight (LMW) oat β-glucan fractionate for 16 weeks. Atherosclerosis risk markers were measured in the plasma, heart and aortic tree. Plaque size was measured in the aortic root and aortic tree. ICAM-1, VCAM-1, E-Selectin, P-Selectin, protein levels were assessed from the aortic tree to determine plaque stability at 16 weeks. The expression of p22phox at the aortic root was evaluated to study the NADPH oxidase complex involved in nitric oxide bioavailability and vascular elasticity. The tight junction proteins E-cadherin and beta-catenin from western blot analyses were analysed as an intestinal barrier function test. Plasma LPS, intestinal D-lactate levels and hepatic FMO gene expression were carried out to confirm whether the compromised intestinal barrier lead to endotoxemia. The oat bran and HMW oat β-glucan diet groups were more effective than the LMW β-glucan diet group at reducing the plaque size and showed marked improvements in plaque stability. The intestinal barrier was compromised for all the experimental groups however the endotoxemia levels were higher in the LMW β-glucan diet group. The oat bran and HMW oat β-glucan diet groups were more effective at attenuating the development of atherosclerosis. Reasons for this could be due to the LMW oat β-glucan diet group’s low viscosity in the gut and the inability to block the reabsorption of cholesterol. Furthermore the low viscosity may allow more bacterial endotoxin translocation through the impaired intestinal barrier. In future food technologists should carefully consider how to incorporate LMW oat β-glucan as a health promoting food.Keywords: Atherosclerosis, beta glucan, endotoxemia, intestinal barrier function
Procedia PDF Downloads 417227 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging
Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.Keywords: breast, machine learning, MRI, radiomics
Procedia PDF Downloads 266226 Understanding the Qualitative Nature of Product Reviews by Integrating Text Processing Algorithm and Usability Feature Extraction
Authors: Cherry Yieng Siang Ling, Joong Hee Lee, Myung Hwan Yun
Abstract:
The quality of a product to be usable has become the basic requirement in consumer’s perspective while failing the requirement ends up the customer from not using the product. Identifying usability issues from analyzing quantitative and qualitative data collected from usability testing and evaluation activities aids in the process of product design, yet the lack of studies and researches regarding analysis methodologies in qualitative text data of usability field inhibits the potential of these data for more useful applications. While the possibility of analyzing qualitative text data found with the rapid development of data analysis studies such as natural language processing field in understanding human language in computer, and machine learning field in providing predictive model and clustering tool. Therefore, this research aims to study the application capability of text processing algorithm in analysis of qualitative text data collected from usability activities. This research utilized datasets collected from LG neckband headset usability experiment in which the datasets consist of headset survey text data, subject’s data and product physical data. In the analysis procedure, which integrated with the text-processing algorithm, the process includes training of comments onto vector space, labeling them with the subject and product physical feature data, and clustering to validate the result of comment vector clustering. The result shows 'volume and music control button' as the usability feature that matches best with the cluster of comment vectors where centroid comments of a cluster emphasized more on button positions, while centroid comments of the other cluster emphasized more on button interface issues. When volume and music control buttons are designed separately, the participant experienced less confusion, and thus, the comments mentioned only about the buttons' positions. While in the situation where the volume and music control buttons are designed as a single button, the participants experienced interface issues regarding the buttons such as operating methods of functions and confusion of functions' buttons. The relevance of the cluster centroid comments with the extracted feature explained the capability of text processing algorithms in analyzing qualitative text data from usability testing and evaluations.Keywords: usability, qualitative data, text-processing algorithm, natural language processing
Procedia PDF Downloads 283225 Extraction and Quantification of Peramine Present in Dalaca pallens, a Pest of Grassland in Southtern Chile
Authors: Leonardo Parra, Daniel Martínez, Jorge Pizarro, Fernando Ortega, Manuel Chacón-Fuentes, Andrés Quiroz
Abstract:
Control of Dalaca pallens or blackworms, one of the most important hypogeous pest in grassland in southern Chile, is based on the use of broad-spectrum insecticides such as organophosphates and pyrethroids. However, the rapid development of insecticide resistance in field populations of this insect and public concern over the environmental impact of these insecticides has resulted in the search for other control methods. Specifically, the use of endophyte fungi for controlling pest has emerged as an interesting and promising strategy. Endophytes from ryegrass (Lolium perenne), establish a biotrophic relationship with the host, defined as mutualistic symbiosis. The plant-fungi association produces alkaloids where peramine is the main toxic substance against Listronotus bonariensis, the most important epigean pest of ryegrass. Nevertheless, the effect of peramina on others pest insects, such as D. pallens, to our knowledge has not been studied, and also its possible metabolization in the body of the larvae. Therefore, we addressed the following research question: Do larvae of D. pallens store peramine after consumption of ryegrass endophyte infected (E+)? For this, specimens of blackworms were fed with ryegrass plant of seven experimental lines and one commercial cultivar endophyte free (E-) sown at the Instituto de Investigaciones Agropecuarias Carillanca (Vilcún, Chile). Once the feeding period was over, ten larvae of each treatment were examined. Individuals were dissected, and their gut was removed to exclude any influence of remaining material. The rest of the larva's body was dried at 60°C by 24-48 h and ground into a fine powder using a mortar. 25 mg of dry powder was transferred to a microcentrifuge tube and extracted in 1 mL of a mixture of methanol:water:formic acid. Then, the samples were centrifuged at 16,000 rpm for 3 min, and the supernatant was colected and injected in the liquid chromatography of high resolution (HPLC). The results confirmed the presence of peramine in the larva's body of D. pallens. The insects that fed the experimental lines LQE-2 and LQE-6 were those where peramine was present in high proportion (0.205 and 0.199 ppm, respectively); while LQE-7 and LQE-3 obtained the lowest concentrations of the alkaloid (0.047 and 0.053 ppm, respectively). Peramine was not detected in the insects when the control cultivar Jumbo (E-) was tested. These results evidenced the storage and metabolism of peramine during consumption of the larvae. However, the effect of this alkaloid present in 'future ryegrass cultivars' (LQE-2 and LQE-6) on the performance and survival of blackworms must be studied and confirmed experimentally.Keywords: blackworms, HPLC, alkaloid, pest
Procedia PDF Downloads 304224 Discourse Analysis: Where Cognition Meets Communication
Authors: Iryna Biskub
Abstract:
The interdisciplinary approach to modern linguistic studies is exemplified by the merge of various research methods, which sometimes causes complications related to the verification of the research results. This methodological confusion can be resolved by means of creating new techniques of linguistic analysis combining several scientific paradigms. Modern linguistics has developed really productive and efficient methods for the investigation of cognitive and communicative phenomena of which language is the central issue. In the field of discourse studies, one of the best examples of research methods is the method of Critical Discourse Analysis (CDA). CDA can be viewed both as a method of investigation, as well as a critical multidisciplinary perspective. In CDA the position of the scholar is crucial from the point of view exemplifying his or her social and political convictions. The generally accepted approach to obtaining scientifically reliable results is to use a special well-defined scientific method for researching special types of language phenomena: cognitive methods applied to the exploration of cognitive aspects of language, whereas communicative methods are thought to be relevant only for the investigation of communicative nature of language. In the recent decades discourse as a sociocultural phenomenon has been the focus of careful linguistic research. The very concept of discourse represents an integral unity of cognitive and communicative aspects of human verbal activity. Since a human being is never able to discriminate between cognitive and communicative planes of discourse communication, it doesn’t make much sense to apply cognitive and communicative methods of research taken in isolation. It is possible to modify the classical CDA procedure by means of mapping human cognitive procedures onto the strategic communicative planning of discourse communication. The analysis of the electronic petition 'Block Donald J Trump from UK entry. The signatories believe Donald J Trump should be banned from UK entry' (584, 459 signatures) and the parliamentary debates on it has demonstrated the ability to map cognitive and communicative levels in the following way: the strategy of discourse modeling (communicative level) overlaps with the extraction of semantic macrostructures (cognitive level); the strategy of discourse management overlaps with the analysis of local meanings in discourse communication; the strategy of cognitive monitoring of the discourse overlaps with the formation of attitudes and ideologies at the cognitive level. Thus, the experimental data have shown that it is possible to develop a new complex methodology of discourse analysis, where cognition would meet communication, both metaphorically and literally. The same approach may appear to be productive for the creation of computational models of human-computer interaction, where the automatic generation of a particular type of a discourse could be based on the rules of strategic planning involving cognitive models of CDA.Keywords: cognition, communication, discourse, strategy
Procedia PDF Downloads 252223 Cardioprotective Effect of the Leaf Extract of Andrographis Paniculata in Isoproterenol-Induced Myocardial Infarction
Authors: Emmanuel Ikechuckwu Onwubuya, Afees Adebayo Oladejo
Abstract:
Background: The use of medicinal plants in the treatment of chronic diseases especially myocardial infarction, is gaining wide acceptance globally. Andrographis paniculata (Acanthaceae) is a medicinal plant commonly known as the king of bitters in Nigeria and has been acclaimed for several therapeutic activities. Materials and methods: This study investigated the cardio-protective effect of the leaf extract of A. paniculata in isoproterenol-induced myocardial infarction. Fresh green leaves of A paniculata were harvested from the Faculty of Agriculture farmland, Nnamdi Azikiwe University, Awka, Nigeria. Identification and authentication of the plant were carried out at the Department of Botany, Nnamdi Azikiwe University and a voucher specimen was deposited at the herbarium. The plant material was then shredded, air-dried under shade and pulverized. The fine powders obtained were weighed and extraction was done via a solvent combination of water and ethanol (3:7) for 72 hr via maceration. The filtrate gotten was evaporated to dryness to obtain the ethanol extract, which was used for further bioassay study. The bioactive constituents of the plant extract were quantitatively analyzed by Gas chromatography-mass spectrometry (GC-MS). The animals were administered the extract of A. paniculata orally for seven days at a divided dose of 100 mg/kg, 200 mg/kg and 400 mg/kg body weights. On the eighth day, myocardial infarction was induced through subcutaneous administration of isoproterenol at a dose of 150 mg/kg/day diluted in 2 ml of saline on two consecutive days. Subsequently, the blood pressures were monitored and blood was collected for bioassay studies. Results: The results of the study showed that the leaf extract of A. paniculata was rich in Dodecanoic acid (8.261%), 4-Dibenzofuranamine (6.03%), Cyclotrisiloxane (4.679 %). The findings also showed a significant decrease (p>0.05) in the Mean arterial blood pressure, heart rate, aspartate transaminase, alanine transaminase, creatinine kinase and lactate dehydrogenase activities of the treatment group compared with the untreated control group while the antioxidant (superoxide dismutase, catalase and glutathione) activities were significantly increased in the treatment group, compared with the untreated control group. Conclusion: The findings of this work have shown that the leaf of A. paniculata was rich in bioactive compounds, which could be synthesized to produce plant-based products to fight cardiovascular diseases, especially myocardial infarction.Keywords: cardiovascular disease, myocardial infarction, medicinal plant, andrographis paniculata, isoproterenol
Procedia PDF Downloads 117222 Metagenomic Assessment of the Effects of Genetically Modified Crops on Microbial Ecology and Physicochemical Properties of Soil
Authors: Falana Yetunde Olaitan, Ijah U. J. J, Solebo Shakirat O.
Abstract:
Genetically modified crops are already phenomenally successful and are grown worldwide in more than eighteen countries on more than 67 million hectares. Nigeria, in October 2018, approved Bacillus thuringiensis (Bt) cotton and maize; therefore, the need to carry out environmental risk assessment studies. A total of 15 4L octagonal ceramic pots were filled with 4kg of soil and placed on the bench in 2 rows of 10 pots each and the 3rd row of 5 pots, 1st-row pots were used to plant GM cotton seeds, while the 2nd-row pots were used for non-GM cotton seeds and the 3rd row of 5 pots served as control, all in the screen house. Soil samples for metagenomic DNA extraction were collected at random and at the monthly interval after planting at a distance of 2mm from the plant’s root and at a depth of 10cm using a sterile spatula. Soil samples for physicochemical analysis were collected before planting and after harvesting the GM and non-GM crops as well as from the control soil. The DNA was extracted, quantified and sequenced; Sample 1A (DNA from GM cotton Soil at 1st interval) gave the lowest sequence read with 0.853M while sample 2B (DNA from GM cotton Soil at 2nd interval) gave the highest with 5.785M, others gave between 1.8M and 4.7M. The samples treatment were grouped into four, Group 1 (GM cotton soil from 1 to 3 intervals) had between 800,000 and 5,700,000 strains of microbes (SOM), Group 2 (non GM cotton soil from 1 to 3 intervals) had between 1,400,600 and 4,200,000 SOM, Group 3 (control soil) had between 900,000 and 3,600,000 SOM and Group 4 (initial soil) had between 3,700,000 and 4,000,000 SOM. The microbes observed were predominantly bacteria (including archaea), fungi, dark matter alongside protists and phages. The predominant bacterial groups were the Terrabacteria (Bacillus funiculus, Bacillus sp.), the Proteobacteria (Microvirga massiliensis, sphingomonas sp.) and the Archaea (Nitrososphaera sp.), while the fungi were Aspergillus fischeri and Fusarium falciforme. The comparative analysis between groups was done using JACCARD PERMANOVA beta diversity analysis at P-value not more than 0.76 and there was no significant pair found. The pH for initial, GM cotton, non-GM cotton and control soil were 6.28, 6.26, 7.25, 8.26 and the percentage moisture was 0.63, 0.78, 0.89 and 0.82, respectively, while the percentage Nitrogen was observed to be 17.79, 1.14, 1.10 and 0.56 respectively. Other parameters include, varying concentrations of Potassium (0.46, 1,284.47, 1,785.48, 1,252.83 mg/kg) and Phosphorus (18.76, 17.76, 16.87, 15.23 mg/kg) were recorded for the four treatments respectively. The soil consisted mainly of silt (32.09 to 34.66%) and clay (58.89 to 60.23%), reflecting the soil texture as silty – clay. The results were then tested with ANOVA at less than 0.05 P-value and no pair was found to be significant as well. The results suggest that the GM crops have no significant effect on microbial ecology and physicochemical properties of the soil and, in turn, no direct or indirect effects on human health.Keywords: genetically modified crop, microbial ecology, physicochemical properties, metagenomics, DNA, soil
Procedia PDF Downloads 144221 Control of Doxorubicin Release Rate from Magnetic PLGA Nanoparticles Using a Non-Permanent Magnetic Field
Authors: Inês N. Peça , A. Bicho, Rui Gardner, M. Margarida Cardoso
Abstract:
Inorganic/organic nanocomplexes offer tremendous scope for future biomedical applications, including imaging, disease diagnosis and drug delivery. The combination of Fe3O4 with biocompatible polymers to produce smart drug delivery systems for use in pharmaceutical formulation present a powerful tool to target anti-cancer drugs to specific tumor sites through the application of an external magnetic field. In the present study, we focused on the evaluation of the effect of the magnetic field application time on the rate of drug release from iron oxide polymeric nanoparticles. Doxorubicin, an anticancer drug, was selected as the model drug loaded into the nanoparticles. Nanoparticles composed of poly(d-lactide-co-glycolide (PLGA), a biocompatible polymer already approved by FDA, containing iron oxide nanoparticles (MNP) for magnetic targeting and doxorubicin (DOX) were synthesized by the o/w solvent extraction/evaporation method and characterized by scanning electron microscopy (SEM), by dynamic light scattering (DLS), by inductively coupled plasma-atomic emission spectrometry and by Fourier transformed infrared spectroscopy. The produced particles yielded smooth surfaces and spherical shapes exhibiting a size between 400 and 600 nm. The effect of the magnetic doxorubicin loaded PLGA nanoparticles produced on cell viability was investigated in mammalian CHO cell cultures. The results showed that unloaded magnetic PLGA nanoparticles were nontoxic while the magnetic particles without polymeric coating show a high level of toxicity. Concerning the therapeutic activity doxorubicin loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterpart. In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. In order to determine the mechanism of drug release, the data obtained from the release curves were fitted to the semi-empirical equation of the the Korsmeyer-Peppas model that may be used to describe the Fickian and non-Fickian release behaviour. Doxorubicin release mechanism has shown to be governed mainly by Fickian diffusion. The results obtained show that the rate of drug release from the produced magnetic nanoparticles can be modulated through the magnetic field time application.Keywords: drug delivery, magnetic nanoparticles, PLGA nanoparticles, controlled release rate
Procedia PDF Downloads 258220 Comparative Studies and Optimization of Biodiesel Production from Oils of Selected Seeds of Nigerian Origin
Authors: Ndana Mohammed, Abdullahi Musa Sabo
Abstract:
The oils used in this work were extracted from seeds of Ricinuscommunis, Heaveabrasiliensis, Gossypiumhirsutum, Azadirachtaindica, Glycin max and Jatrophacurcasby solvent extraction method using n-hexane, and gave the yield of 48.00±0.00%, 44.30±0.52%, 45.50±0.64%, 47.60±0.51%, 41.50±0.32% and 46.50±0.71% respectively. However these feed stocks are highly challenging to trans-esterification reaction because they were found to contain high amount of free fatty acids (FFA) (6.37±0.18, 17.20±0.00, 6.14±0.05, 8.60±0.14, 5.35±0.07, 4.24±0.02mgKOH/g) in order of the above. As a result, two-stage trans-esterification reactions process was used to produce biodiesel; Acid esterification was used to reduce high FFA to 1% or less, and the second stage involve the alkaline trans-esterification/optimization of process condition to obtain high yield quality biodiesel. The salient features of this study include; characterization of oils using AOAC, AOCS standard methods to reveal some properties that may determine the viability of sample seeds as potential feed stocks for biodiesel production, such as acid value, saponification value, Peroxide value, Iodine value, Specific gravity, Kinematic viscosity, and free fatty acid profile. The optimization of process parameters in biodiesel production was investigated. Different concentrations of alkaline catalyst (KOH) (0.25, 0.5, 0.75, 1.0 and 1.50w/v, methanol/oil molar ratio (3:1, 6:1, 9:1, 12:1, and 15:1), reaction temperature (500 C, 550 C, 600 C, 650 C, 700 C), and the rate of stirring (150 rpm,225 rpm,300 rpm and 375 rpm) were used for the determination of optimal condition at which maximum yield of biodiesel would be obtained. However, while optimizing one parameter other parameters were kept fixed. The result shows the optimal biodiesel yield at a catalyst concentration of 1%, methanol/oil molar ratio of 6:1, except oil from ricinuscommunis which was obtained at 9:1, the reaction temperature of 650 C was observed for all samples, similarly the stirring rate of 300 rpm was also observed for all samples except oil from ricinuscommunis which was observed at 375 rpm. The properties of biodiesel fuel were evaluated and the result obtained conformed favorably to ASTM and EN standard specifications for fossil diesel and biodiesel. Therefore biodiesel fuel produced can be used as substitute for fossil diesel. The work also reports the result of the study on the evaluation of the effect of the biodiesel storage on its physicochemical properties to ascertain the level of deterioration with time. The values obtained for the entire samples are completely out of standard specification for biodiesel before the end of the twelve months test period, and are clearly degraded. This suggests the biodiesels from oils of Ricinuscommunis, Heaveabrasiliensis, Gossypiumhirsutum, Azadirachtaindica, Glycin max and Jatrophacurcascannot be stored beyond twelve months.Keywords: biodiesel, characterization, esterification, optimization, transesterification
Procedia PDF Downloads 419219 Establishment of High-Temperature Simultaneous Saccharification and Fermentation Process by Co-Culturing of Thermally Adapted Thermosensitive Saccharomyces Cerevisiae and Bacillus amyloliquefaciens
Authors: Ali Azam Talukder, Jamsheda Ferdous Tuli, Tanzina Islam Reba, Shuvra Kanti Dey, Mamoru Yamada
Abstract:
Recent global warming created by various pollutants prompted us to find new energy sources instead of fossil fuels. Fossil fuels are one of the key factors to emit various toxic gases in this planet. To solve this problem, along with the scarcity of the worldwide energy crisis, scientists are looking for various alternative options to mitigate the necessity of required future fuels. In this context, bioethanol can be one of the most suitable alternative energy sources. Bioethanol is a renewable, environment-friendly and carbon-neutral sustainable energy. In our previous study, we identified several bioethanol-producing microbes from the natural fermented sources of Bangladesh. Among them, the strain 4C encoded Saccharomyces cerevisiae produced maximum bioethanol when the fermentation temperature was 25˚C. In this study, we have established high-temperature simultaneous saccharification and fermentation process (HTSSF) by co-culturing of thermally adapted thermosensitive 4C as a fermenting agent and Bacillus amyloliquefaciens (C7), as a saccharifying agent under various physiological conditions or treatments. Conventional methods were applied for cell culture, media preparation and other experimental purposes. High-temperature adaptation of strain 4C was made from 30-42ᵒC, using either YPD or YPS media. In brief, for thermal adaptation, the temperature was periodically increased by 2ᵒC, 1ᵒC and 0.5ᵒC when medium growth temperatures were 30-36ᵒC, 36-40ᵒC, and 40-42ᵒC, respectively, where applicable. Amylase activity and bioethanol content were measured by DNS (3, 5-dinitrosalicylic acid) and solvent extraction and dichromate oxidation method, respectively. Among the various growth parameters like temperatures (30˚C, 37˚C and 42˚C), pHs (5.0, 6.0 and 7.0), carbon sources (5.0-10.0%) and ethanol stress tolerance (0.0-12.0%) etc. were tested, maximum Amylase activity (4.0 IU/ml/min) was recorded for Bacillus amyloliquefaciens (C7) at 42˚C, pH 6.0 and 10% starch. On the other hand, 4.10% bioethanol content was recorded when the thermally adapted strain 4C was co-cultured with C7 at 37ᵒC, pH 6.0 and 10.0% starch for 72 hours at HTSSF process. On the other hand, thermally non-adapted strains gave only 0.5-2.0% bioethanol content under the same physiological conditions. The thermally adapted strain 4C and strain C7, both can tolerate ethanol stress up to 12%. Altogether, a comparative study revealed that our established HTSSF process may be suitable for pilot scale and subsequently at industrial level bioethanol production.Keywords: bioethanol, co-culture, fermentation, saccharification
Procedia PDF Downloads 84218 Bacterial Recovery of Copper Ores
Authors: Zh. Karaulova, D. Baizhigitov
Abstract:
At the Aktogay deposit, the oxidized ore section has been developed since 2015; by now, the reserves of easily enriched ore are decreasing, and a large number of copper-poor, difficult-to-enrich ores has been accumulated in the dumps of the KAZ Minerals Aktogay deposit, which is unprofitable to mine using the traditional mining methods. Hence, another technology needs to be implemented, which will significantly expand the raw material base of copper production in Kazakhstan and ensure the efficient use of natural resources. Heap and dump bacterial recovery are the most acceptable technologies for processing low-grade secondary copper sulfide ores. Test objects were the copper ores of Aktogay deposit and chemolithotrophic bacteria Leptospirillum ferrooxidans (L.f.), Acidithiobacillus caldus (A.c.), Sulfobacillus Acidophilus (S.a.), which are mixed cultures were both used in bacterial oxidation systems. They can stay active in the 20-400C temperature range. These bacteria were the most extensively studied and widely used in sulfide mineral recovery technology. Biocatalytic acceleration was achieved as a result of bacteria oxidizing iron sulfides to form iron sulfate, which subsequently underwent chemical oxidation to become sulfate oxide. The following results have been achieved at the initial stage: the goal was to grow and maintain the life activity of bacterial cultures under laboratory conditions. These bacteria grew the best within the pH 1,2-1,8 range with light stirring and in an aerated environment. The optimal growth temperature was 30-33оC. The growth rate decreased by one-half for each 4-5°C fall in temperature from 30°C. At best, the number of bacteria doubled every 24 hours. Typically, the maximum concentration of cells that can be grown in ferrous solution is about 107/ml. A further step researched in this case was the adaptation of microorganisms to the environment of certain metals. This was followed by mass production of inoculum and maintenance for their further cultivation on a factory scale. This was done by adding sulfide concentrate, allowing the bacteria to convert the ferrous sulfate as indicated by the Eh (>600 mV), then diluting to double the volume and adding concentrate to achieve the same metal level. This process was repeated until the desired metal level and volumes were achieved. The final stage of bacterial recovery was the transportation and irrigation of secondary sulfide copper ores of the oxidized ore section. In conclusion, the project was implemented at the Aktogay mine since the bioleaching process was prolonged. Besides, the method of bacterial recovery might compete well with existing non-biological methods of extraction of metals from ores.Keywords: bacterial recovery, copper ore, bioleaching, bacterial inoculum
Procedia PDF Downloads 71217 Assessing the Impact of Additional Information during Motor Preparation in Lane Change Task
Authors: Nikita Rajendra Sharma, Jai Prakash Kushvah, Gerhard Rinkenauer
Abstract:
Driving a car is a discrete aiming movement in which drivers aim at successful extraction of relevant information and elimination of potentially distracting one. It is the motor preparation which enables one to react to certain stimuli onsite by allowing perceptual process for optimal adjustment. Drivers prepare their responses according to the available resources of advanced and ongoing information to drive efficiently. It requires constant programming and reprogramming of the motor system. The reaction time (RT) is shorter when a response signal is preceded by a warning signal. The reason behind this reduced time in responding to targets is that the warning signal causes the participant to prepare for the upcoming response by updating the motor program before the execution. While performing the primary task of changing lanes while driving, the simultaneous occurrence of additional information during the presentation of cues (congruent or incongruent with respect to target cue) might impact the motor preparation and execution. The presence of additional information (other than warning or response signal) between warning signal and imperative stimulus influences human motor preparation to a reasonable extent. The present study was aimed to assess the impact of congruent and incongruent additional information (with respect to imperative stimulus) on driving performance (reaction time, steering wheel amplitude, and steering wheel duration) during a lane change task. implementing movement pre-cueing paradigm. 22 young valid car-drivers (Mage = 24.1+/- 3.21 years, M = 10, F = 12, age-range 21-33 years) participated in the study. The study revealed that additional information influenced the overall driving performance as potential distractors and relevant information. Findings suggest that the events of additional information relatively influenced the reaction time and steering wheel angle as potential distractor or irrelevant information. Participants took longer to respond, and higher steering wheel angles were reported for targets coupled with additional information in comparison with warning signs preceded by potential distractors and the participants' response time was more for a higher number of lanes (2 Lanes > 1 Lane). The same additional information appearing interchangeably at warning signals and targets worked as relevant information facilitating the motor programming in the trails where they were congruent with the direction of lane change direction.Keywords: additional information, lane change task, motor preparation, movement pre-cueing, reaction time, steering wheel amplitude
Procedia PDF Downloads 189216 Landslide Hazard Zonation Using Satellite Remote Sensing and GIS Technology
Authors: Ankit Tyagi, Reet Kamal Tiwari, Naveen James
Abstract:
Landslide is the major geo-environmental problem of Himalaya because of high ridges, steep slopes, deep valleys, and complex system of streams. They are mainly triggered by rainfall and earthquake and causing severe damage to life and property. In Uttarakhand, the Tehri reservoir rim area, which is situated in the lesser Himalaya of Garhwal hills, was selected for landslide hazard zonation (LHZ). The study utilized different types of data, including geological maps, topographic maps from the survey of India, Landsat 8, and Cartosat DEM data. This paper presents the use of a weighted overlay method in LHZ using fourteen causative factors. The various data layers generated and co-registered were slope, aspect, relative relief, soil cover, intensity of rainfall, seismic ground shaking, seismic amplification at surface level, lithology, land use/land cover (LULC), normalized difference vegetation index (NDVI), topographic wetness index (TWI), stream power index (SPI), drainage buffer and reservoir buffer. Seismic analysis is performed using peak horizontal acceleration (PHA) intensity and amplification factors in the evaluation of the landslide hazard index (LHI). Several digital image processing techniques such as topographic correction, NDVI, and supervised classification were widely used in the process of terrain factor extraction. Lithological features, LULC, drainage pattern, lineaments, and structural features are extracted using digital image processing techniques. Colour, tones, topography, and stream drainage pattern from the imageries are used to analyse geological features. Slope map, aspect map, relative relief are created by using Cartosat DEM data. DEM data is also used for the detailed drainage analysis, which includes TWI, SPI, drainage buffer, and reservoir buffer. In the weighted overlay method, the comparative importance of several causative factors obtained from experience. In this method, after multiplying the influence factor with the corresponding rating of a particular class, it is reclassified, and the LHZ map is prepared. Further, based on the land-use map developed from remote sensing images, a landslide vulnerability study for the study area is carried out and presented in this paper.Keywords: weighted overlay method, GIS, landslide hazard zonation, remote sensing
Procedia PDF Downloads 129