Search results for: Atherosclerosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 91

Search results for: Atherosclerosis

91 Anthropometric Indices of Obesity and Coronary Artery Atherosclerosis: An Autopsy Study in South Indian population

Authors: Francis Nanda Prakash Monteiro, Shyna Quadras, Tanush Shetty

Abstract:

The association between human physique and morbidity and mortality resulting from coronary artery disease has been studied extensively over several decades. Multiple studies have also been done on the correlation between grade of atherosclerosis, coronary artery diseases and anthropometrical measurements. However, the number of autopsy-based studies drastically reduces this number. It has been suggested that while in living subjects, it would be expensive, difficult, and even harmful to subject them to imaging modalities like CT scans and procedures involving contrast media to study mild atherosclerosis, no such harm is encountered in study of autopsy cases. This autopsy-based study was aimed to correlate the anthropometric measurements and indices of obesity, such as waist circumference (WC), hip circumference (HC), body mass index (BMI) and waist hip ratio (WHR) with the degree of atherosclerosis in the right coronary artery (RCA), main branch of the left coronary artery (LCA) and the left anterior descending artery (LADA) in 95 South Indian origin victims of both the genders between the age of 18 years and 75 years. The grading of atherosclerosis was done according to criteria suggested by the American Heart Association. The study also analysed the correlation of the anthropometric measurements and indices of obesity with the number of coronaries affected with atherosclerosis in an individual. All the anthropometric measurements and the derived indices were found to be significantly correlated to each other in both the genders except for the age, which is found to have a significant correlation only with the WHR. In both the genders severe degree of atherosclerosis was commonly observed in LADA, followed by LCA and RCA. Grade of atherosclerosis in RCA is significantly related to the WHR in males. Grade of atherosclerosis in LCA and LADA is significantly related to the WHR in females. Significant relation was observed between grade of atherosclerosis in RCA and WC, and WHR, and between grade of atherosclerosis in LADA and HC in males. Significant relation was observed between grade of atherosclerosis in RCA and WC, and WHR, and between grade of atherosclerosis in LADA and HC in females. Anthropometric measurements/indices of obesity can be an effective means to identify high risk cases of atherosclerosis at an early stage that can be effective in reducing the associated cardiac morbidity and mortality. A person with anthropometric measurements suggestive of mild atherosclerosis can be advised to modify his lifestyle, along with decreasing his exposure to the other risk factors. Those with measurements suggestive of higher degree of atherosclerosis can be subjected to confirmatory procedures to start effective treatment.

Keywords: atherosclerosis, coronary artery disease, indices, obesity

Procedia PDF Downloads 29
90 The Effect of Vitamin D Deficiency on Endothelial Function in Atherosclerosis Patients Living in Saudi Arabia

Authors: Wedad Azhar

Abstract:

Vitamin D is an essential fat-soluble vitamin that is required for the maintenance of good health. It is obtained either through exposure to sunlight (ultraviolet B radiation) or through dietary sources. The role of vitamin D is beyond bone health. Indeed, it plays a critical role in the immune system and a broad range of organ functions such as the cardiovascular system. Moreover, vitamin D plays a critical role in the endothelial function, which is one of the main indicators of atherosclerosis. This study is investigating the correlation between vitamin D status and endothelial function in preventing and treating atherosclerosis especially in country that has ample of sunshine but yet, Saudis from suffering from this issue vitamin D deficiency and insufficiency. Ninety participants from both genders and aged 40 to 60will be involved. The participants will be categorised into three groups: the control group will be healthy persons, patients at risk of developing atherosclerosis, patients formally diagnosed atherosclerosis. Half of the participants in each group should already have been taking vitamin D supplementations. Fasting blood samples will be taken from the participants for biochemical assays. Endothelial function will be assist by flow-mediated dilation of the brachial artery. Participants will be asked to complete a questionnaire on their social and economic status, education level, daily exposure to sunlight, smoking status, consumption of supplements and medication, and a food frequency of vitamin D intake. The data will be analysed using SPSS.

Keywords: atherosclerosis, endothelial function, nutrition, vitamin D

Procedia PDF Downloads 266
89 Anti-TNF: Possibilities of Rising Anti-Phosphorylcholine Antibodies

Authors: Md. Mizanur Rahman, Anquan Liu, Anna Frostegård, Johan Frostegård

Abstract:

The role of the human immune system is essential in cardiovascular diseases and atherosclerosis. Activated cells in atherosclerosis produce abundant amounts of cytokines, but the exact mechanisms involved in the effects of these inflammatory cytokines are not clear in atherosclerosis. In a large clinical cohort, we have previously determined that antibodies against phosphorylcholine (anti-PC) are negatively and independently associated with both development of atherosclerosis and also a low risk of cardiovascular disease. Further, we reported that rheumatoid arthritis patients who were non-responders to TNF-inhibitors, where those with low anti-PC levels. Upon anti-TNF treatment, anti-PC levels increased. We, therefore, hypothesised that proinflammatory cytokines such as TNF could play a role in anti-PC regulation. Peripheral blood mononuclear cells (PBMC) were cultured with or without TNF and anti-TNF. The cell supernatants were collected after six days for ELISA measurements. In separate experiments, cells were cultured for 24 hours in both polystyrene plates and ELISPOT plates under a similar condition for ELISA and ELISPOT assays respectively. Total RNA was extracted after 6 hours of cell culture to perform RT-qPCR. Cell viability was confirmed by trypan blue staining and MTT assays. ELISA measurements detected less than 40% of anti-PC in TNF-treated cells, in comparison to control cells, whereas anti-PC production was recovered by anti-TNF treatment. ELISPOT assays showed that TNF suppresses anti-PC production by inhibiting anti-PC producing B-cells. In addition, RT-qPCR and ELISA showed that TNF also has effects also on B-cell activation as BAFF expression was inhibited by TNF treatment. Atherosclerosis is a major cause of cardiovascular diseases, but anti-PC is a protection marker for atherosclerosis development. Our findings show that TNF is a negative regulator of anti-PC production. Immune modulation and rising of anti-PC could be of major significance for the patients.

Keywords: anti-PC, Anti-TNF, atherosclerosis, cardiovascular diseases, phosphorylecholine

Procedia PDF Downloads 213
88 In vivo Antiplatelet Activity Test of Wet Extract of Mimusops elengi L.'s Leaves on DDY Strain Mice as an Effort to Treat Atherosclerosis

Authors: Dewi Tristantini, Jason Jonathan

Abstract:

Coronary Artery Disease (CAD) is one of the deathliest diseases which is caused by atherosclerosis. Atherosclerosis is a disease that plaque builds up inside the arteries. Plaque is made up of fat, cholesterol, calcium, platelet, and other substances found in blood. The current treatment of atherosclerosis is to provide antiplatelet therapy treatment, but such treatments often cause gastrointestinal irritation, muscle pain and hormonal imbalance. Mimusops elengi L.’s leaves can be utilized as a natural and cheap antiplatelet’s source because it contains flavonoids such as quertecin. Antiplatelet aggregation effect of Mimusops elengi L.’s leaves’ wet extract was measured by bleeding time on DDY strain mice with the test substances were given orally during the period of 8 days. The bleeding time was measured on first day and 9th day. Empirically, the dose which is used for humans is 8.5 g of leaves in 600 ml of water. This dose is equivalent to 2.1 g of leaves in 350 ml of water for mice. The extract was divided into 3 doses for mice: 0.05 ml/day; 0.1 ml/day; 0.2 ml/day. After getting the percentage of the increase in bleeding time, data were analyzed by analysis of variance test (Anova), followed by individual comparison within the groups by LSD test. The test substances above respectively increased bleeding time 21%, 62%, and 128%. As the conclusion, the 0.02 ml/day dose of Mimusops elengi L.’s leaves’ wet extract could increase bleeding time better than clopidogrel as positive controls with 110% increase in bleeding time.

Keywords: antiplatelets, atheroschlerosis, bleeding time, Mimusops elengi

Procedia PDF Downloads 227
87 Anti-Phosphorylcholine T Cell Dependent Antibody

Authors: M. M. Rahman, A. Liu, A. Frostegard, J. Frostegard

Abstract:

The human immune system plays an essential role in cardiovascular disease (CVD) and atherosclerosis. Our earlier studies showed that major immunocompetent cells including T cells are activated by phosphorylcholine epitope. Further, we have determined for the first time in a clinical cohort that antibodies against phosphorylcholine (anti-PC) are negatively and independently associated with the development of atherosclerosis and thus a low risk of cardiovascular diseases. It is still unknown whether activated T cells play a role in anti-PC production. Here we aim to clarify the role of T cells in anti-PC production. B cell alone, or with CD3 T, CD4 T or with CD8 T cells were cultured in polystyrene plates to examine anti-PC IgM production. In addition to mixed B cell with CD3 T cell culture, B cells with CD3 T cells were also cultured in transwell co-culture plates. Further, B cells alone and mixed B cell with CD3 T cell cultures with or without anti-HLA 2 antibody were cultured for 6 days. Anti-PC IgM was detected by ELISA in independent experiments. More than 8 fold higher levels of anti-PC IgM were detected by ELISA in mixed B cell with CD3 T cell cultures in comparison to B cells alone. After the co-culture of B and CD3 T cells in transwell plates, there were no increased antibody levels indicating that B and T cells need to interact to augment anti-PC IgM production. Furthermore, anti-PC IgM was abolished by anti-HLA 2 blocking antibody in mixed B and CD3 T cells culture. In addition, the lack of increased anti-PC IgM in mixed B with CD8 T cells culture and the increased levels of anti-PC in mixed B with CD4 T cells culture support the role of helper T cell for the anti-PC IgM production. Atherosclerosis is a major cause of cardiovascular diseases, but anti-PC IgM is a protection marker for atherosclerosis development. Understanding the mechanism involved in the anti-PC IgM regulation could play an important role in strategies to raise anti-PC IgM. Studies suggest that anti-PC is T-cell independent antibody, but our study shows the major role of T cell in anti-PC IgM production. Activation of helper T cells by immunization could be a possible mechanism for raising anti-PC levels.

Keywords: anti-PC, atherosclerosis, aardiovascular diseases, phosphorylcholine

Procedia PDF Downloads 312
86 Inactivation of Semicarbazide-Sensitive Amine Oxidase Induces the Phenotypic Switch of Smooth Muscle Cells and Aggravates the Development of Atherosclerotic Lesions

Authors: Miao Zhang, Limin Liu, Feng Zhi, Panpan Niu, Mengya Yang, Xuemei Zhu, Ying Diao, Jun Wang, Ying Zhao

Abstract:

Background and Aims: Clinical studies have demonstrated that serum semicarbazide-sensitive amine oxidase (SSAO) activities positively correlate with the progression of atherosclerosis. The aim of the present study is to investigate the effect of SSAO inactivation on the development of atherosclerosis. Methods: Female LDLr knockout (KO) mice were given the Western-type diet for 6 and 9 weeks to induce the formation of early and advanced lesions, and semicarbazide (SCZ, 0.125%) was added into the drinking water to inactivate SSAO in vivo. Results: Despite no impact on plasma total cholesterol levels, abrogation of SSAO by SCZ not only resulted in the enlargement of both early (1.5-fold, p=0.0043) and advanced (1.8-fold, p=0.0013) atherosclerotic lesions, but also led to reduced/increased lesion contents of macrophages/smooth muscle cells (SMCs) (macrophage: ~0.74-fold, p=0.0002(early)/0.0016(advanced); SMC: ~1.55-fold, p=0.0003(early) /0.0001(advanced)), respectively. Moreover, SSAO inactivation inhibited the migration of circulating monocytes into peripheral tissues and reduced the amount of circulating Ly6Chigh monocytes (0.7-fold, p=0.0001), which may account for the reduced macrophage content in lesions. In contrast, the increased number of SMCs in lesions of SCZ-treated mice is attributed to an augmented synthetic vascular SMC phenotype switch as evidenced by the increased proliferation of SMCs and accumulation of collagens in vivo. Conclusion: SSAO inactivation by SCZ promotes the phenotypic switch of SMCs and the development of atherosclerosis. The enzymatic activity of SSAO may thus represent a potential target in the prevention and/or treatment of atherosclerosis.

Keywords: atherosclerosis, phenotype switch of smooth muscle cells, SSAO/VAP-1, semicarbazide

Procedia PDF Downloads 291
85 Atherosclerosis Prevalence Within Populations of the Southeastern United States

Authors: Samuel P. Prahlow, Anthony Sciuva, Katherine Bombly, Emily Wilson, Shiv Dhiman, Savita Arya

Abstract:

A prevalence cohort study of atherosclerotic lesions within cadavers was performed to better understand and characterize the prevalence of atherosclerosis among Georgia residents within body donors in the Philadelphia College of Osteopathic Medicine (PCOM) - Georgia body donor program. We procured specimens from cadavers used for medical students, physical therapy students, and biomedical science students cadaveric anatomical dissection at PCOM - South Georgia and PCOM - Georgia. Tissues were prepared using hematoxylin and eosin (H&E) stainas histological slides by Colquitt Regional Medical Center Laboratory Services. One section from each of the following arteries was taken after cadaveric dissection at the site of most calcification palpated grossly (if present): left anterior descending coronary artery, left internal carotid artery, abdominal aorta, splenic artery, and hepatic artery. All specimens were graded and categorized according to the American Heart Association’s Modified and Conventional Standards for Atherosclerotic Lesions using x4, x10, x40 microscopic magnification. Our study cohort included 22 cadavers, with 16 females and 6 males. The average age was 72.54, and the median age was 72, with a range of 52 to 90 years old. The cause of death determination listing vascular and/or cardiovascular causes was present on 6 of the 22 death certificates. 19 of 22 (86%) cadavers had at least a single artery grading > 5. Of the cadavers with at least a single artery graded at greater than 5, only 5 of 19 (26%) cadavers had a vascular or cardiovascular cause of death reported. Malignancy was listed as a cause of death on 7 (32%) death certificates. The average atherosclerosis grading of the common hepatic, splenic and left internal carotid arteries (2.15, 3.05, and 3.36 respectively) were lower than the left anterior descending artery and the abdominal aorta (5.16 and 5.86 respectively). This prevalence study characterizes atherosclerosis found in five medium and large systemic arteries within cadavers from the state of Georgia.

Keywords: pathology, atherosclerosis, histology, cardiovascular

Procedia PDF Downloads 168
84 Understanding the Role of Nitric Oxide Synthase 1 in Low-Density Lipoprotein Uptake by Macrophages and Implication in Atherosclerosis Progression

Authors: Anjali Roy, Mirza S. Baig

Abstract:

Atherosclerosis is a chronic inflammatory disease characterized by the formation of lipid rich plaque enriched with necrotic core, modified lipid accumulation, smooth muscle cells, endothelial cells, leucocytes and macrophages. Macrophage foam cells play a critical role in the occurrence and development of inflammatory atherosclerotic plaque. Foam cells are the fat-laden macrophages in the initial stage atherosclerotic lesion formation. Foam cells are an indication of plaque build-up, or atherosclerosis, which is commonly associated with increased risk of heart attack and stroke as a result of arterial narrowing and hardening. The mechanisms that drive atherosclerotic plaque progression remain largely unknown. Dissecting the molecular mechanism involved in process of macrophage foam cell formation will help to develop therapeutic interventions for atherosclerosis. To investigate the mechanism, we studied the role of nitric oxide synthase 1(NOS1)-mediated nitric oxide (NO) on low-density lipoprotein (LDL) uptake by bone marrow derived macrophages (BMDM). Using confocal microscopy, we found that incubation of macrophages with NOS1 inhibitor, TRIM (1-(2-Trifluoromethylphenyl) imidazole) or L-NAME (N omega-nitro-L-arginine methyl ester) prior to LDL treatment significantly reduces the LDL uptake by BMDM. Further, addition of NO donor (DEA NONOate) in NOS1 inhibitor treated macrophages recovers the LDL uptake. Our data strongly suggest that NOS1 derived NO regulates LDL uptake by macrophages and foam cell formation. Moreover, we also checked proinflammatory cytokine mRNA expression through real time PCR in BMDM treated with LDL and copper oxidized LDL (OxLDL) in presences and absences of inhibitor. Normal LDL does not evoke cytokine expression whereas OxLDL induced proinflammatory cytokine expression which significantly reduced in presences of NOS1 inhibitor. Rapid NOS-1-derived NO and its stable derivative formation act as signaling agents for inducible NOS-2 expression in endothelial cells, leading to endothelial vascular wall lining disruption and dysfunctioning. This study highlights the role of NOS1 as critical players of foam cell formation and would reveal much about the key molecular proteins involved in atherosclerosis. Thus, targeting NOS1 would be a useful strategy in reducing LDL uptake by macrophages at early stage of disease and hence dampening the atherosclerosis progression.

Keywords: atherosclerosis, NOS1, inflammation, oxidized LDL

Procedia PDF Downloads 93
83 Endothelial Progenitor Cells Is a Determinant of Vascular Function and Atherosclerosis in Ankylosing Spondylitis

Authors: Ashit Syngle, Inderjit Verma, Pawan Krishan

Abstract:

Objective: Endothelial progenitor cells (EPCs) have reparative potential in overcoming the endothelial dysfunction and reducing cardiovascular risk. EPC depletion has been demonstrated in the setting of established atherosclerotic diseases. With this background, we evaluated whether reduced EPCs population are associated with endothelial dysfunction, subclinical atherosclerosis and inflammatory markers in ankylosing spondylitis (AS) patients without any known traditional cardiovascular risk factor in AS patients. Methods: Levels of circulating EPCs (CD34+/CD133+), brachial artery flow-mediated dilatation, carotid intima-media thickness (CIMT) and inflammatory markers i.e erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tissue necrosis factor (TNF)–α, interleukin (IL)-6, IL-1 were assessed in 30 AS patients (mean age33.41 ± 10.25; 11 female and 19 male) who fulfilled the modified New York diagnostic criteria with 25 healthy volunteers (mean age 29.36± 8.64; 9 female and 16 male) matched for age and sex. Results: EPCs (CD34+/CD133+) cells were significantly (0.020 ± 0.001% versus 0.040 ± 0.010%, p<0.001) reduced in patients with AS compared to healthy controls. Endothelial function (7.35 ± 2.54 versus 10.27 ±1.73, p=0.002), CIMT (0.63 ± 0.01 versus 0.35 ± 0.02, p < 0.001) and inflammatory markers were also significantly (p < 0.01) altered as compared to healthy controls. Specifically, CD34+CD133+cells were inversely multivariate correlated with CRP and TNF-α and endothelial dysfunction was positively correlated with reduced number of EPC. Conclusion: Depletion of EPCs population is an independent predictor of endothelial dysfunction and early atherosclerosis in AS patients and may provide additional information beyond conventional risk factors and inflammatory markers.

Keywords: endothelial progenitor cells, atherosclerosis, ankylosing spondylitis, cardiovascular

Procedia PDF Downloads 357
82 Oat βeta Glucan Attenuates the Development of Atherosclerosis and Improves the Intestinal Barrier Function by Reducing Bacterial Endotoxin Translocation in APOE-/- MICE

Authors: Dalal Alghawas, Jetty Lee, Kaisa Poutanen, Hani El-Nezami

Abstract:

Oat β-glucan a water soluble non starch linear polysaccharide has been approved as a cholesterol lowering agent by various food safety administrations and is commonly used to reduce the risk of heart disease. The molecular weight of oat β-glucan can vary depending on the extraction and fractionation methods. It is not clear whether the molecular weight has a significant impact at reducing the acceleration of atherosclerosis. The aim of this study was to investigate three different oat β-glucan fractionations on the development of atherosclerosis in vivo. With special focus on plaque stability and the intestinal barrier function. To test this, ApoE-/- female mice were fed a high fat diet supplemented with oat bran, high molecular weight (HMW) oat β-glucan fractionate and low molecular weight (LMW) oat β-glucan fractionate for 16 weeks. Atherosclerosis risk markers were measured in the plasma, heart and aortic tree. Plaque size was measured in the aortic root and aortic tree. ICAM-1, VCAM-1, E-Selectin, P-Selectin, protein levels were assessed from the aortic tree to determine plaque stability at 16 weeks. The expression of p22phox at the aortic root was evaluated to study the NADPH oxidase complex involved in nitric oxide bioavailability and vascular elasticity. The tight junction proteins E-cadherin and beta-catenin from western blot analyses were analysed as an intestinal barrier function test. Plasma LPS, intestinal D-lactate levels and hepatic FMO gene expression were carried out to confirm whether the compromised intestinal barrier lead to endotoxemia. The oat bran and HMW oat β-glucan diet groups were more effective than the LMW β-glucan diet group at reducing the plaque size and showed marked improvements in plaque stability. The intestinal barrier was compromised for all the experimental groups however the endotoxemia levels were higher in the LMW β-glucan diet group. The oat bran and HMW oat β-glucan diet groups were more effective at attenuating the development of atherosclerosis. Reasons for this could be due to the LMW oat β-glucan diet group’s low viscosity in the gut and the inability to block the reabsorption of cholesterol. Furthermore the low viscosity may allow more bacterial endotoxin translocation through the impaired intestinal barrier. In future food technologists should carefully consider how to incorporate LMW oat β-glucan as a health promoting food.

Keywords: Atherosclerosis, beta glucan, endotoxemia, intestinal barrier function

Procedia PDF Downloads 388
81 A Numerical Simulation of Arterial Mass Transport in Presence of Magnetic Field-Links to Atherosclerosis

Authors: H. Aminfar, M. Mohammadpourfard, K. Khajeh

Abstract:

This paper has focused on the most important parameters in the LSC uptake; inlet Re number and Sc number in the presence of non-uniform magnetic field. The magnetic field is arising from the thin wire with electric current placed vertically to the arterial blood vessel. According to the results of this study, applying magnetic field can be a treatment for atherosclerosis by reducing LSC along the vessel wall. Homogeneous porous layer as a arterial wall has been regarded. Blood flow has been considered laminar and incompressible containing Ferro fluid (blood and 4 % vol. Fe₃O₄) under steady state conditions. Numerical solution of governing equations was obtained by using the single-phase model and control volume technique for flow field.

Keywords: LDL surface concentration (LSC), magnetic field, computational fluid dynamics, porous wall

Procedia PDF Downloads 369
80 The Correlation Between Epicardial Fat Pad and Coronary Artery Disease

Authors: Behnam Shakerian, Negin Razavi

Abstract:

The pathogenesis of coronary artery disease is multifactorial. The epicardial fat pad is a localized fat depot lying between the myocardium and the visceral layer of the pericardium. The mechanisms through which epicardial fat pad can cause atherosclerosis are complex. The epicardial fat pad can surround the coronary arteries and contributes to the development and progression of coronary artery disease. Methods: we selected 50 patients who underwent coronary artery angiography for the evaluation of coronary artery disease that results were positive for coronary artery disease. All patients underwent an echocardiographic examination after coronary angiography to measure epicardial fat pad thickness. The epicardial fat pad was defined as an echo-free space between the myocardium's outer wall and the pericardium's visceral layer. Results: The epicardial fat pad was measured on the right ventricle apex in 46 patients. Sixty- five percent of the studied patients were male. The most common vessel with stenosis was the left anterior descending artery. A significant correlation was observed between epicardial fat pad thickness and the severity of coronary artery disease. Discussions: The epicardial fat pad provides a horizon on the pathophysiology of cardiovascular diseases. It directly contributes to the development and progression of coronary artery disease by causing inflammation and endothelial damage. Further investigations are needed to determine whether medical treatment can reduce the mass of epicardial fat pad and can help to improve atherosclerosis. Conclusion: The epicardial fat pad measurement could be used as an indicator of coronary arteries’ atherosclerosis. Therefore, thickness measurement of the epicardial fat pad in the clinical practice could be of assistance in identifying patients at risk and if required, undergoing supplementary diagnosis with coronary angiography.

Keywords: epicardial, fat pad, coronary artery disease, echocardiography

Procedia PDF Downloads 123
79 Identification of Hub Genes in the Development of Atherosclerosis

Authors: Jie Lin, Yiwen Pan, Li Zhang, Zhangyong Xia

Abstract:

Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipids, immune cells, and extracellular matrix in the arterial walls. This pathological process can lead to the formation of plaques that can obstruct blood flow and trigger various cardiovascular diseases such as heart attack and stroke. The underlying molecular mechanisms still remain unclear, although many studies revealed the dysfunction of endothelial cells, recruitment and activation of monocytes and macrophages, and the production of pro-inflammatory cytokines and chemokines in atherosclerosis. This study aimed to identify hub genes involved in the progression of atherosclerosis and to analyze their biological function in silico, thereby enhancing our understanding of the disease’s molecular mechanisms. Through the analysis of microarray data, we examined the gene expression in media and neo-intima from plaques, as well as distant macroscopically intact tissue, across a cohort of 32 hypertensive patients. Initially, 112 differentially expressed genes (DEGs) were identified. Subsequent immune infiltration analysis indicated a predominant presence of 27 immune cell types in the atherosclerosis group, particularly noting an increase in monocytes and macrophages. In the Weighted gene co-expression network analysis (WGCNA), 10 modules with a minimum of 30 genes were defined as key modules, with blue, dark, Oliver green and sky-blue modules being the most significant. These modules corresponded respectively to monocyte, activated B cell, and activated CD4 T cell gene patterns, revealing a strong morphological-genetic correlation. From these three gene patterns (modules morphology), a total of 2509 key genes (Gene Significance >0.2, module membership>0.8) were extracted. Six hub genes (CD36, DPP4, HMOX1, PLA2G7, PLN2, and ACADL) were then identified by intersecting 2509 key genes, 102 DEGs with lipid-related genes from the Genecard database. The bio-functional analysis of six hub genes was estimated by a robust classifier with an area under the curve (AUC) of 0.873 in the ROC plot, indicating excellent efficacy in differentiating between the disease and control group. Moreover, PCA visualization demonstrated clear separation between the groups based on these six hub genes, suggesting their potential utility as classification features in predictive models. Protein-protein interaction (PPI) analysis highlighted DPP4 as the most interconnected gene. Within the constructed key gene-drug network, 462 drugs were predicted, with ursodeoxycholic acid (UDCA) being identified as a potential therapeutic agent for modulating DPP4 expression. In summary, our study identified critical hub genes implicated in the progression of atherosclerosis through comprehensive bioinformatic analyses. These findings not only advance our understanding of the disease but also pave the way for applying similar analytical frameworks and predictive models to other diseases, thereby broadening the potential for clinical applications and therapeutic discoveries.

Keywords: atherosclerosis, hub genes, drug prediction, bioinformatics

Procedia PDF Downloads 27
78 Activation of TNF-α from Human Endothelial Cells by Exposure of the Mitochondrial Stress Protein (Hsp60) Secreted from THP-1 Monocytes to High Glucose

Authors: Ryan D. Martinus

Abstract:

Inflammation of the endothelium is an important process leading to diabetic atherosclerosis. However, the molecular mechanisms by which diabetes contributes to endothelial inflammation remain to be established. Using In-vitro cultured Human cells and Hsp60 specific ELISA assays, we show that Hsp60 is not only induced in Human monocyte cells under hyperglycaemic conditions but that the Hsp60 is also secreted from these cells. Furthermore, we also demonstrate that the Hsp60 secreted from these monocyte cells is also able to activate Toll-like receptor-4 (TLR4) from Human endothelial cells. This suggests that a potential link may exist between the hyperglycaemia-induced expression of Hsp60 in monocyte cells and vascular inflammation. Circulating levels of Hsp60 due to mitochondrial stress in diabetes patients could, therefore, be an important modulator of inflammation in endothelial cells and thus contribute to the increased incidences of atherosclerosis in diabetes mellitus.

Keywords: mitochondria, Hsp60, inflammation, diabetes mellitus

Procedia PDF Downloads 144
77 Effects of Oxidized LDL in M2 Macrophages: Implications in Atherosclerosis

Authors: Fernanda Gonçalves, Karla Alcântara, Vanessa Moura, Patrícia Nolasco, Jorge Kalil, Maristela Hernandez

Abstract:

Introduction: Atherosclerosis is a chronic disease where two striking features are observed: retention of lipids and inflammation. Understanding the interaction between immune cells and lipoproteins involved in atherogenesis are urgent challenges, since cardiovascular diseases are the leading cause of death worldwide. Macrophages are critical to the development of atherosclerotic plaques and in the perpetuation of inflammation in these lesions. These cells are also directly involved in unstable plaque rupture. Recently different populations of macrophages are being identified in atherosclerotic lesions. Although the presence of M2 macrophages (macrophages activated by the alternative pathway, eg. The IL-4) has been identified, the function of these cells in atherosclerosis is not yet defined. M2 macrophages have a high endocytic capacity, they promote remodeling of tissues and to have anti-inflammatory activity. However, in atherosclerosis, especially unstable plaques, severe inflammatory reaction, accumulation of cellular debris and intense degradation of the tissue is observed. Thus, it is possible that the M2 macrophages have altered function (phenotype) in atherosclerosis. Objective: Our aim is to evaluate if the presence of oxidized LDL alters the phenotype and function of M2 macrophages in vitro. Methods: For this, we will evaluate whether the addition of lipoprotein in M2 macrophages differentiated in vitro with IL -4 induces 1) a reduction in the secretion of anti-inflammatory cytokines (CBA and ELISA), 2) secretion of inflammatory cytokines (CBA and ELISA), 3) expression of cell activation markers (Flow cytometry), 4) alteration in gene expression of molecules adhesion and extracellular matrix (Real-Time PCR) and 5) Matrix degradation (confocal microscopy). Results: In oxLDL stimulated M2 macrophages cultures we did not find any differences in the expression of the cell surface markers tested, including: HLA-DR, CD80, CD86, CD206, CD163 and CD36. Also, cultures stimulated with oxLDL had similar phagocytic capacity when compared to unstimulated cells. However, in the supernatant of these cultures an increase in the secretion of the pro-inflammatory cytokine IL-8 was detected. No significant changes where observed in IL-6, IL-10, IL-12 and IL-1b levels. The culture supernatant also induced massive extracellular matrix (produced by mouse embryo fibroblast) filaments degradation. When evaluating the expression of 84 extracellular matrix and adhesion molecules genes, we observed that the stimulation of oxLDL in M2 macrophages decreased 47% of the genes and increased the expression of only 3% of the genes. In particular we noted that oxLDL inhibit the expression of 60% of the genes constituents of extracellular matrix and collagen expressed by these cells, including fibronectin1 and collagen VI. We also observed a decrease in the expression of matrix protease inhibitors, such as TIMP 2. On the opposite, the matricellular protein thrombospondin had a 12 fold increase in gene expression. In the presence of native LDL 90% of the genes had no altered expression. Conclusion: M2 macrophages stimulated with oxLDL secrete the pro-inflammatory cytokine IL-8, have an altered extracellular matrix constituents gene expression, and promote the degradation of extracellular matrix. M2 macrophages may contribute to the perpetuation of inflammation in atherosclerosis and to plaque rupture.

Keywords: atherosclerosis, LDL, macrophages, m2

Procedia PDF Downloads 287
76 Arsenic Contamination in Drinking Water Is Associated with Dyslipidemia in Pregnancy

Authors: Begum Rokeya, Rahelee Zinnat, Fatema Jebunnesa, Israt Ara Hossain, A. Rahman

Abstract:

Background and Aims: Arsenic in drinking water is a global environmental health problem, and the exposure may increase dyslipidemia and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of lipid metabolism, atherosclerosis formation, arsenic exposure and impact in pregnancy is still unclear. Recent epidemiological evidences indicate close association between inorganic arsenic exposure via drinking water and Dyslipidemia. However, the exact mechanism of this arsenic-mediated increase in atherosclerosis risk factors remains enigmatic. We explore the association of the effect of arsenic on serum lipid profile in pregnant subjects. Methods: A total 200 pregnant mother screened in this study from arsenic exposed area. Our study group included 100 exposed subjects were cases and 100 Non exposed healthy pregnant were controls requited by a cross-sectional study. Clinical and anthropometric measurements were done by standard techniques. Lipidemic status was assessed by enzymatic endpoint method. Urinary As was measured by inductively coupled plasma-mass spectrometry and adjusted with specific gravity and Arsenic exposure was assessed by the level of urinary arsenic level > 100 μg/L was categorized as arsenic exposed and < 100 μg/L were categorized as non-exposed. Multivariate logistic regression and Student’s t - test was used for statistical analysis. Results: Systolic and diastolic blood pressure both were significantly higher in the Arsenic exposed pregnant subjects compared to the Non-exposed group (p<0.001). Arsenic exposed subjects had 2 times higher chance of developing hypertensive pregnancy (Odds Ratio 2.2). In parallel to the findings in Ar exposed subjects showed significantly higher proportion of triglyceride and total cholesterol and low density of lipo protein when compare to non- arsenic exposed pregnant subjects. Significant correlation of urinary arsenic level was also found with SBP, DBP, TG, T chol and serum LDL-Cholesterol. On multivariate logistic regression showed urinary arsenic had a positive association with DBP, SBP, Triglyceride and LDL-c. Conclusion: In conclusion, arsenic exposure may induce dyslipidemia like atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element.

Keywords: Arsenic Exposure, Dyslipidemia, Gestational Diabetes Mellitus, Serum lipid profile

Procedia PDF Downloads 90
75 Short-Term versus Long-Term Effect of Waterpipe Smoking Exposure on Cardiovascular Biomarkers in Mice

Authors: Abeer Rababa'h, Ragad Bsoul, Mohammad Alkhatatbeh, Karem Alzoubi

Abstract:

Introduction: Tobacco use is one of the main risk factors to cardiovascular diseases (CVD) and atherosclerosis in particular. WPS contains several toxic materials such as: nicotine, carcinogens, tar, carbon monoxide and heavy metals. Thus, WPS is considered to be as one of the toxic environmental factors that should be investigated intensively. Therefore, the aim of this study is to investigate the effect of WPS on several cardiovascular biological markers that may cause atherosclerosis in mice. The study also conducted to study the temporal effects of WPS on the atherosclerotic biomarkers upon short (2 weeks) and long-term (8 weeks) exposures. Methods: mice were exposed to WPS and heart homogenates were analyzed to elucidate the effects of WPS on matrix metalloproteinase (MMPs), endothelin-1 (ET-1) and, myeloperoxidase (MPO). Following protein estimation, enzyme-linked immunosorbent assays were done to measure the levels of MMPs (isoforms 1, 3, and 9), MPO, and ET-1 protein expressions. Results: our data showed that acute exposure to WPS significantly enhances the levels of MMP-3, MMP- 9, and MPO expressions (p < 0.05) compared to their corresponding control. However, the body was capable to normalize the level of expressions for such parameters following continuous exposure for 8 weeks (p > 0.05). Additionally, we showed that the level of ET-1 expression was significantly higher upon chronic exposure to WPS compared to both control and acute exposure groups (p < 0.05). Conclusion: Waterpipe exposure has a significant negative effect on atherosclerosis and the enhancement of the atherosclerotic biomarkers expression (MMP-3 and 9, MPO, and ET-1) might represent an early scavenger of compensatory efforts to maintain cardiac function after WP exposure.

Keywords: atherosclerotic biomarkers, cardiovascular disease, matrix metalloproteinase, waterpipe

Procedia PDF Downloads 317
74 A Comparative CFD Study on the Hemodynamics of Flow through an Idealized Symmetric and Asymmetric Stenosed Arteries

Authors: B. Prashantha, S. Anish

Abstract:

The aim of the present study is to computationally evaluate the hemodynamic factors which affect the formation of atherosclerosis and plaque rupture in the human artery. An increase of atherosclerosis disease in the artery causes geometry changes, which results in hemodynamic changes such as flow separation, reattachment, and adhesion of new cells (chemotactic) in the artery. Hence, geometry plays an important role in the determining the nature of hemodynamic patterns. Influence of stenosis in the non-bifurcating artery, under pulsatile flow condition, has been studied on an idealized geometry. Analysis of flow through symmetric and asymmetric stenosis in the artery revealed the significance of oscillating shear index (OSI), flow separation, low WSS zones and secondary flow patterns on plaque formation. The observed characteristic of flow in the post-stenotic region highlight the importance of plaque eccentricity on the formation of secondary stenosis on the arterial wall.

Keywords: atherosclerotic plaque, oscillatory shear index, stenosis nature, wall shear stress

Procedia PDF Downloads 320
73 Analysis of Adipose Tissue-Derived Mesenchymal Stem Cells under Atherosclerosis Microenvironment

Authors: Do Khanh Vy, Vuong Cat Khanh, Osamu Ohneda

Abstract:

During atherosclerosis (AS) progression, perivascular adipose tissue-derived mesenchymal stem cells (PVAT-MSCs) are exposed to the hypoxic environment due to the oxygenic deprivation which might influence the adipose tissue-derived mesenchymal stem cells (AT-MSCs) function. Additionally, it has been reported that the angiogenic ability of subcutaneous AT-MSCs (SAT-MSCs) was impaired in the AS patients. However, up to now, the effects of AS on the characteristics and function of PVAT-MSCs have not been clarified yet. In the present study, we analyzed the AS microenvironment effects on the characteristics and function of AT-MSCs. We found that there was no significant difference in cellular morphology and differentiation ability between SAT-MSCs and PVAT-MSCs in AS patients. However, the proliferation of AS-derived PVAT-MSCs was less than those of AS-derived SAT-MSCs. Importantly, the migration of AS-derived PVAT-MSCs was faster than AS-derived SAT-MSCs. Of note, AS-derived PVAT-MSCs showed the upregulation of SDF1, which is related to the homing, and VEGF, which is related to the angiogenesis compared to those of AS-derived SAT-MSCs. Consistent with these results, AS-derived PVAT-MSCs showed the higher ability to recruit EPCs and ECs than AS-derived SAT-MSCs. In addition, EPCs and ECs which cultured in the presence of AS-derived PVAT-MSC conditioned medium showed the higher angiogenic function of the tube formation compared to those cultured in AS-derived SAT-MSC conditioned medium. This result suggests that the higher paracrine effects of AS-derived PVAT-MSCs support the angiogenic function of the target cells. Our data showed the different characteristics and functions of AT-MSCs derived from different sources of tissues. Under the AS microenvironment, it seems that the characteristics and functions of PVAT-MSCs might reflect the progression of AS. Further study will be necessary to clarify the mechanism in the future.

Keywords: atherosclerosis, mesenchymal stem cells, perivascular adipose tissue, subcutaneous adipose tissue

Procedia PDF Downloads 125
72 The Effect of Endurance Training on Serum VCAM-1 in Overweight Women

Authors: Soheily Shahram, Banaeifar Abdolali, Yadegari Elham

Abstract:

Vascular adhesion molecules-1 (VCAM-1) is one of the factors associating obesity and inflammatory lesions like atherosclerosis. The purpose of the present study was to investigate the effects of endurance training on serum concentration of VCAM-1 in overweight women. Thirty female overweight (BMI ≥ 25) voluntarily participated in our study. Subjects were randomly assigned to one of two groups: Endurance training or control group. Training group exercised for 12 weeks, three sessions a week with definite intensity and distance. Pre and post 12 weeks of endurance training blood samples were taken (5cc) in fasting state from all subjects. Data was analyzed via independent t test (p≤0.05). The results showed that endurance training had significant effect on VCAM, body weight, fat percentage, BMI and maximum oxygen consumption (p ≤ 0.05). This study demonstrates that endurance training caused a decrease in the adhesion molecules level and decreasing inflammation, endurance training may perhaps play an effective role in atherosclerosis.

Keywords: endurance training, vascular cell adhesion molecules, overweight women, serum concentration

Procedia PDF Downloads 382
71 The Effect of Aerobic Training and Aqueous Extract of C. monogyna (Hawthorn) on Plasma and Heart Angiogenic Mediators in Male Wistar Rats

Authors: Asieh Abbassi Daloii, Ahmad Abdi

Abstract:

Introduction: Sports information suggests that physical inactivity increases the risk of many diseases, including atherosclerosis. Coronary heart disease, stroke and peripheral vascular disease, atherosclerosis and clinical protests. However, exercise can have beneficial effects on risk factors for atherosclerosis by reducing hyperlipidemia, hypertension, obesity, plaque density, increased insulin sensitivity and glucose tolerance is improved. Despite these findings, there is little information about the molecular mechanisms of interaction between the body and its relation to sport and there arteriosclerosis. The present study aims to investigate the effect of six weeks of progressive aerobic training and aqueous extract of crataegus monogyna on vascular endothelial growth factor (VEGF) variations and angiopoetin-1/2 (ANG- 1/2) in plasma and heart tissue in male Wistar rats. Methods: 30 male Wistar rats, 4-6 months old, were randomly divided into four groups: control crataegus monogyna (N=8), training crataegus monogyna (N=8), control saline (N=6), and training saline (N=8). The aerobic training program included running on treadmill at the speed of 34 meters per minute for 60 minutes per day. The training was conducted for six weeks, five days a week. Following each training session, both experimental and control subjects of crataegus monogyna groups were orally fed with 0.5 mg crataegus monogyna extract per gram of the body weight. The normal saline group was given the same amount of the normal saline solution (NS). Eventually, 72 hours after the last training session, blood samples were taken from inferior Verna cava. Conclusion: It is likely that crataegus monogyna extract compared with aerobic training and even combination of both training and crataegus monogyna extract is more effective on angiogenesis.

Keywords: angiopoietin 1, 2, vascular endothelial growth factor, aerobic exercise

Procedia PDF Downloads 360
70 The Potential of Acanthaster Plancii Fractions as Anti-Atherosclerotic Agent by Inhibiting the Expression of Proprotein Convertase Subtilisin-Kexin Type 9

Authors: Nurjannatul Naim Kamaruddin, Tengku Sifziuzl Tengku Muhammad, Aina Farahiyah Abdul Manan, Habsah Mohamad

Abstract:

Atherosclerosis which leads to cardiovascular diseases such as myocardial infarction, unstable angina (ischemic heart pain), sudden cardiac death and stroke is the principal cause of death worldwide. It has been a very critical issue as current common drug treatment, statin therapy has left bad side effects like rhabdomyolysis, atrial fibrillation, liver disease, abdominal and chest pain. Interestingly, the discoveries of proprotein convertase subtilisin-kexin type 9 have paved a new way in the treatment of atherosclerosis. This serine protease is believed to involve in the regulation of LDL- uptake by LDL-receptor. Therefore, this study was conducted to evaluate the potential of Acanthaster plancii fractions to reduce the transcriptional activity of the PCSK9 promoter. In this study, the marine organism which is Acanthaster plancii has been used as the source for marine compounds in inhibiting PCSK9. The cytotoxicity activity of ten fractions from the methanol extracts of Acanthaster plancii was investigated on HepG2 cell lines using MTS assay and dual glo luciferase assay was carried out later to analyses the effects of the samples in reducing the transcriptional activity of the PCSK9 promoter. Both assays used fractions with five different concentrations, 3.13µg/mL, 6.25µg/mL, 12.5µg/mL, 25µg/mL, and 50µg/mL. MTS assay indicated that the fractions are non-cytotoxic towards HepG2 cell lines as their IC50 value is greater than 30µg/mL. Whilst, for the dual glo luciferase assay, among all the fractions, Enhance Fraction 2 (EF2) showed the best potential in reducing the transcriptional activity of the PCSK9 promoter. The results indicated that this EF2 gave the lowest PCSK9 promoter expression at low concentration which is 0.2 fold change at 6.25µg/mL. This finding suggested that further analysis should be done to validate the potential of Acanthaster plancii as the source of anti-atherosclerotic agent.

Keywords: Acanthaster plancii, atherosclerosis, luciferase assay, PCSK9

Procedia PDF Downloads 117
69 Atherosclerotic Plagues and Immune Microenvironment: From Lipid-Lowering to Anti-inflammatory and Immunomodulatory Drug Approaches in Cardiovascular Diseases

Authors: Husham Bayazed

Abstract:

A growing number of studies indicate that atherosclerotic coronary artery disease (CAD) has a complex pathogenesis that extends beyond cholesterol intimal infiltration. The atherosclerosis process may involve an immune micro-environmental condition driven by local activation of the adaptive and innate immunity arrays, resulting in the formation of atherosclerotic plaques. Therefore, despite the wide usage of lipid-lowering agents, these devastating coronary diseases are not averted either at primary or secondary prevention levels. Many trials have recently shown an interest in the immune targeting of the inflammatory process of atherosclerotic plaques, with the promised improvement in atherosclerotic cardiovascular disease outcomes. This recently includes the immune-modulatory drug “Canakinumab” as an anti-interleukin-1 beta monoclonal antibody in addition to "Colchicine,” which's established as a broad-effect drug in the management of other inflammatory conditions. Recent trials and studies highlight the importance of inflammation and immune reactions in the pathogenesis of atherosclerosis and plaque formation. This provides an insight to discuss and extend the therapies from old lipid-lowering drugs (statins) to anti-inflammatory drugs (colchicine) and new targeted immune-modulatory therapies like inhibitors of IL-1 beta (canakinumab) currently under investigation.

Keywords: atherosclerotic plagues, immune microenvironment, lipid-lowering agents, and immunomodulatory drugs

Procedia PDF Downloads 26
68 The Palm Oil in Food Products: Frequency of Consumption and Composition

Authors: Kamilia Ounaissa, Sarra Fennira, Asma Ben Brahim, Marwa Omri, Abdelmajid Abid

Abstract:

The palm oil is the vegetable oil the most used by the food-processing industry in the world. It is chosen for its economic and technologic advantages. However, this oil arouses the debate because of its high content in saturated fatty acids, which are fats promoting atherosclerosis. Purposes of the work: To study the frequency and the rate of consumption of industrial products containing some palm oil and specify the rate of this oil in certain consummated products. Methodology: We proceeded to a consumer survey using a questionnaire collecting a list of food containing the palm oil, sold on the Tunisian market. We then analyzed the most consumed food to specify their fat content by “Soxhelt’s” method. Finally, we studied the composition in various fatty acids of the extracted fat using the chromatography in the gas phase (CPG) Results: Our results show that investigated individuals having a normal weight have a more important and more frequent consumption of products rich in palm oil than overweight subjects. The most consumed foods are biscuits, cakes, wafers, chocolates, chips, cereal, creams to be spread and canned pilchard. The content in palm oil of these products varies from 10 % to 31 %. The analysis by CPG showed an important content in saturated fatty acid, in particular in palmitic acid, ranging from 40 % to 63 % of the fat of these products. Conclusion: Our study shows a high frequency of consumption of food products, the analysis of which proved a high content in palm oil. Theses facts justifies the necessity of a regulation of the use of palm oil in food products and the application of a label detailing the type and fat rates used.

Keywords: palm oil, palmitic acid, food industry, fatty acids, atherosclerosis

Procedia PDF Downloads 508
67 Carotid Intima-Media Thickness and Ankle-Brachial Index as Predictors of the Severity of Coronary Artery Disease

Authors: Ali Kassem, Yaser Kamal, Mohamed Abdel Wahab, Mohamed Hussen

Abstract:

Introduction: Atherosclerosis is one of the leading causes of death all over the world. Recently, there is an increasing interest in Carotid Intima-Medial Thickness (CIMT) and Ankle Brachial Index (ABI) as non-invasive tools for identifying subclinical atherosclerosis. We aim to examine the role of CIMT and ABI as predictors of the severity of angiographically documented coronary artery disease (CAD). Methods: A cross-sectional study conducted on 60 patients who were investigated by coronary angiography at Sohag University Hospital, Egypt. CIMT: After the carotid arteries were located by transverse scans, the probe was rotated 90 ° to obtain and record longitudinal images of bilateral carotid arteries ABI: Each patient was evaluated in the supine position after resting for 5 min. ABI was measured in each leg using a Doppler Ultrasound while the patient remained in the same position. The lowest ABI obtained for either leg was taken as the ABI measurement for the patient. Results: Patients with carotid mean IMT ≥ 0.9 mm had significantly more severe coronary artery disease than patients without thickening (mean IMT > 0.9 mm). Similarly, patients with low ABI (< 0.9) had significantly more severe coronary artery disease than patients with ABI ≥ 0.9. When the patients were divided into 4 groups (group A, n = 15, mean IMT < 0.9 mm, ABI ≥ 0.9; group B, n = 25, mean IMT < 0.9 mm, low ABI; group C, n = 5, mean IMT ≥ 0.9 mm, ABI ≥ 0.9; group D, n = 19, mean IMT ≤ 0.9 mm, low ABI), the presence of significant coronary stenosis (> 50%) of the groups were significantly different (group A, n = 5: (33.3%); group B, n = 11: (52.4%); group C, n = 4: (60%); group D, n=15, (78.9%), P = 0.001). Conclusion: CIMT and ABI provide useful information on the severity of CAD. Early and aggressive intervention should be considered in patients with CAD and abnormalities in one or both of these non-invasive modalities.

Keywords: ankle brachial index, carotid intima media thickness, coronary artery disease, predictors of severity

Procedia PDF Downloads 201
66 Development of Electrospun Membranes with Defined Polyethylene Collagen and Oxide Architectures Reinforced with Medium and High Intensity Statins

Authors: S. Jaramillo, Y. Montoya, W. Agudelo, J. Bustamante

Abstract:

Cardiovascular diseases (CVD) are related to affectations of the heart and blood vessels, within these are pathologies such as coronary or peripheral heart disease, caused by the narrowing of the vessel wall (atherosclerosis), which is related to the accumulation of Low-Density Lipoproteins (LDL) in the arterial walls that leads to a progressive reduction of the lumen of the vessel and alterations in blood perfusion. Currently, the main therapeutic strategy for this type of alteration is drug treatment with statins, which inhibit the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), responsible for modulating the rate of cholesterol production and other isoprenoids in the mevalonate pathway. This enzyme induces the expression of LDL receptors in the liver, increasing their number on the surface of liver cells, reducing the plasma concentration of cholesterol. On the other hand, when the blood vessel presents stenosis, a surgical procedure with vascular implants is indicated, which are used to restore circulation in the arterial or venous bed. Among the materials used for the development of vascular implants are Dacron® and Teflon®, which perform the function of re-waterproofing the circulatory circuit, but due to their low biocompatibility, they do not have the ability to promote remodeling and tissue regeneration processes. Based on this, the present research proposes the development of a hydrolyzed collagen and polyethylene oxide electrospun membrane reinforced with medium and high-intensity statins, so that in future research it can favor tissue remodeling processes from its microarchitecture.

Keywords: atherosclerosis, medium and high-intensity statins, microarchitecture, electrospun membrane

Procedia PDF Downloads 95
65 Mathematical Modelling of Blood Flow with Magnetic Nanoparticles as Carrier for Targeted Drug Delivery in a Stenosed Artery

Authors: Sreeparna Majee, G. C. Shit

Abstract:

A study on targeted drug delivery is carried out in an unsteady flow of blood infused with magnetic NPs (nanoparticles) with an aim to understand the flow pattern and nanoparticle aggregation in a diseased arterial segment having stenosis. The magnetic NPs are supervised by the magnetic field which is significant for therapeutic treatment of arterial diseases, tumor and cancer cells and removing blood clots. Coupled thermal energy have also been analyzed by considering dissipation of energy because of the application of the magnetic field and the viscosity of blood. Simulation technique used to solve the mathematical model is vorticity-stream function formulations in the diseased artery. An elevation in SLP (Specific loss power) is noted in the aortic bloodstream when the agglomeration of nanoparticles is higher. This phenomenon has potential application in the treatment of hyperthermia. The study focuses on the lowering of WSS (Wall Shear Stress) with increasing particle concentration at the downstream of the stenosis which depicts the vigorous flow circulation zone. These low shear stress regions prolong the residing time of the nanoparticles carrying drugs which soaks up the LDL (Low Density Lipoprotein) deposition. Moreover, an increase in NP concentration enhances the Nusselt number which marks the increase of heat transfer from the arterial wall to the surrounding tissues to destroy tumor and cancer cells without affecting the healthy cells. The results have a significant influence in the study of medicine, to treat arterial diseases such as atherosclerosis without the need for surgery which can minimize the expenditures on cardiovascular treatments.

Keywords: magnetic nanoparticles, blood flow, atherosclerosis, hyperthermia

Procedia PDF Downloads 107
64 Geometrical Analysis of an Atheroma Plaque in Left Anterior Descending Coronary Artery

Authors: Sohrab Jafarpour, Hamed Farokhi, Mohammad Rahmati, Alireza Gholipour

Abstract:

In the current study, a nonlinear fluid-structure interaction (FSI) biomechanical model of atherosclerosis in the left anterior descending (LAD) coronary artery is developed to perform a detailed sensitivity analysis of the geometrical features of an atheroma plaque. In the development of the numerical model, first, a 3D geometry of the diseased artery is developed based on patient-specific dimensions obtained from the experimental studies. The geometry includes four influential geometric characteristics: stenosis ratio, plaque shoulder-length, fibrous cap thickness, and eccentricity intensity. Then, a suitable strain energy density function (SEDF) is proposed based on the detailed material stability analysis to accurately model the hyperelasticity of the arterial walls. The time-varying inlet velocity and outlet pressure profiles are adopted from experimental measurements to incorporate the pulsatile nature of the blood flow. In addition, a computationally efficient type of structural boundary condition is imposed on the arterial walls. Finally, a non-Newtonian viscosity model is implemented to model the shear-thinning behaviour of the blood flow. According to the results, the structural responses in terms of the maximum principal stress (MPS) are affected more compared to the fluid responses in terms of wall shear stress (WSS) as the geometrical characteristics are varying. The extent of these changes is critical in the vulnerability assessment of an atheroma plaque.

Keywords: atherosclerosis, fluid-Structure interaction modeling, material stability analysis, and nonlinear biomechanics

Procedia PDF Downloads 57
63 An Assessment of Finite Element Computations in the Structural Analysis of Diverse Coronary Stent Types: Identifying Prerequisites for Advancement

Authors: Amir Reza Heydari, Yaser Jenab

Abstract:

Coronary artery disease, a common cardiovascular disease, is attributed to the accumulation of cholesterol-based plaques in the coronary arteries, leading to atherosclerosis. This disease is associated with risk factors such as smoking, hypertension, diabetes, and elevated cholesterol levels, contributing to severe clinical consequences, including acute coronary syndromes and myocardial infarction. Treatment approaches such as from lifestyle interventions to surgical procedures like percutaneous coronary intervention and coronary artery bypass surgery. These interventions often employ stents, including bare-metal stents (BMS), drug-eluting stents (DES), and bioresorbable vascular scaffolds (BVS), each with its advantages and limitations. Computational tools have emerged as critical in optimizing stent designs and assessing their performance. The aim of this study is to provide an overview of the computational methods of studies based on the finite element (FE) method in the field of coronary stenting and discuss the potential for development and clinical application of stent devices. Additionally, the importance of assessing the ability of computational models is emphasized to represent real-world phenomena, supported by recent guidelines from the American Society of Mechanical Engineers (ASME). Validation processes proposed include comparing model performance with in vivo, ex-vivo, or in vitro data, alongside uncertainty quantification and sensitivity analysis. These methods can enhance the credibility and reliability of in silico simulations, ultimately aiding in the assessment of coronary stent designs in various clinical contexts.

Keywords: atherosclerosis, materials, restenosis, review, validation

Procedia PDF Downloads 42
62 Soluble CD36 and Cardiovascular Risk in Middle-Aged Subjects

Authors: Mohammad Alkhatatbeh, Nehad Ayoub, Nizar Mhaidat, Nesreen Saadeh, Lisa Lincz

Abstract:

CD36 is involved in the development of atherosclerosis by enhancing macrophage endocytosis of oxidized-low density lipoproteins and foam cell formation. Soluble CD36 (sCD36) was found to be elevated in type 2 diabetic patients and was supposed to act as a marker of insulin resistance and atherosclerosis. In young subjects, sCD36 was associated with cardiovascular risk factors including obesity and hypertriglyceridemia. This study was conducted to further investigate the relationship between plasma sCD36 and cardiovascular risk factors among middle-aged patients with metabolic syndrome (MetS) and healthy controls. SCD36 concentrations were determined by enzyme-linked immunosorbent assays (ELISA) for 41 patients with MetS and 36 healthy controls. Data for other variables were obtained from patients' medical records. SCD36 concentrations were relatively low compared to most other studies and were not significantly different between the MetS group and controls (P-value=0.17). SCD36 was also not correlated with age, body mass index, glucose, lipid profile, serum electrolytes and blood counts. SCD36 was not significantly different between subjects with obesity, hyperglycemia, dyslipidemia, hypertension or cardiovascular disease and those without these abnormalities (P-value > 0.05). The inconsistency between results reported in this study and other studies may be unique to the study population or be a result of the lack of a reliable standardized method for determining absolute sCD36 concentrations. However, further investigations are required to assess CD36 tissue expression in the study population and to assess the accuracy of various commercially available sCD36 ELISA kits. Thus, the availability of a standardized simple sCD36 ELISA that could be performed in any basic laboratory would be more favorable to the specialized flow cytometry methods that detect CD36+ microparticles if it was to be used as a biomarker.

Keywords: metabolic syndrome, CD36, cardiovascular risk, obesity, type 2 diabetes mellitus

Procedia PDF Downloads 241