Search results for: Rasch model
14764 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process
Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum
Abstract:
Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact
Procedia PDF Downloads 20014763 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 14614762 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements
Authors: Henok Hailemariam, Frank Wuttke
Abstract:
Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.Keywords: collapsible soil, dielectric permittivity, moisture content, relative subsidence
Procedia PDF Downloads 36714761 Hybrid Risk Assessment Model for Construction Based on Multicriteria Decision Making Methods
Authors: J. Tamosaitiene
Abstract:
The article focuses on the identification and classification of key risk management criteria that represent the most important sustainability aspects of the construction industry. The construction sector is one of the most important sectors in Lithuania. Nowadays, the assessment of the risk level of a construction project is especially important for the quality of construction projects, the growth of enterprises and the sector. To establish the most important criteria for successful growth of the sector, a questionnaire for experts was developed. The analytic hierarchy process (AHP), the expert judgement method and other multicriteria decision making (MCDM) methods were used to develop the hybrid model. The results were used to develop an integrated knowledge system for the measurement of a risk level particular to construction projects. The article presents a practical case that details the developed system, sustainable aspects, and risk assessment.Keywords: risk, system, model, construction
Procedia PDF Downloads 17114760 Job Characteristics, Emotion Regulation and University Teachers' Well-Being: A Job Demands-Resources Analysis
Authors: Jiying Han
Abstract:
Teaching is widely known to be an emotional endeavor, and teachers’ ability to regulate their emotions is important for their well-being and the effectiveness of their classroom management. Considering that teachers’ emotion regulation is an underexplored issue in the field of educational research, some studies have attempted to explore the role of emotion regulation in teachers’ work and to explore the links between teachers’ emotion regulation, job characteristics, and well-being, based on the Job Demands-Resources (JD-R) model. However, those studies targeted primary or secondary teachers. So far, very little is known about the relationships between university teachers’ emotion regulation and its antecedents and effects on teacher well-being. Based on the job demands-resources model and emotion regulation theory, this study examined the relationships between job characteristics of university teaching (i.e., emotional job demands and teaching support), emotion regulation strategies (i.e., reappraisal and suppression), and university teachers’ well-being. Data collected from a questionnaire survey of 643 university teachers in China were analysed. The results indicated that (1) both emotional job demands and teaching support had desirable effects on university teachers’ well-being; (2) both emotional job demands and teaching support facilitated university teachers’ use of reappraisal strategies; and (3) reappraisal was beneficial to university teachers’ well-being, whereas suppression was harmful. These findings support the applicability of the job demands-resources model to the contexts of higher education and highlight the mediating role of emotion regulation.Keywords: emotional job demands, teaching support, emotion regulation strategies, the job demands-resources model
Procedia PDF Downloads 16214759 Attention-Based Spatio-Temporal Approach for Fire and Smoke Detection
Authors: Alireza Mirrashid, Mohammad Khoshbin, Ali Atghaei, Hassan Shahbazi
Abstract:
In various industries, smoke and fire are two of the most important threats in the workplace. One of the common methods for detecting smoke and fire is the use of infrared thermal and smoke sensors, which cannot be used in outdoor applications. Therefore, the use of vision-based methods seems necessary. The problem of smoke and fire detection is spatiotemporal and requires spatiotemporal solutions. This paper presents a method that uses spatial features along with temporal-based features to detect smoke and fire in the scene. It consists of three main parts; the task of each part is to reduce the error of the previous part so that the final model has a robust performance. This method also uses transformer modules to increase the accuracy of the model. The results of our model show the proper performance of the proposed approach in solving the problem of smoke and fire detection and can be used to increase workplace safety.Keywords: attention, fire detection, smoke detection, spatio-temporal
Procedia PDF Downloads 20914758 Prediction of Malawi Rainfall from Global Sea Surface Temperature Using a Simple Multiple Regression Model
Authors: Chisomo Patrick Kumbuyo, Katsuyuki Shimizu, Hiroshi Yasuda, Yoshinobu Kitamura
Abstract:
This study deals with a way of predicting Malawi rainfall from global sea surface temperature (SST) using a simple multiple regression model. Monthly rainfall data from nine stations in Malawi grouped into two zones on the basis of inter-station rainfall correlations were used in the study. Zone 1 consisted of Karonga and Nkhatabay stations, located in northern Malawi; and Zone 2 consisted of Bolero, located in northern Malawi; Kasungu, Dedza, Salima, located in central Malawi; Mangochi, Makoka and Ngabu stations located in southern Malawi. Links between Malawi rainfall and SST based on statistical correlations were evaluated and significant results selected as predictors for the regression models. The predictors for Zone 1 model were identified from the Atlantic, Indian and Pacific oceans while those for Zone 2 were identified from the Pacific Ocean. The correlation between the fit of predicted and observed rainfall values of the models were satisfactory with r=0.81 and 0.54 for Zone 1 and 2 respectively (significant at less than 99.99%). The results of the models are in agreement with other findings that suggest that SST anomalies in the Atlantic, Indian and Pacific oceans have an influence on the rainfall patterns of Southern Africa.Keywords: Malawi rainfall, forecast model, predictors, SST
Procedia PDF Downloads 39514757 Transdisciplinarity Research Approach and Transit-Oriented Development Model for Urban Development Integration in South African Cities
Authors: Thendo Mafame
Abstract:
There is a need for academic research to focus on solving or contributing to solving real-world societal problems. Transdisciplinary research (TDR) provides a way to produce functional and applicable research findings, which can be used to advance developmental causes. This TDR study explores ways in which South Africa’s spatial divide, entrenched through decades of discriminatory planning policies, can be restructured to bring about equitable access to places of employment, business, leisure, and service for previously marginalised South Africans. It does by exploring the potential of the transit-orientated development (TOD) model to restructure and revitalise urban spaces in a collaborative model. The study focuses, through a case study, on the Du Toit station precinct in the town of Stellenbosch, on the peri-urban edge of the city of Cape Town, South Africa. The TOD model is increasingly viewed as an effective strategy for creating sustainable urban redevelopment initiatives, and it has been deployed successfully in other parts of the world. The model, which emphasises development density, diversity of land-use and infrastructure and transformative design, is customisable to a variety of country contexts. This study made use of case study approach with mixed methods to collect and analyse data. Various research methods used include the above-mentioned focus group discussions and interviews, as well as observation, transect walks This research contributes to the professional development of TDR studies that are focused on urbanisation issues.Keywords: case study, integrated urban development, land-use, stakeholder collaboration, transit-oriented development, transdisciplinary research
Procedia PDF Downloads 13414756 Electro-Thermo-Mechanical Behaviour of Functionally Graded Material Usage in Lead Acid Storage Batteries and the Benefits
Authors: Sandeep Das
Abstract:
Terminal post is one of the most important features of a Battery. The design and manufacturing of post are very much critical especially when threaded inserts (Bolt-on type) are used since all the collected energy is delivered from the lead part to the threaded insert (Cu or Cu alloy). Any imperfection at the interface may cause Voltage drop, high resistance, high heat generation, etc. This may be because of sudden change of material properties from lead to Cu alloys. To avoid this problem, a scheme of material gradation is proposed for achieving continuous variation of material properties for the Post used in commercially available lead acid battery. The Functionally graded (FG) material for the post is considered to be composed of different layers of homogeneous material. The volume fraction of the materials used corresponding to each layer is calculated by considering its variation along the direction of current flow (z) according to a power law. Accordingly, the effective properties of the homogeneous layers are estimated and the Post composed of this FG material is modeled using the commercially available ANSYS software. The solid 186 layered structural solid element has been used for discretization of the model of the FG Post. A thermal electric analysis is performed on the layered FG model. The model developed has been validated by comparing the results of the existing Post model& experimental analysisKeywords: ANSYS, functionally graded material, lead-acid battery, terminal post
Procedia PDF Downloads 14314755 Interest Rate Prediction with Taylor Rule
Authors: T. Bouchabchoub, A. Bendahmane, A. Haouriqui, N. Attou
Abstract:
This paper presents simulation results of Forex predicting model equations in order to give approximately a prevision of interest rates. First, Hall-Taylor (HT) equations have been used with Taylor rule (TR) to adapt them to European and American Forex Markets. Indeed, initial Taylor Rule equation is conceived for all Forex transactions in every States: It includes only one equation and six parameters. Here, the model has been used with Hall-Taylor equations, initially including twelve equations which have been reduced to only three equations. Analysis has been developed on the following base macroeconomic variables: Real change rate, investment wages, anticipated inflation, realized inflation, real production, interest rates, gap production and potential production. This model has been used to specifically study the impact of an inflation shock on macroeconomic director interest rates.Keywords: interest rate, Forex, Taylor rule, production, European Central Bank (ECB), Federal Reserve System (FED).
Procedia PDF Downloads 52814754 A Translation Criticism of the Persian Translation of “A**Hole No More” Written by Xavier Crement
Authors: Mehrnoosh Pirhayati
Abstract:
Translation can be affected by different meta-textual factors of target context such as ideology, politics, and culture. So, the rule of fidelity, or being faithful to the source text, can be ignored by the translator. On the other hand, critical discourse analysis, derived from applied linguistics, is entered into the field of translation studies and used by scholars for revealing hidden deviations and possible roots of manipulations. This study focused on the famous Persian translation of the bestseller book, “A**hole No More,” written by XavierCrement 1990, performed by Mahmud Farjami to comparatively and critically analyze it with its corresponding English original book. The researcher applied Pirhayati’s model and framework of translation criticism at the textual and semiotic levels for this qualitative study. It should be noted that Kress and Van Leeuwen’s semiotic model, along with Machin’s model of typographical analysis, was also used at the semiotic level. The results of the comparisons and analyses indicate thatthis Persian translation of the book is affected by the factors of ideology and economics and reveal that the Islamic attitude causes the translator to employ some strategies such as substitution and deletion. Those who may benefit from this research are translation trainers, students of translation studies, critics, and scholars.Keywords: farjami (2013), Ideology, manipulation, pirhayati's (2013) model of translation criticism, Xavier crement (1990)
Procedia PDF Downloads 21814753 Clarifications on the Damping Mechanism Related to the Hunting Motion of the Wheel Axle of a High-Speed Railway Vehicle
Authors: Barenten Suciu
Abstract:
In order to explain the damping mechanism, related to the hunting motion of the wheel axle of a high-speed railway vehicle, a generalized dynamic model is proposed. Based on such model, analytic expressions for the damping coefficient and damped natural frequency are derived, without imposing restrictions on the ratio between the lateral and vertical creep coefficients. Influence of the travelling speed, wheel conicity, dimensionless mass of the wheel axle, ratio of the creep coefficients, ratio of the track span to the yawing diameter, etc. on the damping coefficient and damped natural frequency, is clarified.Keywords: high-speed railway vehicle, hunting motion, wheel axle, damping, creep, vibration model, analysis.
Procedia PDF Downloads 29314752 AquaCrop Model Simulation for Water Productivity of Teff (Eragrostic tef): A Case Study in the Central Rift Valley of Ethiopia
Authors: Yenesew Mengiste Yihun, Abraham Mehari Haile, Teklu Erkossa, Bart Schultz
Abstract:
Teff (Eragrostic tef) is a staple food in Ethiopia. The local and international demand for the crop is ever increasing pushing the current price five times compared with that in 2006. To meet this escalating demand increasing production including using irrigation is imperative. Optimum application of irrigation water, especially in semi-arid areas is profoundly important. AquaCrop model application in irrigation water scheduling and simulation of water productivity helps both irrigation planners and agricultural water managers. This paper presents simulation and evaluation of AquaCrop model in optimizing the yield and biomass response to variation in timing and rate of irrigation water application. Canopy expansion, canopy senescence and harvest index are the key physiological processes sensitive to water stress. For full irrigation water application treatment there was a strong relationship between the measured and simulated canopy and biomass with r2 and d values of 0.87 and 0.96 for canopy and 0.97 and 0.74 for biomass, respectively. However, the model under estimated the simulated yield and biomass for higher water stress level. For treatment receiving full irrigation the harvest index value obtained were 29%. The harvest index value shows generally a decreasing trend under water stress condition. AquaCrop model calibration and validation using the dry season field experiments of 2010/2011 and 2011/2012 shows that AquaCrop adequately simulated the yield response to different irrigation water scenarios. We conclude that the AquaCrop model can be used in irrigation water scheduling and optimizing water productivity of Teff grown under water scarce semi-arid conditions.Keywords: AquaCrop, climate smart agriculture, simulation, teff, water security, water stress regions
Procedia PDF Downloads 40914751 Mass Transfer of Paracetamol from the Crosslinked Carrageenan-Polyvinyl Alcohol Film
Authors: Sperisa Distantina, Rieke Ulfha Noviyanti, Sri Sutriyani, Fadilah Fadilah, Mujtahid Kaavessina
Abstract:
In this research, carrageenan extracted from seaweed Eucheuma cottonii was mixed with polyvinyl alcohol (PVA) and then crosslinked using glutaraldehyde (GA). The obtained hydrogel films were applied to control the drug release rate of paracetamol. The aim of this research was to develop a mathematical model that can be used to describe the mass transfer rate of paracetamol from the hydrogel film into buffer solution. The effect of weight ratio carrageenan-PVA (5: 0, 1: 0.5, 1: 1, 1: 2, 0: 5) on the parameters of the mathematical model was investigated also. Based on the experimental data, the proposed mathematical model could describe the mass transfer rate of paracetamol. The weight ratio of carrageenan-PVA greatly affected the amount of paracetamol absorbed in the hydrogel film and the mass transfer rate of paracetamol.Keywords: carrageenan-PVA, crosslinking, glutaraldehyde, hydrogel, paracetamol, mass transfer
Procedia PDF Downloads 29814750 Digital Sustainable Human Resource Management Model Innovation Based on Dynamic Capabilities
Authors: Mohammad Kargar Shouraki, Naji Yazdi, Mohsen Emami
Abstract:
The environmental and social challenges have caused the organizations to put further attention and emphasis on sustainable growth and developing strategies for sustainability. Since human is both the target of development and the agent of development at the same time, one of the most important factors in the development of the sustainability strategy in organizations is the human factor. In addition, organizations have been facing the new challenge of digital transformation which impacts the human factor, meanwhile, undeniably, the human factor contributes to such transformation. Therefore, organizations are facing the challenge of digital human resource management (HRM). Thus, the present study aims to investigate how an HRM model should be so that it not only can help the consideration and of the business sustainability requirements but also can make the highest and the most appropriate positive, not destructive, utilization of the digital transformations. Furthermore, the success of the HRM regarding the two sustainability and digital transformation challenges requires dynamic human competencies, which are addressed as digital/sustainable human dynamic capabilities in this paper. The present study is conducted using a hybrid methodology consisting of the qualitative methods of meta-synthesis and content analysis and the quantitative method of interpretive-structural model (ISM). Finally, a rotatory model, including 3 approaches, 3 perspectives, and 9 dimensions, is presented.Keywords: sustainable human resource management, digital human resource management, digital/sustainable human dynamic capabilities, talent management
Procedia PDF Downloads 12314749 Design On Demand (DoD): Spiral Model of The Lifecycle of Products in The Personal 3D-Printed Products' Market
Authors: Zuk Nechemia Turbovich
Abstract:
This paper introduces DoD, a contextual spiral model that describes the lifecycle of products intended for manufacturing using Personal 3D Printers (P3DP). The study is based on a review of the desktop P3DPs market that shows that the combination of digital connectivity, coupled with the potential ownership of P3DP by home users, is radically changing the form of the product lifecycle, comparatively to familiar lifecycle paradigms. The paper presents the change in the design process, considering the characterization of product types in the P3DP market and the possibility of having a direct dialogue between end-user and product designers. The model, as an updated paradigm, provides a strategic perspective on product design and tools for success, understanding that design is subject to rapid and continuous improvement and that products are subject to repair, update, and customization. The paper will include a review of real cases.Keywords: lifecycle, mass-customization, personal 3d-printing, user involvement
Procedia PDF Downloads 18714748 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.Keywords: national development, granite, profitability assessment, ANN models
Procedia PDF Downloads 10514747 Advancements in Laser Welding Process: A Comprehensive Model for Predictive Geometrical, Metallurgical, and Mechanical Characteristics
Authors: Seyedeh Fatemeh Nabavi, Hamid Dalir, Anooshiravan Farshidianfar
Abstract:
Laser welding is pivotal in modern manufacturing, offering unmatched precision, speed, and efficiency. Its versatility in minimizing heat-affected zones, seamlessly joining dissimilar materials, and working with various metals makes it indispensable for crafting intricate automotive components. Integration into automated systems ensures consistent delivery of high-quality welds, thereby enhancing overall production efficiency. Noteworthy are the safety benefits of laser welding, including reduced fumes and consumable materials, which align with industry standards and environmental sustainability goals. As the automotive sector increasingly demands advanced materials and stringent safety and quality standards, laser welding emerges as a cornerstone technology. A comprehensive model encompassing thermal dynamic and characteristics models accurately predicts geometrical, metallurgical, and mechanical aspects of the laser beam welding process. Notably, Model 2 showcases exceptional accuracy, achieving remarkably low error rates in predicting primary and secondary dendrite arm spacing (PDAS and SDAS). These findings underscore the model's reliability and effectiveness, providing invaluable insights and predictive capabilities crucial for optimizing welding processes and ensuring superior productivity, efficiency, and quality in the automotive industry.Keywords: laser welding process, geometrical characteristics, mechanical characteristics, metallurgical characteristics, comprehensive model, thermal dynamic
Procedia PDF Downloads 5314746 Study of Gait Stability Evaluation Technique Based on Linear Inverted Pendulum Model
Authors: Kang Sungjae
Abstract:
This research proposes a gait stability evaluation technique based on the linear inverted pendulum model and moving support foot Zero Moment Point. With this, an improvement towards the gait analysis of the orthosis walk is validated. The application of Lagrangian mechanics approximation to the solutions of the dynamics equations for the linear inverted pendulum does not only simplify the solution, but it provides a smooth Zero Moment Point for the double feet support phase. The Zero Moment Point gait analysis techniques mentioned above validates reference trajectories for the center of mass of the gait orthosis, the timing of the steps and landing position references for the swing feet. The stability evaluation technique are tested with a 6 DOF powered gait orthosis. The results obtained are promising for implementations.Keywords: locomotion, center of mass, gait stability, linear inverted pendulum model
Procedia PDF Downloads 51914745 Developing Models for Predicting Physiologically Impaired Arm Reaching Paths
Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Mustafa Mhawesh, Reza Langari
Abstract:
This paper describes the development of a model of an impaired human arm performing a reaching motion, which will be used to predict hand path trajectories for people with reduced arm joint mobility. Assuming that the arm was in contact with a surface during the entire movement, the contact conditions at the initial and final task locations were determined and used to generate the entire trajectory. The model was validated by comparing it to experimental data, which simulated an arm joint impairment by physically constraining the joint motion with a brace. Future research will include using the model in the development of physical training protocols that avoid early recruitment of “healthy” Degrees-Of-Freedom (DOF) for reaching motions, thus facilitating an Active Range-Of-Motion Recovery (AROM) for a particular impaired joint.Keywords: higher order kinematic specifications, human motor coordination, impaired movement, kinematic synthesis
Procedia PDF Downloads 34214744 Data-Driven Decision Making: A Reference Model for Organizational, Educational and Competency-Based Learning Systems
Authors: Emanuel Koseos
Abstract:
Data-Driven Decision Making (DDDM) refers to making decisions that are based on historical data in order to inform practice, develop strategies and implement policies that benefit organizational settings. In educational technology, DDDM facilitates the implementation of differential educational learning approaches such as Educational Data Mining (EDM) and Competency-Based Education (CBE), which commonly target university classrooms. There is a current need for DDDM models applied to middle and secondary schools from a concern for assessing the needs, progress and performance of students and educators with respect to regional standards, policies and evolution of curriculums. To address these concerns, we propose a DDDM reference model developed using educational key process initiatives as inputs to a machine learning framework implemented with statistical software (SAS, R) to provide a best-practices, complex-free and automated approach for educators at their regional level. We assessed the efficiency of the model over a six-year period using data from 45 schools and grades K-12 in the Langley, BC, Canada regional school district. We concluded that the model has wider appeal, such as business learning systems.Keywords: competency-based learning, data-driven decision making, machine learning, secondary schools
Procedia PDF Downloads 17614743 A Simple Fluid Dynamic Model for Slippery Pulse Pattern in Traditional Chinese Pulse Diagnosis
Authors: Yifang Gong
Abstract:
Pulse diagnosis is one of the most important diagnosis methods in traditional Chinese medicine. It is also the trickiest method to learn. It is known as that it can only to be sensed not explained. This becomes a serious threat to the survival of this diagnostic method. However, there are a large amount of experiences accumulated during the several thousand years of practice of Chinese doctors. A pulse pattern called 'Slippery pulse' is one of the indications of pregnancy. A simple fluid dynamic model is proposed to simulate the effects of the existence of a placenta. The placenta is modeled as an extra plenum in an extremely simplified fluid network model. It is found that because of the existence of the extra plenum, indeed the pulse pattern shows a secondary peak in one pulse period. As for the author’s knowledge, this work is the first time to show the link between Pulse diagnoses and basic physical principle. Key parameters which might affect the pattern are also investigated.Keywords: Chinese medicine, flow network, pregnancy, pulse
Procedia PDF Downloads 38914742 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches
Authors: Chaima Babi, Said Gadri
Abstract:
The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification
Procedia PDF Downloads 9914741 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece
Authors: Dimitrios Triantakonstantis, Demetris Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction
Procedia PDF Downloads 53314740 Mathematical Model of the Spread of Herpes Simplex Virus Type-2 in Heterosexual Relations with and without Condom Usage in a College Population
Authors: Jacob A. Braun
Abstract:
This paper uses mathematical modeling to show the spread of Herpes Simplex type-2 with and without the usage of condoms in a college population. The model uses four differential equations to calculate the data for the simulation. The dt increment used is one week. It also runs based on a fixated period. The period chosen was five years to represent time spent in college. The average age of the individual is 21, once again to represent the age of someone in college. In the total population, there are almost two times as many women who have Herpes Simplex Type-2 as men. Additionally, Herpes Simplex Type-2 does not have a known cure. The goal of the model is to show how condom usage affects women’s chances of receiving the virus in the hope of being able to reduce the number of women infected. In the end, the model demonstrates that condoms offer significant protection to women from the virus. Since fewer women are infected with the virus when condoms are used, in turn, fewer males are infected. Since Herpes Simplex Type-2 affects the carrier for their whole life, a small decrease of infections could lead to large ramifications over time. Specifically, a small decrease of infections at a young age, such as college, could have a very big effect on the long-term number of people infected with the virus.Keywords: college, condom, Herpes, mathematical modelling
Procedia PDF Downloads 22214739 Research on Supply Chain Coordination Based on Lateral Transshipment in the Background of New Retail
Authors: Yue Meng, Lingyun Wei
Abstract:
In this paper, the coordination problem of a supply chain system composed of multiple retailers and manufacturers is studied under the background of the new retail supply chain. Taking a system composed of two retailers and one manufacturer as an example, this paper introduces an online store owned by the manufacturer to reflect the characteristics of the combination of online and offline new retail. Then, this paper gives the conditions that need to be satisfied to realize the coordination between retailers and manufacturers, such as the revenue sharing coefficient. The supply chain coordination model is compared with the newsboy model through a specific example. Finally, the conclusion is drawn that the profits of the coordinated supply chain and its members are better than the corresponding profits under the newsboy model; that is, the coordination of the supply chain is realized by using the revenue sharing contract and the transshipment fund mechanism.Keywords: transshipment, coordination, multi-retailer, revenue-sharing contract
Procedia PDF Downloads 14914738 Image Instance Segmentation Using Modified Mask R-CNN
Authors: Avatharam Ganivada, Krishna Shah
Abstract:
The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision
Procedia PDF Downloads 7714737 Measuring Strategic Management Maturity: An Empirical Study in Turkish Public and Private Sector Organizations
Authors: F. Demir
Abstract:
Strategic Management is highly critical for all types of organizations. This paper examines maturity level of strategic management practices of public and private sector organizations in Turkey, and presents a conceptual model for assessing the maturity of strategic management in any organization. This research focuses on R&D intensive organizations (RDO) because it is claimed that such organizations are more innovative and innovation is a critical part of the model. The Strategic management maturity model (S-3M) is basically composed of six maturity levels with five different dimensions. Based on 63 organizations, the findings reveal that the average maturity of all organizations in the sample group is three out of five. It corresponds to the stage of ‘performed’. Results simply show that the majority of organizations from various industries and sectors implement strategic management activities; however, they experience multiple challenges to optimize strategic management processes and integrate organizational components with business strategies. Briefly, they struggle to become an innovative organization.Keywords: strategic management maturity, innovation, developing countries, research and development
Procedia PDF Downloads 29214736 Effects of Changes in LULC on Hydrological Response in Upper Indus Basin
Authors: Ahmad Ammar, Umar Khan Khattak, Muhammad Majid
Abstract:
Empirically based lumped hydrologic models have an extensive track record of use for various watershed managements and flood related studies. This study focuses on the impacts of LULC change for 10 year period on the discharge in watershed using lumped model HEC-HMS. The Indus above Tarbela region acts as a source of the main flood events in the middle and lower portions of Indus because of the amount of rainfall and topographic setting of the region. The discharge pattern of the region is influenced by the LULC associated with it. In this study the Landsat TM images were used to do LULC analysis of the watershed. Satellite daily precipitation TRMM data was used as input rainfall. The input variables for model building in HEC-HMS were then calculated based on the GIS data collected and pre-processed in HEC-GeoHMS. SCS-CN was used as transform model, SCS unit hydrograph method was used as loss model and Muskingum was used as routing model. For discharge simulation years 2000 and 2010 were taken. HEC-HMS was calibrated for the year 2000 and then validated for 2010.The performance of the model was assessed through calibration and validation process and resulted R2=0.92 during calibration and validation. Relative Bias for the years 2000 was -9% and for2010 was -14%. The result shows that in 10 years the impact of LULC change on discharge has been negligible in the study area overall. One reason is that, the proportion of built-up area in the watershed, which is the main causative factor of change in discharge, is less than 1% of the total area. However, locally, the impact of development was found significant in built up area of Mansehra city. The analysis was done on Mansehra city sub-watershed with an area of about 16 km2 and has more than 13% built up area in 2010. The results showed that with an increase of 40% built-up area in the city from 2000 to 2010 the discharge values increased about 33 percent, indicating the impact of LULC change on discharge value.Keywords: LULC change, HEC-HMS, Indus Above Tarbela, SCS-CN
Procedia PDF Downloads 51714735 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 300