Search results for: polymer synthesis
1392 d-Block Metal Nanoparticles Confined in Triphenylphosphine Oxide Functionalized Core-Crosslinked Micelles for the Application in Biphasic Hydrogenation
Authors: C. Joseph Abou-Fayssal, K. Philippot, R. Poli, E. Manoury, A. Riisager
Abstract:
The use of soluble polymer-supported metal nanoparticles (MNPs) has received significant attention for the ease of catalyst recovery and recycling. Of particular interest are MNPs that are supported on polymers that are either soluble or form stable colloidal dispersion in water, as this allows to combine of the advantages of the aqueous biphasic protocol with the catalytical performances of MNPs. The objective is to achieve good confinement of the catalyst in the nanoreactor cores and, thus, a better catalyst recovery in order to overcome the previously witnessed MNP extraction. Inspired by previous results, we are interested in the design of polymeric nanoreactors functionalized with ligands able to solidly anchor metallic nanoparticles in order to control the activity and selectivity of the developed nanocatalysts. The nanoreactors are core-crosslinked micelles (CCM) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Varying the nature of the core-linked functionalities allows us to get differently stabilized metal nanoparticles and thus compare their performance in the catalyzed aqueous biphasic hydrogenation of model substrates. Particular attention is given to catalyst recyclability.Keywords: biphasic catalysis, metal nanoparticles, polymeric nanoreactors, catalyst recovery, RAFT polymerization
Procedia PDF Downloads 1001391 Gender Differences in E-Society: The Case of Slovenia
Authors: Mitja Dečman
Abstract:
The ever-increasing presence and use of information and communication technology (ICT) influences the different social relationships of today's society. Gender differences are especially important from the viewpoint of modern society since ICT can either deepen the existing inequalities or diminish them. In a developed Western world, gender equality has been a well-focused area for decades in many parts of society including education, employment or politics and has led to a decrease in the inequality of women and men in these and other areas. The area of digital equality, or inequality for that matter, is one of the areas where gender differences still exist in many countries of the world. The research presented in this paper focuses on Slovenia, one of the smallest EU member states, being an average achiever in the area of e-society according to the many different European benchmarking indexes. On the other hand, Slovenia is working in an alignment with many European gender equality guidelines and showing good results. The results of our research are based on the analysis of survey data from 2014 to 2017 dealing with Slovenian citizens and their households and the use of ICT. Considering gender issues, the synthesis showed that cultural differences influence some measured ICT indicators but on the other hand the differences are low and only sometimes statistically significant.Keywords: digital divide, gender inequality, Slovenia, e-society
Procedia PDF Downloads 1681390 Novel Self-Healing Eco-Friendly Coatings with Antifouling and Anticorrosion Properties for Maritime Applications
Authors: K. N. Kipreou, E. Efthmiadou, G. Kordas
Abstract:
Biofouling represents one of the most crucial problems in the present maritime industries when its control still challenges the researchers all over the world. The present work is referred to the synthesis and characterization CeMo and Cu2O nanocontainers by using a wide range of techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for marine applications. The above nanosystems will be loaded with active monomers and corrosion rendering healing ability to marine paints. The objective of this project is their ability for self-healing, self-polishing and finally for anti-corrosion activity. One of the driving forces for the exploration of CeMo, is the unique anticorrosive behavior, which will be confirmed by the electrochemistry methodology. It has be highlighted that the nanocontainers of Cu2O with the appropriate antibacterial inhibitor will improve the hydrophobicity and the morphology of the coating surfaces reducing the water friction. In summary, both novel nanoc will increase the lifetime of the paints releasing the antifouling agent in a control manner.Keywords: marinepaints, nanocontainer, antifouling, anticorrosion, copper, electrochemistry, coating, biofouling, inhibitors, copper oxide, coating, SEM
Procedia PDF Downloads 3381389 Running the Athena Vortex Lattice Code in JAVA through the Java Native Interface
Authors: Paul Okonkwo, Howard Smith
Abstract:
This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft.Keywords: aerodynamics, automation, optimisation, AVL, JNI
Procedia PDF Downloads 5651388 A Systematic Review in the Impacts of Skilled Parent Migration on Left-Behind Children: Gaps in the Existing Knowledge
Authors: Yassir Mohammed
Abstract:
The study examines the impact of skilled parental migration on left-behind children. It uses the SCOPUS database to evaluate the existing literature from 1972 to 2022 and synthesizes data using the PRISMA framework and bibliometric method of analysis. 49 articles out of 202 papers were involved in the synthesis. International migration, outcome migration, consequence, parental migration, high-skill and left-behind children, and left-behind preschool were all searched. The research found that mental health issues, self-isolation, and physical harm have negative impacts, while sending children to good schools, having good academic records, and better medical care have positive impacts. The study also found that gender gaps increase in some countries while decreasing in others. Further research is needed on child maltreatment, academic performance, subjective well-being, societal effects, behavioral difficulties, and quality of life. The study only included peer-reviewed English publications in the final analysis.Keywords: parental migration, impact of migration, systematic review, left-behind children
Procedia PDF Downloads 721387 Polypropylene Fibres Dyeable with Acid Dyes
Authors: H. M. Wang, C. J. Chang
Abstract:
As the threat of global climate change is more seriously, "net zero emissions by 2050" has become a common global goal. In order to reduce the consumption of petrochemical raw materials and reduce carbon emissions, low-carbon fiber materials have become key materials in the future global textile supply chain. This project uses polyolefin raw materials to modify through synthesis and amination to develop low-temperature dyeable polypropylene fibers, endow them with low-temperature dyeability and high color fastness that can be combined with acid dyes, and improve the problem of low coloring strength. The color fastness to washing can reach the requirement of commerce with 3.5 level or more. Therefore, we realize the entry of polypropylene fiber into the clothing textile supply chain, replace existing fiber raw materials, solve the problem of domestic chemical fiber, textile, and clothing industry's plight of no low-carbon alternative new material sources, and provide the textile industry with a solution to achieve the goal of net zero emissions in 2050.Keywords: acid dyes, dyeing, low-temperature, polypropylene fiber
Procedia PDF Downloads 871386 Explicable Enzymatic Mechanism of H-Ido to Oxidise Tryptophan by Employing Various Substrates
Authors: Ali Bahri Lubis
Abstract:
The study of dioxygenase enzymatic mechanism on tryptophan oxidation has been a wide interest since the reaction is rate-limiting step of kynurenine pathway. In this research, observation of tryptophan oxidation through h-IDO enzyme along with synthesis of enzyme products was conducted in order to comprehend how the enzyme works on distinct substrates. UV-vis spectrophotometry, LC-MS, H-NMR and HSQC measurement were carried out to characterise enzyme product. It is found that while tryptophan was oxidised to form Nformylkynurenine (NFK) as a major product and hydroxypyrroloindole amine carboxylic acid (HPIC) in cis and trans confirmed in HSQC, N-methyl tryptophan substrate was converted to NFK and trans HPIC only. Other intriguing results showed that 5-hydroxy- tryptophan and Stryptophan was degraded to become NFK and epoxide cyclic respectively. The formation of NFK was considered through dioxygenation pathway, however HPIC was formed via monooxygenation. The epoxide cyclic—considered as intermediate compound in the mechanism— from S-tryptophan was not able to cleave the epoxide ring since bond energy of epoxide was probably much stronger. This validates the enzymatic mechanism where the intermediate compound in the enzymatic mechanism is epoxide cyclic.Keywords: tryptophan oxidation, heme-dioxygenases, N-formylkynurenine, hydroxypyrrroloindoleamine, monooxidation
Procedia PDF Downloads 891385 The Study of Visible Light Active Bismuth Modified Nitrogen Doped Titanium Dioxide Photocatlysts
Authors: B. Benalioua, I. Benyamina, A. Bentouami, B. Boury
Abstract:
The objective of this study is based on the synthesis of a new photocatalyst based on TiO2 and its application in the photo-degradation of an acid dye under the visible light. The material obtained was characterized by different techniques like diffuse reflectance UV–Vis spectroscopy (DRS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic efficiency of the Bi, N co-doped TiO2 treated at 600°C for 1 h was tested on the Indigo Carmine under the irradiation of visible light and compared with that of the commercial titanium oxide TiO2-P25 (Degussa). The XRD characterization of the material Bi -N- TiO2 (600°C) revealed the presence of the anatase phase and the absence of the rutile phase in comparison of the TiO2 P25 diffractogram. Characterization by UV- visible diffuse reflection (DRS) material showed that the Bi-N-TiO2 exhibits redshift (move visible) relative to commercial titanium oxide TiO2-P25, this property promises a photocatalytic activity of Bi-N-TiO2 under visible light. Indeed, the efficiency of photocatalytic Bi-N-TiO2 as a visible light is shown by a complete discoloration of indigo carmine solution of 16 mg/L after 40 minutes, whereas with the P25-TiO2 discoloration is achieved after 90 minutes.Keywords: POA, heterogeneous photocatalysis, TiO2, co-doping
Procedia PDF Downloads 3781384 A New Instrumented Drop-Weight Test Machine for Studying the Impact Behaviour of Reinforced Concrete Beams
Authors: M. Al-Farttoosi, M. Y. Rafiq, J. Summerscales, C. Williams
Abstract:
Structures can be subjected to impact loading from various sources like earthquake, tsunami, missiles and explosions. The impact loading can cause different degrees of damage to concrete structures. The demand for strengthening and rehabilitation of damaged structures is increasing. In recent years, Car0bon Fibre Reinforced Polymer (CFRP) matrix composites has gain more attention for strengthening and repairing these structures. To study the impact behaviour of the reinforced concrete (RC) beams strengthened or repaired using CFRP, a heavy impact test machine was designed and manufactured .The machine included a newly designed support system for beams together with various instrumentation. This paper describes the support design configuration of the impact test machine, instrumentation and dynamic analysis of the concrete beams. To evaluate the efficiency of the new impact test machine, experimental impact tests were conducted on simple supported reinforced concrete beam. Different methods were used to determine the impact force and impact response of the RC beams in terms of inertia force, maximum deflection, reaction force and fracture energy. The manufactured impact test machine was successfully used in testing RC beams under impact loading and used successfully to test the reinforced concrete beams strengthened or repaired using CFRP under impact loading.Keywords: beam, concrete, impact, machine
Procedia PDF Downloads 4231383 Synthesis, Characterization and in vitro DNA Binding and Cleavage Studies of Cu(II)/Zn(II) Dipeptide Complexes
Authors: A. Jamsheera, F. Arjmand, D. K. Mohapatra
Abstract:
Small molecules binding to specific sites along DNA molecule are considered as potential chemotherapeutic agents. Their role as mediators of key biological functions and their unique intrinsic properties make them particularly attractive therapeutic agents. Keeping in view, novel dipeptide complexes Cu(II)-Val-Pro (1), Zn(II)-Val-Pro (2), Cu(II)-Ala-Pro (3) and Zn(II)-Ala-Pro (4) were synthesized and thoroughly characterized using different spectroscopic techniques including elemental analyses, IR, NMR, ESI–MS and molar conductance measurements. The solution stability study carried out by UV–vis absorption titration over a broad range of pH proved the stability of the complexes in solution. In vitro DNA binding studies of complexes 1–4 carried out employing absorption, fluorescence, circular dichroism and viscometric studies revealed the binding of complexes to DNA via groove binding. UV–vis titrations of 1–4 with mononucleotides of interest viz., 5´-GMP and 5´-TMP were also carried out. The DNA cleavage activity of the complexes 1 and 2 were ascertained by gel electrophoresis assay which revealed that the complexes are good DNA cleavage agents and the cleavage mechanism involved a hydrolytic pathway. Furthermore, in vitro antitumor activity of complex 1 was screened against human cancer cell lines of different histological origin.Keywords: dipeptide Cu(II) and Zn(II) complexes, DNA binding profile, pBR322 DNA cleavage, in vitro anticancer activity
Procedia PDF Downloads 3491382 PEG-b-poly(4-vinylbenzyl phosphonate) Coated Magnetic Iron Oxide Nanoparticles as Drug Carrier System: Biological and Physicochemical Characterization
Authors: Magdalena Hałupka-Bryl, Magdalena Bednarowicz, Ryszard Krzyminiewski, Yukio Nagasaki
Abstract:
Due to their unique physical properties, superparamagnetic iron oxide nanoparticles are increasingly used in medical applications. They are very useful carriers for delivering antitumor drugs in targeted cancer treatment. Magnetic nanoparticles (PEG-PIONs/DOX) with chemotherapeutic were synthesized by coprecipitation method followed by coating with biocompatible polymer PEG-derivative (poly(ethylene glycol)-block-poly(4-vinylbenzylphosphonate). Complete physicochemical characterization was carried out (ESR, HRTEM, X-ray diffraction, SQUID analysis) to evaluate the magnetic properties of obtained PEG-PIONs/DOX. Nanoparticles were investigated also in terms of their stability, drug loading efficiency, drug release and antiproliferative effect on cancer cells. PEG-PIONs/DOX have been successfully used for the efficient delivery of an anticancer drug into the tumor region. Fluorescent imaging showed the internalization of PEG-PIONs/DOX in the cytoplasm. Biodistribution studies demonstrated that PEG-PIONs/DOX preferentially accumulate in tumor region via the enhanced permeability and retention effect. The present findings show that synthesized nanosystem is promising tool for potential magnetic drug delivery.Keywords: targeted drug delivery, magnetic properties, iron oxide nanoparticles, biodistribution
Procedia PDF Downloads 4631381 Quasi–Periodicity of Tonic Intervals in Octave and Innovation of Themes in Music Compositions
Authors: R. C. Tyagi
Abstract:
Quasi-periodicity of frequency intervals observed in Shruti based Absolute Scale of Music has been used to graphically identify the Anchor notes ‘Vadi’ and ‘Samvadi’ which are nodal points for expansion, elaboration and iteration of the emotional theme represented by the characteristic tonic arrangement in Raga compositions. This analysis leads to defining the Tonic parameters in the octave including the key-note frequency, tonic intervals’ anchor notes and the on-set and range of quasi-periodicities as exponents of 2. Such uniformity of representation of characteristic data would facilitate computational analysis and synthesis of music compositions and also help develop noise suppression techniques. Criteria for tuning of strings for compatibility with placement of frets on finger boards is discussed. Natural Rhythmic cycles in music compositions are analytically shown to lie between 3 and 126 beats.Keywords: absolute scale, anchor notes, computational analysis, frets, innovation, noise suppression, Quasi-periodicity, rhythmic cycle, tonic interval, Shruti
Procedia PDF Downloads 3041380 Color Conversion Films with CuInS2/ZnS Quantum Dots Embedded Polystyrene Nanofibers by Electrospinning Process
Authors: Wonkyung Na, Namhun Kim, Heeyeop Chae
Abstract:
Quantum dots (QDs) are getting attentions due to their excellent optical properties in display, solar cell, biomolecule detection and lighting applications. Energy band gap can be easilty controlled by controlling their size and QDs are proper to apply in light-emitting-diode(LED) and lighting application, especially. Typically cadmium (Cd) containing QDs show a narrow photoluminescence (PL) spectrum and high quantum yield. However, Cd is classified as a hazardous materials and the use of Cd is being tightly regulated under 100ppm level in many countries.InP and CuInS2 (CIS) are being investigated as Cd-free QD materials and it is recently demonstrated that the performance of those Cd-free QDs is comparable to their Cd-based rivals.Due to a broad emission spectrum, CuInS2 QDs are also proper to be applied to white LED.4 For the lighting applications, the QD should be made in forms of color conversion films. Various film processes are reported with QDs in polymer matrixes. In this work, we synthesized the CuInS2 (CIS) QDs and QD embedded polystyrene color conversion films were fabricated for white color emission with electro-spinning process. As a result, blue light from blue LED is converted to white light with high color rendering index (CRI) of 72 by the color conversion films.Keywords: CuInS2/ZnS, electro-spinning, color conversion films, white light emitting diodes
Procedia PDF Downloads 8131379 Smart Material for Bacterial Detection Based on Polydiacetylene/Polyvinyl Butyrate Fiber Composites
Authors: Pablo Vidal, Misael Martinez, Carlos Hernandez, Ananta R. Adhikari, Luis Materon, Yuanbing Mao, Karen Lozano
Abstract:
Conjugated polymers are smart materials that show tremendous practical applications in diverse subjects. Polydiacetylenes are conjugated polymers with special optical properties. In response to the environmental changes such as pH and molecular binding, it changes its color. Such an interesting chromic and emissive behavior of polydiacetylenes make them a highly popular polymer in wide areas, including biomedicine such as a biosensor. In this research, we used polyvinyl butyrate as a matrix to fibrillate polydiacetylenes. We initially prepared polyvinyl butyrate/diacetylene matrix using forcespinning technique. They were then polymerized to form polyvinyl butyrate/polydiacetylene (PVB/PDA). These matrices then studied for their bio-sensing response to gram-positive and gram-negative bacteria. The sensing ability of the PVB/PDA biosensor was observed as early as 30 min in the presence of bacteria at 37°C. Now our effort is to decrease this effective temperature to room temperature to make this device applicable in the general daily life. These chromic biosensors will find extensive application not only alert the infection but also find other promising applications such as wearable sensors and diagnostic systems.Keywords: smart material, conjugated polymers, biosensor, polyvinyl butyrate/polydiacetylene
Procedia PDF Downloads 1281378 Synthesis and Characterization of Ferromagnetic Ni-Cu Alloys for Thermal Rectification Applications
Authors: Josue Javier Martinez Flores, Jaime Alvarez Quintana
Abstract:
A thermal rectifier consists of a device which can load a different heat flow which depends on the direction of that flow. That device is a thermal diode. It is well known that heat transfer in solids basically depends on the electrical, magnetic and crystalline nature of materials via electrons, magnons and phonons as thermal energy carriers respectively. In the present research, we have synthesized polycrystalline Ni-Cu alloys and identified the Curie temperatures; and we have observed that by way of secondary phase transitions, it is possible manipulate the heat conduction in solid state thermal diodes via transition temperature. In this sense, we have succeeded in developing solid state thermal diodes with a control gate through the Curie temperature via the activation and deactivation of magnons in Ni-Cu ferromagnetic alloys at room temperature. Results show thermal diodes with thermal rectification factors up to 1.5. Besides, the performance of the electrical rectifiers can be controlled by way of alloy Cu content; hence, lower Cu content alloys present enhanced thermal rectifications factors than higher ones.Keywords: thermal rectification, Curie temperature, ferromagnetic alloys, magnons
Procedia PDF Downloads 2461377 Synthesis and Characterization of SiO2/PVA/ SPEEK Composite Membrane for Proton Exchange Membrane Fuel Cell
Authors: M. Yusuf Ansari, Asad Abbas
Abstract:
Proton exchange membrane (PEM) fuel cell is a very efficient and promising energy conversion device. Although Nafion® is considered as benchmark materials for membrane used in PEM fuel cell, it has limitations that restrict its uses. Alternative materials for the membrane is always a challenging field for researchers. Sulfonated poly(ether ether ketone) (SPEEK) is one of the promising material for membrane due to its chemical and mechanical stability and lower cost. In this work, SPEEK is synthesized, and property booster such as silica nanoparticles and polyvinyl alcohol (PVA) are also added to analyse changes in properties such as water uptake, IEC, and conductivity. It has been found that adding PVA support high water uptake and proton conductivity but at large amount of PVA reduces the proton conductivity due to very high water uptake. Adding silica enhances water uptake and proton conductivity.Keywords: PEM Membrane, sulfonated poly (ether ether ketone) (SPEEK), silica fumes (SiO2), polyvinyl alcohol (PVA)
Procedia PDF Downloads 2831376 Chemical Synthesis and Microwave Sintering of SnO2-Based Nanoparticles for Varistor Films
Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Leinig Antônio Perazolli, Maria Aparecida Zaghete
Abstract:
SnO2 has electrical conductivity due to the excess of electrons and structural defects, being its electrical behavior highly dependent on sintering temperature and chemical composition. The addition of metals modifiers into the crystalline structure can improve and controlling the behavior of some semiconductor oxides that can therefore develop different applications such as varistors (ceramic with non-ohmic behavior between current and voltage, i.e. conductive during normal operation and resistive during overvoltage). The polymeric precursor method, based on the complexation reaction between metal ion and policarboxylic acid and then polymerized with ethylene glycol, was used to obtain nanopowders ceramic. The metal immobilization reduces its segregation during the decomposition of the polyester resulting in a crystalline oxide with high chemical homogeneity. The preparation of films from ceramics nanoparticles using electrophoretic deposition method (EPD) brings prospects for a new generation of smaller size devices with easy integration technology. EPD allows to control time and current and therefore it can have control of the thickness, surface roughness and the film density, quickly and with low production costs. The sintering process is key to control size and grain boundary density of the film. In this step, there is the diffusion of metals that promote densification and control of intrinsic defects or change these defects which will form and modify the potential barrier in the grain boundary. The use of microwave oven for sintering is an advantageous process due to the fast and homogeneous heating rate, promoting the diffusion and densification without irregular grain growth. This research was done a comparative study of sintering temperature by use of zinc as modifier agent to verify the influence on sintering step aiming to promote densification and grain growth, which influences the potential barrier formation and then changed the electrical behavior. SnO2-nanoparticles were obtained with 1 %mol of ZnO + 0.05 %mol of Nb2O5 (SZN), deposited as film through EPD (voltage 2 kV, time of 10 min) on Si/Pt substrate. Sintering was made in a microwave oven at 800, 900 and 1000 °C. For complete coverage of the substrate by nanoparticles with low surface roughness and uniform thickness was added 0.02 g of solid iodine in alcoholic suspension SnO2 to increase particle surface charge. They were also used magneto in EPD system that improved the deposition rate forming a compact film. Using a scanning electron microscope of high resolution (SEM_FEG) it was observed nanoparticles with average size between 10-20 nm, after sintering the average size was 150 to 200 nm and thickness of 5 µm. Also, it was verified that the temperature at 1000 °C was the most efficient in sintering. The best sintering time was also recorded and determined as 40 minutes. After sintering, the films were recovered with Cr3+ ions layer by EPD, then the films were again thermally treated. The electrical characterizations (nonlinear coefficient of 11.4, voltage rupture of ~60 V and leakage current = 4.8x10−6 A), allow considering the new methodology suitable for prepare SnO2-based varistor applied for development of electrical protection devices for low voltage.Keywords: chemical synthesis, electrophoretic deposition, microwave sintering, tin dioxide
Procedia PDF Downloads 2711375 Synthesis and Molecular Docking Studies of Hydrazone Derivatives Potent Inhibitors as a Human Carbonic Anhydrase IX
Authors: Sema Şenoğlu, Sevgi Karakuş
Abstract:
Hydrazone scaffold is important to design new drug groups and is found to possess numerous uses in pharmaceutical chemistry. Besides, hydrazone derivatives are also known for biological activities such as anticancer, antimicrobial, antiviral, and antifungal. Hydrazone derivatives are promising anticancer agents because they inhibit cancer proliferation and induce apoptosis. Human carbonic anhydrase IX has a high potential to be an antiproliferative drug target, and targeting this protein is also important for obtaining potential anticancer inhibitors. The protein construct was retrieved as a PDB file from the RCSB protein database. This binding interaction of proteins and ligands was performed using Discovery Studio Visualizer. In vitro inhibitory activity of hydrazone derivatives was tested against enzyme carbonic anhydrase IX on the PyRx programme. Most of these molecules showed remarkable human carbonic anhydrase IX inhibitory activity compared to the acetazolamide. As a result, these compounds appear to be a potential target in drug design against human carbonic anhydrase IX.Keywords: cancer, carbonic anhydrase IX enzyme, docking, hydrazone
Procedia PDF Downloads 821374 Synthesis and Characterization of Green Coke-Derived Activated Carbon by KOH Activation
Authors: Richard, Iyan Subiyanto, Chairul Hudaya
Abstract:
Activated carbon has been playing a significant role for many applications, especially in energy storage devices. However, commercially activated carbons generally require complicated processes and high production costs. Therefore, in this study, an activated carbon originating from green coke waste, that is economically affordable will be used as a carbon source. To synthesize activated carbon, KOH as an activator was employed with variation of C:KOH in ratio of 1:2, 1:3, 1:4, and 1:5, respectively, with an activation temperature of 700°C. The characterizations of activated carbon are obtained from Scanning Electron Microscopy, Energy Dispersive X-Ray, Raman Spectroscopy, and Brunauer-Emmett-Teller. The optimal activated carbon sample with specific surface area of 2,024 m²/g with high carbon content ( > 80%) supported by the high porosity carbon image obtained by SEM was prepared at C:KOH ratio of 1:4. The result shows that the synthesized activated carbon would be an ideal choice for energy storage device applications. Therefore, this study is expected to reduce the costs of activated carbon production by expanding the utilization of petroleum waste.Keywords: activated carbon, energy storage material, green coke, specific surface area
Procedia PDF Downloads 1671373 Chemical Fingerprinting of the Ephedrine Pathway to Methamphetamine
Authors: Luke Andrighetto, Paul G. Stevenson, Luke C. Henderson, Jim Pearson, Xavier A. Conlan
Abstract:
As pseudoephedrine, a common ingredient in cold and flu medications is closely monitored and restricted in Australia, alternative methods of accessing it are of interest. The impurities and by-products of every reaction step of pseudoephedrine/ephedrine and methamphetamine synthesis have been mapped in order to develop a chemical fingerprint based on synthetic route. Likewise, seized methamphetamine contains a combination of different cutting agents and starting materials. Therefore, in-silico optimised two-dimensional HPLC with DryLab® and OpenMS® software has been used to efficiently separate complex seizure samples. An excellent match between simulated and real separations was observed. Targeted separation of model compounds was completed with significantly reduced method development time. This study produced a two-dimensional separation regime that offers unprecedented separation power (separation space) while maintaining a rapid analysis time that is faster than those previously reported for gas chromatography, single dimension high performance liquid chromatography or capillary electrophoresis.Keywords: chemical fingerprint, ephedrine, methamphetamine, two-dimensional HPLC
Procedia PDF Downloads 4591372 Principles of Municipal Sewage Sludge Bioconversion into Biomineral Fertilizer
Authors: K. V. Kalinichenko, G. N. Nikovskaya
Abstract:
The efficiency of heavy metals removal from sewage sludge in bioleaching with heterotrophic, chemoautotrophic (sulphur-oxidizing) sludge cenoses and chemical leaching (in distilled water, weakly acidic or alkaline medium) was compared. The efficacy of heavy metals removal from sewage sludge varied from 83 % (Zn) up to 14 % (Cr) and followed the order: Zn > Mn > Cu > Ni > Co > Pb > Cr. The advantages of metals bioleaching process at heterotrophic metabolism was shown. A new process for bioconversation of sewage sludge into fertilizer at middle temperature after partial heavy metals removal was developed. This process is based on enhancing vital ability of heterotrophic microorganisms by adding easily metabolized nutrients and synthesis of metabolites by growing sludge cenoses. These metabolites possess the properties of heavy metals extractants and flocculants which provide sludge flocks sedimentation and concentration. The process results in biomineral fertilizer with immobilized sludge bioelements with prolonged action. The fertilizer obtained satisfied the EU limits for the sewage sludge of agricultural utilization. High efficiency of the biomineral fertilizers obtained has been demonstrated in vegetation experiments.Keywords: fertilizer, heavy metals, leaching, sewage sludge
Procedia PDF Downloads 3891371 Global Pandemic of Chronic Diseases: Public Health Challenges to Reduce the Development
Authors: Benjamin Poku
Abstract:
Purpose: The purpose of the research is to conduct systematic reviews and synthesis of existing knowledge that addresses the growing incidence and prevalence of chronic diseases across the world and its impact on public health in relation to communicable diseases. Principal results: A careful compilation and summary of 15-20 peer-reviewed publications from reputable databases such as PubMed, MEDLINE, CINAHL, and other peer-reviewed journals indicate that the Global pandemic of Chronic diseases (such as diabetes, high blood pressure, etc.) have become a greater public health burden in proportion as compared to communicable diseases. Significant conclusions: Given the complexity of the situation, efforts and strategies to mitigate the negative effect of the Global Pandemic on chronic diseases within the global community must include not only urgent and binding commitment of all stakeholders but also a multi-sectorial long-term approach to increase the public health educational approach to meet the increasing world population of over 8 billion people and also the aging population as well to meet the complex challenges of chronic diseases.Keywords: pandemic, chronic disease, public health, health challenges
Procedia PDF Downloads 5271370 Damage Analysis in Open Hole Composite Specimens by Digital Image Correlation: Experimental Investigation
Authors: Faci Youcef
Abstract:
In the present work, an experimental study is carried out using the digital image correlation (DIC) technique to analyze the damage and behavior of woven composite carbon/epoxy under tensile loading. The tension mechanisms associated with failure modes of bolted joints in advanced composites are studied, as well as displacement distribution and strain distribution. The evolution value of bolt angle inclination during tensile tests was studied. In order to compare the distribution of displacements and strains along the surface, figures of image mapping are made. Several factors that are responsible for the failure of fiber-reinforced polymer composite materials are observed. It was found that strain concentrations observed in the specimens can be used to identify full-field damage onset and to monitor damage progression during loading. Moreover, there is an interaction between laminate pattern, laminate thickness, fastener size and type, surface strain concentrations, and out-of-plane displacement. Conclusions include a failure analysis associated with bolt angle inclinations and supported by microscopic visualizations of the composite specimen. The DIC results can be used to develop and accurately validate numerical models.Keywords: Carbone, woven, damage, digital image, bolted joint, the inclination of angle
Procedia PDF Downloads 801369 Optimization of Multiplier Extraction Digital Filter On FPGA
Authors: Shiksha Jain, Ramesh Mishra
Abstract:
One of the most widely used complex signals processing operation is filtering. The most important FIR digital filter are widely used in DSP for filtering to alter the spectrum according to some given specifications. Power consumption and Area complexity in the algorithm of Finite Impulse Response (FIR) filter is mainly caused by multipliers. So we present a multiplier less technique (DA technique). In this technique, precomputed value of inner product is stored in LUT. Which are further added and shifted with number of iterations equal to the precision of input sample. But the exponential growth of LUT with the order of FIR filter, in this basic structure, makes it prohibitive for many applications. The significant area and power reduction over traditional Distributed Arithmetic (DA) structure is presented in this paper, by the use of slicing of LUT to the desired length. An architecture of 16 tap FIR filter is presented, with different length of slice of LUT. The result of FIR Filter implementation on Xilinx ISE synthesis tool (XST) vertex-4 FPGA Tool by using proposed method shows the increase of the maximum frequency, the decrease of the resources as usage saving in area with more number of slices and the reduction dynamic power.Keywords: multiplier less technique, linear phase symmetric FIR filter, FPGA tool, look up table
Procedia PDF Downloads 3901368 Gold Nanoparticle: Synthesis, Characterization, Clinico-Pathological, Pathological and Bio-Distribution Studies in Rabbits
Authors: M. M. Bashandy, A. R. Ahmed, M. El-Gaffary, Sahar S. Abd El-Rahman
Abstract:
This study evaluated the acute toxicity and tissue distribution of intravenously administered gold nanoparticles (AuNPs) in male rabbits. Rabbits were exposed to single dose of AuNPs (300 µg/ kg). Toxic effects were assessed via general behavior, hematological parameters, serum biochemical parameters and histopathological examination of various rabbits’ organs. Tissue distribution of AuNPs was evaluated at a dose of 300 µg/ kg in male rabbit. Inductively coupled plasma–mass spectrometry (ICP-MS) was used to determine gold concentrations in tissue samples collected at predetermined time intervals. After one week, AuNPs exerted no obvious acute toxicity in rabbits. However, inflammatory reactions in lung and liver cells were induced in rabbits treated at the300 µg/ kg dose level. The highest gold levels were found in the spleen, followed by liver, lungs and kidneys. These results indicated that AuNPs could be distributed extensively to various tissues in the body, but primarily in the spleen and liver.Keywords: gold nanoparticles, toxicity, pathology, hematology, liver function, kidney function
Procedia PDF Downloads 3351367 Design, Molecular Modeling, Synthesize, and Biological Evaluation of Some Dual Inhibitors of Soluble Epoxide Hydrolase (sEH) and Cyclooxygenase 2 (COX-2)
Authors: Elham Rezaee, Sayyed Abbas Tabatabai
Abstract:
Dual inhibition of COX-2 and sEH enzymes represents one of the distinct pharmaceutical approaches for the treatment of inflammation, pain, cancers, and other diseases. The discovery of these inhibitors for treatment is a great deal of attention because of some advantages such as increased efficacy, a promising safety profile, ease of formulation, and better target engagement. In this research, based on the structure-activity relationship of COX-2 and sEH inhibitors, some amide derivatives with oxadiazole and dihydropyrimidinone rings against sEH and COX-2 enzymes were developed. The designed compounds showed high affinity to the active site of both enzymes in docking studies and were synthesized in good yield and characterized by IR, Mass, 1HNMR, and 13CNMR. All of the novel compounds exhibited considerable in-vitro sEH and COX-2 inhibitory activities in comparison with 12-(3-Adamantan-1-yl-ureido)- dodecanoic acid and celecoxib (a potent urea-based sEH inhibitor and selective nonsteroidal anti-inflammatory drug, respectively). Ethyl 6-methyl-4-(4-(4-(methylsulfonyl)benzamido)phenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate was found to be the most selective COX-2 inhibitor (COX-2/COX-1 ratio: 683) with IC50 value of 2.1 nM targeting sEH enzyme.Keywords: COX-2, dual inhibitors, sEH, synthesis
Procedia PDF Downloads 501366 Fouling of Regenerated Ultrafiltration Membrane in Treatment of Oily Wastewater of Palm Oil Refinery
Authors: K. F. Md Yunos, N. S. Pajar, N. S. Azmi
Abstract:
Oily wastewater in Malaysian refinery has become a big issue of water and environment pollution to be solved urgently. The results of an experimental study on separation of oily wastewaters are presented. The characteristic of filtration behavior of commercial polymer ultrafiltration (UF) membranes was evaluated in the treatment of oily wastewater from palm oil refinery. The performance of different molecular weight cut off 5kDa and 10kDa regenerated cellulose membrane were evaluated and compared and the fouling behavior were analyzed by scanning electron microscopy (SEM). The effect of pressure (0.5, 1.0, 1.5, 2.0, 2.5 bar) and sample concentration (100%, 75%, 50%, 25%) on fouling of 5kDa and 10kDa membrane were evaluated. The characteristic of the sample solutions were analyzed for turbidity, total dissolved solid (TDS), total suspended solid (TSS), BOD, and COD. The results showed that the best fit to experimental data corresponds to the cake layer formation followed by the intermediate blocking for the experimental conditions tested. A more detailed analysis of the fouling mechanisms was studied by dividing the filtration curves into different regions corresponding to the different fouling mechanisms. Intermediate blocking and cake layer formation or combinations of them were found to occur during the UF experiments depending on the operating conditions.Keywords: fouling, oily wastewater, regenerated cellulose, ultrafiltration
Procedia PDF Downloads 4191365 UV-Cured Coatings Based on Acrylated Epoxidized Soybean Oil and Epoxy Carboxylate
Authors: Alaaddin Cerit, Suheyla Kocaman, Ulku Soydal
Abstract:
During the past two decades, photoinitiated polymerization has been attracting a great interest in terms of scientific and industrial activity. The wide recognition of UV treatment in the polymer industry results not only from its many practical applications but also from its advantage for low-cost processes. Unlike most thermal curing systems, radiation-curable systems can polymerize at room temperature without additional heat, and the curing is completed in a very short time. The advantage of cationic UV technology is that post-cure can continue in the ‘dark’ after radiation. In this study, bio-based acrylated epoxidized soybean oil (AESO) was cured with UV radiation using radicalic photoinitiator Irgacure 184. Triarylsulphonium hexafluoroantimonate was used as cationic photoinitiator for curing of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. The effect of curing time and the amount of initiators on the curing degree and thermal properties were investigated. The thermal properties of the coating were analyzed after crosslinking UV irradiation. The level of crosslinking in the coating was evaluated by FTIR analysis. Cationic UV-cured coatings demonstrated excellent adhesion and corrosion resistance properties. Therefore, our study holds a great potential with its simple and low-cost applications.Keywords: acrylated epoxidized soybean oil, epoxy carboxylate, thermal properties, uv-curing
Procedia PDF Downloads 2591364 Microwave Assisted Sol-gel Synthesis And Characterization Of Nanocrystalline Zirconia
Authors: Farzana Majid, Mahwish Bashir, Ammara, Attia Falak
Abstract:
Zirconia nanoparticles have gained significant attention due to their excellent mechanical strength, thermal properties, biocompatibility, and catalytic activity. Tetragonal zirconia holds the greatest efficacy for surgical implants and coatings when it comes to the three zirconia phases (monoclinic, tetragonal, and cubic). However, its stability at higher temperatures and transformation to the monoclinic phase upon cooling are challenging. In this research, zirconia nanoparticles were prepared using microwave-assisted sol-gel method with varying microwave powers (100 W, 300 W, 500 W, 700 W, & 900 W). Organic stabilizing agent, i.e., eggshell powder, was used to stabilize the tetragonal phase. Fourier transform infrared spectroscopy (FTIR) confirmed the phase-pure tetragonal zirconia, corroborating the XRD data. Optical properties, including the optical bandgap, were studied using UV/Visible and PL spectroscopies. The synthesized ZrO2 nanoparticles exhibited excellent photocatalytic degradation efficiency in the degradation of methylene blue (MB) dye under UV irradiation. The findings demonstrate the potential of these ZrO2 nanoparticles as a viable alternative photocatalyst for the efficient degradation of various dyes in contaminated water.Keywords: zirconia nanoparticles, sol-gel, photocataylsis, wter purification
Procedia PDF Downloads 781363 Thermal Diffusion of Photovoltaic Organic Semiconductors Determined by Scanning Photothermal Deflection Technique
Authors: K.L. Chiu, Johnny K. W. Ho, M. H. Chan, S. H. Cheung, K. H. Chan, S.K. So
Abstract:
Thermal diffusivity is an important quantity in heat conduction. It measures the rate of heat transfer from the hot side to the cold side of a material. In solid-state materials, thermal diffusivity reveals information related to morphologies and solid quality, as thermal diffusivity can be affected by microstructures. However, thermal diffusivity studies on organic semiconductors are very limited. In this study, scanning photothermal deflection (SPD) technique is used to study the thermal diffusivities of different classes of semiconducting polymers. The reliability of the technique was confirmed by crossing-checking our SPD derived experimental values of different reference materials with their known diffusivities from the literature. To show that thermal diffusivity determination is a potential tool for revealing microscopic properties of organic photovoltaic semiconductors, SPD measurements were applied to various organic semiconducting films with different crystallinities. It is observed that organic photovoltaic semiconductors possess low thermal diffusivity, with values in the range of 0.3mm²/s to 1mm²/s. It is also discovered that polymeric photovoltaic semiconductors with greater molecular planarity, stronger stacking and higher crystallinity would possess greater thermal diffusivities. Correlations between thermal, charge transport properties will be discussed.Keywords: polymer crystallinity, photovoltaic organic semiconductors, photothermal deflection technique, thermal diffusion
Procedia PDF Downloads 143