Search results for: high efficiency video coding
23740 Secure Optical Communication System Using Quantum Cryptography
Authors: Ehab AbdulRazzaq Hussein
Abstract:
Quantum cryptography (QC) is an emerging technology for secure key distribution with single-photon transmissions. In contrast to classical cryptographic schemes, the security of QC schemes is guaranteed by the fundamental laws of nature. Their security stems from the impossibility to distinguish non-orthogonal quantum states with certainty. A potential eavesdropper introduces errors in the transmissions, which can later be discovered by the legitimate participants of the communication. In this paper, the modeling approach is proposed for QC protocol BB84 using polarization coding. The single-photon system is assumed to be used in the designed models. Thus, Eve cannot use beam-splitting strategy to eavesdrop on the quantum channel transmission. The only eavesdropping strategy possible to Eve is the intercept/resend strategy. After quantum transmission of the QC protocol, the quantum bit error rate (QBER) is estimated and compared with a threshold value. If it is above this value the procedure must be stopped and performed later again.Keywords: security, key distribution, cryptography, quantum protocols, Quantum Cryptography (QC), Quantum Key Distribution (QKD).
Procedia PDF Downloads 40923739 Methanol Steam Reforming with Heat Recovery for Hydrogen-Rich Gas Production
Authors: Horng-Wen Wu, Yi Chao, Rong-Fang Horng
Abstract:
This study is to develop a methanol steam reformer with a heat recovery zone, which recovers heat from exhaust gas of a diesel engine, and to investigate waste heat recovery ratio at the required reaction temperature. The operation conditions of the reformer are reaction temperature (200 °C, 250 °C, and 300 °C), steam to carbonate (S/C) ratio (0.9, 1.1, and 1.3), and N2 volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min). Finally, the hydrogen concentration, the CO, CO2, and N2 concentrations are measured and recorded to calculate methanol conversion efficiency, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio. The heat source of this reformer comes from electric heater and waste heat of exhaust gas from diesel engines. The objective is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial for the reformer to enhance the methanol conversion efficiency and hydrogen-rich gas production. Experimental results show that the highest hydrogen flow rate exists at N2 of the volume rate 40 cm3/min and reforming reaction temperature of 300 °C and the value is 19.6 l/min. With the electric heater and heat recovery from exhaust gas, the maximum heat recovery ratio is 13.18 % occurring at water-methanol (S/C) ratio of 1.3 and the reforming reaction temperature of 300 °C.Keywords: heat recovery, hydrogen-rich production, methanol steam reformer, methanol conversion efficiency
Procedia PDF Downloads 46723738 The Impact of Using Flattening Filter-Free Energies on Treatment Efficiency for Prostate SBRT
Authors: T. Al-Alawi, N. Shorbaji, E. Rashaidi, M.Alidrisi
Abstract:
Purpose/Objective(s): The main purpose of this study is to analyze the planning of SBRT treatments for localized prostate cancer with 6FFF and 10FFF energies to see if there is a dosimetric difference between the two energies and how we can increase the plan efficiency and reduce its complexity. Also, to introduce a planning method in our department to treat prostate cancer by utilizing high energy photons without increasing patient toxicity and fulfilled all dosimetric constraints for OAR (an organ at risk). Then toevaluate the target 95% coverage PTV95, V5%, V2%, V1%, low dose volume for OAR (V1Gy, V2Gy, V5Gy), monitor unit (beam-on time), and estimate the values of homogeneity index HI, conformity index CI a Gradient index GI for each treatment plan.Materials/Methods: Two treatment plans were generated for15 patients with localized prostate cancer retrospectively using the CT planning image acquired for radiotherapy purposes. Each plan contains two/three complete arcs with two/three different collimator angle sets. The maximum dose rate available is 1400MU/min for the energy 6FFF and 2400MU/min for 10FFF. So in case, we need to avoid changing the gantry speed during the rotation, we tend to use the third arc in the plan with 6FFF to accommodate the high dose per fraction. The clinical target volume (CTV) consists of the entire prostate for organ-confined disease. The planning target volume (PTV) involves a margin of 5 mm. A 3-mm margin is favored posteriorly. Organs at risk identified and contoured include the rectum, bladder, penile bulb, femoral heads, and small bowel. The prescription dose is to deliver 35Gyin five fractions to the PTV and apply constraints for organ at risk (OAR) derived from those reported in references. Results: In terms of CI=0.99, HI=0.7, and GI= 4.1, it was observed that they are all thesame for both energies 6FFF and 10FFF with no differences, but the total delivered MUs are much less for the 10FFF plans (2907 for 6FFF vs.2468 for 10FFF) and the total delivery time is 124Sc for 6FFF vs. 61Sc for 10FFF beams. There were no dosimetric differences between 6FFF and 10FFF in terms of PTV coverage and mean doses; the mean doses for the bladder, rectum, femoral heads, penile bulb, and small bowel were collected, and they were in favor of the 10FFF. Also, we got lower V1Gy, V2Gy, and V5Gy doses for all OAR with 10FFF plans. Integral dosesID in (Gy. L) were recorded for all OAR, and they were lower with the 10FFF plans. Conclusion: High energy 10FFF has lower treatment time and lower delivered MUs; also, 10FFF showed lower integral and meant doses to organs at risk. In this study, we suggest usinga 10FFF beam for SBRTprostate treatment, which has the advantage of lowering the treatment time and that lead to lessplan complexity with respect to 6FFF beams.Keywords: FFF beam, SBRT prostate, VMAT, prostate cancer
Procedia PDF Downloads 8623737 Design and Optimization of a Small Hydraulic Propeller Turbine
Authors: Dario Barsi, Marina Ubaldi, Pietro Zunino, Robert Fink
Abstract:
A design and optimization procedure is proposed and developed to provide the geometry of a high efficiency compact hydraulic propeller turbine for low head. For the preliminary design of the machine, classic design criteria, based on the use of statistical correlations for the definition of the fundamental geometric parameters and the blade shapes are used. These relationships are based on the fundamental design parameters (i.e., specific speed, flow coefficient, work coefficient) in order to provide a simple yet reliable procedure. Particular attention is paid, since from the initial steps, on the correct conformation of the meridional channel and on the correct arrangement of the blade rows. The preliminary geometry thus obtained is used as a starting point for the hydrodynamic optimization procedure, carried out using a CFD calculation software coupled with a genetic algorithm that generates and updates a large database of turbine geometries. The optimization process is performed using a commercial approach that solves the turbulent Navier Stokes equations (RANS) by exploiting the axial-symmetric geometry of the machine. The geometries generated within the database are therefore calculated in order to determine the corresponding overall performance. In order to speed up the optimization calculation, an artificial neural network (ANN) based on the use of an objective function is employed. The procedure was applied for the specific case of a propeller turbine with an innovative design of a modular type, specific for applications characterized by very low heads. The procedure is tested in order to verify its validity and the ability to automatically obtain the targeted net head and the maximum for the total to total internal efficiency.Keywords: renewable energy conversion, hydraulic turbines, low head hydraulic energy, optimization design
Procedia PDF Downloads 15123736 Dual Metal Organic Framework Derived N-Doped Fe3C Nanocages Decorated with Ultrathin ZnIn2S4 Nanosheets for Efficient Photocatalytic Hydrogen Generation
Authors: D. Amaranatha Reddy
Abstract:
Highly efficient and stable co-catalysts materials is of great important for boosting photo charge carrier’s separation, transportation efficiency, and accelerating the catalytic reactive sites of semiconductor photocatalysts. As a result, it is of decisive importance to fabricate low price noble metal free co-catalysts with high catalytic reactivity, but it remains very challenging. Considering this challenge here, dual metal organic frame work derived N-Doped Fe3C nanocages have been rationally designed and decorated with ultrathin ZnIn2S4 nanosheets for efficient photocatalytic hydrogen generation. The fabrication strategy precisely integrates co-catalyst nanocages with ultrathin two-dimensional (2D) semiconductor nanosheets by providing tightly interconnected nano-junctions and helps to suppress the charge carrier’s recombination rate. Furthermore, constructed highly porous hybrid structures expose ample active sites for catalytic reduction reactions and harvest visible light more effectively by light scattering. As a result, fabricated nanostructures exhibit superior solar driven hydrogen evolution rate (9600 µmol/g/h) with an apparent quantum efficiency of 3.6 %, which is relatively higher than the Pt noble metal co-catalyst systems and earlier reported ZnIn2S4 based nanohybrids. We believe that the present work promotes the application of sulfide based nanostructures in solar driven hydrogen production.Keywords: photocatalysis, water splitting, hydrogen fuel production, solar-driven hydrogen
Procedia PDF Downloads 13523735 Useful Characteristics of Pleurotus Mushroom Hybrids
Authors: Suvalux Chaichuchote, Ratchadaporn Thonghem
Abstract:
Pleurotus mushroom is one of popular edible mushrooms in Thailand. It is much favored by consumers due to its delicious taste and high nutrition. It is commonly used as an ingredient in several dishes. The commercially cultivated strain grown in most farms is the Pleurotus sp., Hed Bhutan, that is widely distributed to mushroom farms throughout the country and can be cultivated almost all year round. However, it demands different cultivated strains from mushroom growers, therefore, the improving mushroom strains should be done to their benefits. In this study, we used a di-mon mating method to hybrid production from Hed Bhutan (P-3) as dikaryon material and monokaryotic mycelium were isolated from basidiospores of other three Pleurotus sp. by single spore isolation. The 3 hybrids: P-3XSA-6, P-3XSB-24 and P-3XSE-5 were recognized from the 12 hybridized successfully. They were appropriate hybridized in terms of fruiting body performance in the three time cycles of cultivation such as the number of days until growing, time for pinning, color and shape of fruiting bodies and yield. For genetic study, genomic DNAs of both Hed Bhutan (P-3) and three hybrids were extracted. A couple of primer ITS1 and ITS4 were used to amplify the gene coding for ITS1, ITS2 and 5.8S rRNA. The similarities between these amplified genes and databases of DNA revealed that Hed Bhutan (P-3) was the Pleurotus pulmonarius as well as P-3XSA-6, P-3XSB-24 and P-3XSE-5 hybrids. Furthermore, Hed Bhutan (P3) and three hybrids were distributed to 3 small-scale farms, with mushroom farming experience, in the countryside. To address this, one hundred and twenty mushroom bags of each strain were supplied to them. The findings, by interview, indicated two mushroom farmers were satisfied with P-3XSA-6 hybrid and P-3XSB-24 hybrid, thanks to their simultaneous fruiting time and good yield. While the other was satisfied with P-3XSB-24 hybrid due to its good yield and P-3XSE-5 hybrids thanks to its gradually fruiting body, benefiting in frequent harvest. Overall, farmers adopted all hybrids to grow as commercially cultivated strains as well as Hed Bhutan (P-3) strain.Keywords: dikaryon, monokaryon, pleurotus, strain improvement
Procedia PDF Downloads 25423734 Close-Range Remote Sensing Techniques for Analyzing Rock Discontinuity Properties
Authors: Sina Fatolahzadeh, Sergio A. Sepúlveda
Abstract:
This paper presents advanced developments in close-range, terrestrial remote sensing techniques to enhance the characterization of rock masses. The study integrates two state-of-the-art laser-scanning technologies, the HandySCAN and GeoSLAM laser scanners, to extract high-resolution geospatial data for rock mass analysis. These instruments offer high accuracy, precision, low acquisition time, and high efficiency in capturing intricate geological features in small to medium size outcrops and slope cuts. Using the HandySCAN and GeoSLAM laser scanners facilitates real-time, three-dimensional mapping of rock surfaces, enabling comprehensive assessments of rock mass characteristics. The collected data provide valuable insights into structural complexities, surface roughness, and discontinuity patterns, which are essential for geological and geotechnical analyses. The synergy of these advanced remote sensing technologies contributes to a more precise and straightforward understanding of rock mass behavior. In this case, the main parameters of RQD, joint spacing, persistence, aperture, roughness, infill, weathering, water condition, and joint orientation in a slope cut along the Sea-to-Sky Highway, BC, were remotely analyzed to calculate and evaluate the Rock Mass Rating (RMR) and Geological Strength Index (GSI) classification systems. Automatic and manual analyses of the acquired data are then compared with field measurements. The results show the usefulness of the proposed remote sensing methods and their appropriate conformity with the actual field data.Keywords: remote sensing, rock mechanics, rock engineering, slope stability, discontinuity properties
Procedia PDF Downloads 6823733 Effect of Variation of Injection Timing on Performance and Emission Characteristics of Compression Ignition Engine: A CFD Approach
Authors: N. Balamurugan, N. V. Mahalakshmi
Abstract:
Compression ignition (CI) engines are known for their high thermal efficiency in comparison with spark-ignited (SI) engines. This makes CI engines a potential candidate for the future prime source of power for transportation sector to reduce greenhouse gas emissions and to shrink carbon footprint. However, CI engines produce high levels of NOx and soot emissions. Conventional methods to reduce NOx and soot emissions often result in the infamous NOx-soot trade-off. The injection parameters are one of the most important factors in the working of CI engines. The engine performance, power output, economy etc., is greatly dependent on the effectiveness of the injection parameters. The injection parameter has their direct impact on combustion process and pollutant formation. The injection parameter’s values are required to be optimised according to the application of the engine. Control of fuel injection mode is one method for reduction of NOx and soot emissions that is achievable. This study aims to assess, compare and analyse the influence of the effect of injection characteristics that is SOI timing studied on combustion and emissions in in-cylinder combustion processes with that of conventional DI Diesel Engine system using the commercial Computational Fluid Dynamic (CFD) package STAR- CD ES-ICE.Keywords: variation of injection timing, compression ignition engine, spark-ignited, Computational Fluid Dynamic
Procedia PDF Downloads 29823732 An Experimental Study of the External Thermal Insulation System’s (ETICS) Efficiency in Buildings during Spring Conditions
Authors: Carmen Viñas Arrebola, Antonio Rodriguez Sanchez, Sheila Varela Lujan, Mariano Gonzalez Cortina, Cesar Porras Amores
Abstract:
The research group TEMA from the School of Building (UPM) is working in the line of energy efficiency and comfort in building. The need to reduce energy consumption in the building construction implies designing new constructive systems. These systems help to reduce both consumption and energy losses in order to achieve adequate thermal comfort for people in any type of building. In existing buildings the best option is the rehabilitation focused on thermal insulation. The aim of this paper is to design, monitor and analyze the first results of thermal behavior of the ETICS system in façades. This retrofitting solution consists of adding thermal insulation on the outside of the building, helping to create a continuous envelope on the façades. The analysis is done by comparing a rehabilitated part of the building with ETICS system and another part which has not been rehabilitated, and it is taken as reference. Both of them have the same characteristics. Temperature measurements were taken with type K thermocouples according to the previous design of the monitoring and in the same period of time. The pilot building of the study is situated in Benimamet Street, in San Cristobal de Los Ángeles, in the south of Madrid. It was built in the late 50s. The 51st entrance hall, which is restored, and the 47th entrance hall, in original conditions, have been studied.Keywords: comfort in building, energy efficiency in building, ETICS, thermal properties
Procedia PDF Downloads 31823731 Energy Efficient Heterogeneous System for Wireless Sensor Networks (WSN)
Authors: José Anderson Rodrigues de Souza, Teles de Sales Bezerra, Saulo Aislan da Silva Eleuterio, Jeronimo Silva Rocha
Abstract:
Mobile devices are increasingly occupying sectors of society and one of its most important features is mobility. However, the use of mobile devices is subject to the lifetime of the batteries. Thus, the use of energy batteries has become an important issue in the study of wireless network technologies. In this context, new solutions that enable aggregate energy efficiency not only through energy saving, and principally they are evaluated from a more realistic model of energy discharge, if easy adaptation to existing protocols. This paper presents a study on the energy needed and the lifetime for Wireless Sensor Networks (WSN) using a heterogeneous network and applying the LEACH protocol.Keywords: wireless sensor networks, energy efficiency, heterogeneous, LEACH protocol
Procedia PDF Downloads 58223730 A Multi-Agent Simulation of Serious Games to Predict Their Impact on E-Learning Processes
Authors: Ibtissem Daoudi, Raoudha Chebil, Wided Lejouad Chaari
Abstract:
Serious games constitute actually a recent and attractive way supposed to replace the classical boring courses. However, the choice of the adapted serious game to a specific learning environment remains a challenging task that makes teachers unwilling to adopt this concept. To fill this gap, we present, in this paper, a multi-agent-based simulator allowing to predict the impact of a serious game integration in a learning environment given several game and players characteristics. As results, the presented tool gives intensities of several emotional aspects characterizing learners reactions to the serious game adoption. The presented simulator is tested to predict the effect of basing a coding course on the serious game ”CodeCombat”. The obtained results are compared with feedbacks of using the same serious game in a real learning process.Keywords: emotion, learning process, multi-agent simulation, serious games
Procedia PDF Downloads 40123729 Enhancement of Pool Boiling Regimes by Sand Deposition
Authors: G. Mazor, I. Ladizhensky, A. Shapiro, D. Nemirovsky
Abstract:
A lot of researches was dedicated to the evaluation of the efficiency of the uniform constant and temporary coatings enhancing a heat transfer rate. Our goal is an investigation of the sand coatings distributed by both uniform and non-uniform forms. The sand of different sizes (0.2-0.4-0.6 mm) was attached to a copper ball (30 mm diameter) surface by means of PVA adhesive as a uniform layer. At the next stage, sand spots were distributed over the ball surface with an areal density that ranges between one spot per 1.18 cm² (for low-density spots) and one spot per 0.51 cm² (for high-density spots). The spot's diameter value varied from 3 to 6.5 mm and height from 0.5 to 1.5 mm. All coatings serve as a heat transfer enhancer during the quenching in liquid nitrogen. Highest heat flux densities, achieved during quenching, lie in the range 10.8-20.2 W/cm², depending on the sand layer structure. Application of the enhancing coating increases an amount of heat, evacuated by highly effective nucleate and transition boiling, by a factor of 4.5 as compared to the bare sample. The non-uniform sand coatings were increasing the heat transfer rate value under all pool boiling conditions: nucleate boiling, transfer boiling and the most severe film boiling. A combination of uniform sand coating together with high-density sand spots increased the average heat transfer rate by a factor of 3.Keywords: heat transfer enhancement, nucleate boiling, film boiling, transfer boiling
Procedia PDF Downloads 13023728 The Collaborative Advocacy Work of Language Teachers
Authors: Sora Suh, Catherine Michener
Abstract:
This paper examines the collaborative forms of advocacy that a group of four public school teachers took for their emergent bilingual students in one public school district. While teacher advocacy takes many forms in and out of the classroom, much advocacy work is done by individuals and less by collective action. As a result, individual teachers risk isolation or marginalization in their school contexts when they advocate for immigrant youth. This paper is intended to contribute to the documentation and understanding of teachers’ advocacy work as a collaborative act in teacher education research. The increase of ELs in US classrooms and a corresponding lack of teacher preparation to meet the needs of ELs has motivated the training of educators in linguistically responsive education (e.g., ESL, sheltered English instruction [SEI], bilingual education). Drawing from educational theories of linguistically responsive teaching for preparing educators, we trace the linguistically responsive advocacy work of the teachers. The paper is a multiple case study that tracks how teachers’ discussions on advocacy during a teacher preparation program leading to collaborative actions in their daily teaching lives in and out of school. Data collected includes online discussion forums on the topic of advocacy, course assignments on the topic of advocacy, video-audio recordings of classroom teaching observations, and video-audio recordings of individual and focus group interviews. The findings demonstrate that the teachers’ understanding of advocacy developed through collaborative partnerships formed in the teacher preparation program and grew into active forms of collaborative advocacy in their teaching practice in and out of school. The teachers formed multi-level and collaborative partnerships with teachers, families, community members, policymakers from the local government, and educational researchers to advocate for their emergent bilingual students by planning advocacy events such as new family orientations for emergent bilinguals, professional development for general education teachers on the topic of linguistically responsive instruction, and family nights hosted by the district. The paper’s findings present types of advocacy work in which teachers engage (pedagogical, curricular, out-of-school work) and provide evidence of collaborative advocacy work by a group of engaged educators. The paper highlights the increased agency and effective advocacy of teachers through teacher education and collaborative partnerships and suggests a need for more research on collaborative forms of teacher advocacy for emergent bilinguals.Keywords: language education, teacher advocacy, language instruction, teacher education
Procedia PDF Downloads 11823727 Design and Control Algorithms for Power Electronic Converters for EV Applications
Authors: Ilya Kavalchuk, Mehdi Seyedmahmoudian, Ben Horan, Aman Than Oo, Alex Stojcevski
Abstract:
The power electronic components within Electric Vehicles (EV) need to operate in several important modes. Some modes directly influence safety, while others influence vehicle performance. Given the variety of functions and operational modes required of the power electronics, it needs to meet efficiency requirements to minimize power losses. Another challenge in the control and construction of such systems is the ability to support bidirectional power flow. This paper considers the construction, operation, and feasibility of available converters for electric vehicles with feasible configurations of electrical buses and loads. This paper describes logic and control signals for the converters for different operations conditions based on the efficiency and energy usage bases.Keywords: electric vehicles, electrical machines control, power electronics, powerflow regulations
Procedia PDF Downloads 56223726 An Analysis of LoRa Networks for Rainforest Monitoring
Authors: Rafael Castilho Carvalho, Edjair de Souza Mota
Abstract:
As the largest contributor to the biogeochemical functioning of the Earth system, the Amazon Rainforest has the greatest biodiversity on the planet, harboring about 15% of all the world's flora. Recognition and preservation are the focus of research that seeks to mitigate drastic changes, especially anthropic ones, which irreversibly affect this biome. Functional and low-cost monitoring alternatives to reduce these impacts are a priority, such as those using technologies such as Low Power Wide Area Networks (LPWAN). Promising, reliable, secure and with low energy consumption, LPWAN can connect thousands of IoT devices, and in particular, LoRa is considered one of the most successful solutions to facilitate forest monitoring applications. Despite this, the forest environment, in particular the Amazon Rainforest, is a challenge for these technologies, requiring work to identify and validate the use of technology in a real environment. To investigate the feasibility of deploying LPWAN in remote water quality monitoring of rivers in the Amazon Region, a LoRa-based test bed consisting of a Lora transmitter and a LoRa receiver was set up, both parts were implemented with Arduino and the LoRa chip SX1276. The experiment was carried out at the Federal University of Amazonas, which contains one of the largest urban forests in Brazil. There are several springs inside the forest, and the main goal is to collect water quality parameters and transmit the data through the forest in real time to the gateway at the uni. In all, there are nine water quality parameters of interest. Even with a high collection frequency, the amount of information that must be sent to the gateway is small. However, for this application, the battery of the transmitter device is a concern since, in the real application, the device must run without maintenance for long periods of time. With these constraints in mind, parameters such as Spreading Factor (SF) and Coding Rate (CR), different antenna heights, and distances were tuned to better the connectivity quality, measured with RSSI and loss rate. A handheld spectrum analyzer RF Explorer was used to get the RSSI values. Distances exceeding 200 m have soon proven difficult to establish communication due to the dense foliage and high humidity. The optimal combinations of SF-CR values were 8-5 and 9-5, showing the lowest packet loss rates, 5% and 17%, respectively, with a signal strength of approximately -120 dBm, these being the best settings for this study so far. The rains and climate changes imposed limitations on the equipment, and more tests are already being conducted. Subsequently, the range of the LoRa configuration must be extended using a mesh topology, especially because at least three different collection points in the same water body are required.Keywords: IoT, LPWAN, LoRa, coverage, loss rate, forest
Procedia PDF Downloads 9223725 Ultra-Rapid and Efficient Immunomagnetic Separation of Listeria Monocytogenes from Complex Samples in High-Gradient Magnetic Field Using Disposable Magnetic Microfluidic Device
Authors: L. Malic, X. Zhang, D. Brassard, L. Clime, J. Daoud, C. Luebbert, V. Barrere, A. Boutin, S. Bidawid, N. Corneau, J. Farber, T. Veres
Abstract:
The incidence of infections caused by foodborne pathogens such as Listeria monocytogenes (L. monocytogenes) poses a great potential threat to public health and safety. These issues are further exacerbated by legal repercussions due to “zero tolerance” food safety standards adopted in developed countries. Unfortunately, a large number of related disease outbreaks are caused by pathogens present in extremely low counts currently undetectable by available techniques. The development of highly sensitive and rapid detection of foodborne pathogens is therefore crucial, and requires robust and efficient pre-analytical sample preparation. Immunomagnetic separation is a popular approach to sample preparation. Microfluidic chips combined with external magnets have emerged as viable high throughput methods. However, external magnets alone are not suitable for the capture of nanoparticles, as very strong magnetic fields are required. Devices that incorporate externally applied magnetic field and microstructures of a soft magnetic material have thus been used for local field amplification. Unfortunately, very complex and costly fabrication processes used for integration of soft magnetic materials in the reported proof-of-concept devices would prohibit their use as disposable tools for food and water safety or diagnostic applications. We present a sample preparation magnetic microfluidic device implemented in low-cost thermoplastic polymers using fabrication techniques suitable for mass-production. The developed magnetic capture chip (M-chip) was employed for rapid capture and release of L. monocytogenes conjugated to immunomagnetic nanoparticles (IMNs) in buffer and beef filtrate. The M-chip relies on a dense array of Nickel-coated high-aspect ratio pillars for capture with controlled magnetic field distribution and a microfluidic channel network for sample delivery, waste, wash and recovery. The developed Nickel-coating process and passivation allows generation of switchable local perturbations within the uniform magnetic field generated with a pair of permanent magnets placed at the opposite edges of the chip. This leads to strong and reversible trapping force, wherein high local magnetic field gradients allow efficient capture of IMNs conjugated to L. monocytogenes flowing through the microfluidic chamber. The experimental optimization of the M-chip was performed using commercially available magnetic microparticles and fabricated silica-coated iron-oxide nanoparticles. The fabricated nanoparticles were optimized to achieve the desired magnetic moment and surface functionalization was tailored to allow efficient capture antibody immobilization. The integration, validation and further optimization of the capture and release protocol is demonstrated using both, dead and live L. monocytogenes through fluorescence microscopy and plate- culture method. The capture efficiency of the chip was found to vary as function of listeria to nanoparticle concentration ratio. The maximum capture efficiency of 30% was obtained and the 24-hour plate-culture method allowed the detection of initial sample concentration of only 16 cfu/ml. The device was also very efficient in concentrating the sample from a 10 ml initial volume. Specifically, 280% concentration efficiency was achieved in 17 minutes only, demonstrating the suitability of the system for food safety applications. In addition, flexible design and low-cost fabrication process will allow rapid sample preparation for applications beyond food and water safety, including point-of-care diagnosis.Keywords: array of pillars, bacteria isolation, immunomagnetic sample preparation, polymer microfluidic device
Procedia PDF Downloads 28323724 A Study on ESD Protection Circuit Applying Silicon Controlled Rectifier-Based Stack Technology with High Holding Voltage
Authors: Hee-Guk Chae, Bo-Bae Song, Kyoung-Il Do, Jeong-Yun Seo, Yong-Seo Koo
Abstract:
In this study, an improved Electrostatic Discharge (ESD) protection circuit with low trigger voltage and high holding voltage is proposed. ESD has become a serious problem in the semiconductor process because the semiconductor density has become very high these days. Therefore, much research has been done to prevent ESD. The proposed circuit is a stacked structure of the new unit structure combined by the Zener Triggering (SCR ZTSCR) and the High Holding Voltage SCR (HHVSCR). The simulation results show that the proposed circuit has low trigger voltage and high holding voltage. And the stack technology is applied to adjust the various operating voltage. As the results, the holding voltage is 7.7 V for 2-stack and 10.7 V for 3-stack.Keywords: ESD, SCR, latch-up, power clamp, holding voltage
Procedia PDF Downloads 55123723 Technical and Economic Analysis Effects of Various Parameters on the Performance of Heat Recovery System on Gas Complex Turbo Generators
Authors: Hefzollah Mohammadian, Mohammad Bagher Heidari
Abstract:
This paper deals with the technical and economic effects of various parameters on the performance of heat recovery system on gas complex turbo generator. Given the importance of this issue, that is the main goal of economic efficiency and reduces costs; this project has been implemented similar plans in which the target is the implementation of specific patterns. The project will also help us in the process of gas refineries and the actual efficiency of the process after adding a system to analyze the turbine and predict potential problems and fix them and take appropriate measures according to the results of simulation analysis and results of the process gain. The results of modeling and the effect of different parameters on this line, have been done using Thermo Flow.Keywords: turbo compressor, turbo generator, heat recovery boiler, gas turbines
Procedia PDF Downloads 30723722 Slow Pyrolysis of Bio-Wastes: Environmental, Exergetic, and Energetic (3E) Assessment
Authors: Daniela Zalazar-Garcia, Erick Torres, German Mazza
Abstract:
Slow pyrolysis of a pellet of pistachio waste was studied using a lab-scale stainless-steel reactor. Experiments were conducted at different heating rates (5, 10, and 15 K/min). A 3-E (environmental, exergetic, and energetic) analysis for the processing of 20 kg/h of bio-waste was carried out. Experimental results showed that biochar and gas yields decreased with an increase in the heating rate (43 to 36 % and 28 to 24 %, respectively), while the bio-oil yield increased (29 to 40 %). Finally, from the 3-E analysis and the experimental results, it can be suggested that an increase in the heating rate resulted in a higher pyrolysis exergetic efficiency (70 %) due to an increase of the bio-oil yield with high-energy content.Keywords: 3E assessment, bio-waste pellet, life cycle assessment, slow pyrolysis
Procedia PDF Downloads 22323721 Waterproofing Agent in Concrete for Tensile Improvement
Authors: Muhamad Azani Yahya, Umi Nadiah Nor Ali, Mohammed Alias Yusof, Norazman Mohamad Nor, Vikneswaran Munikanan
Abstract:
In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost.Keywords: high tensile concrete, waterproofing agent, concrete, rheology
Procedia PDF Downloads 33023720 Production of Recombinant VP2 Protein of Canine Parvovirus 2a Using Baculovirus Expression System
Authors: Soo Dong Cho, In-Ohk Ouh, Byeong Sul Kang, Seyeon Park, In-Soo Cho, Jae Young Song
Abstract:
An VP2 gene from the current prevalent CPV (Canine Parvovirus) strain (new CPV-2a) in the Republic of Korea was expressed in a baculovirus expression system. Genomic DNA was extracted from the isolate strain CPV-2a. The recombinant baculovirus, containing the coding sequences of VP2 with the histidine tag at the N-terminus, were generated by using the Bac-to-Bac system. For production of the recombinant VP2 proteins, SF9 cells were transfection into 6 wells. Propagation of recombinant baculoviruses and expression of the VP2 protein were performed in the Sf9 cell line maintained. The proteins were detected to Western blot anlaysis. CPV-2a VP2 was detected by Western blotting the monoclonal antibodies recognized 6x His and the band had a molecular weight of 65 KDa. We demonstrated that recombinant CPV-2a VP2 expression in baculovirus. The recombinant CPV-2a VP2 may able to development of specific diagnostic test and vaccination of against CPV2. This study provides a foundation for application of CPV2 on the development of new CPV2 subunit vaccine.Keywords: baculovirus, canine parvovirus 2a, Dog, Korea
Procedia PDF Downloads 24623719 Health Literacy for Self-Care by Female Patients Diagnosed with Diabetes at a Selected Hospital in Limpopo Province of South Africa
Authors: Nditsheni Ramakuela, Sonto Maputle, Base Khoza, Augustine Tugli
Abstract:
Inadequate health literacy can cause difficulties in understanding and compliance to treatment plan. With diabetic condition, self-care activities include behaviours of following a diet plan, avoiding high fat foods, increased exercise, self-glucose monitoring, and foot care. Patients with poor health literacy have difficulty interpreting medication warning labels, following directions on a prescription label and identifying their medications. Difficulties in understanding and performing self-care and health-related activities may ultimately lead to poor health outcomes. The study explored and described factors affecting health literacy and self-care to diabetic regimen by female patients at selected hospital in Limpopo Province of South Africa. Qualitative and explorative research design was used. Female patients who were admitted and diagnosed with diabetes in female medical ward constituted the study population. Non-probability, purposive sampling was used to select 20 female patients diagnosed with diabetes, who were above 18 years and admitted during April–November 2014. An in-depth face-to-face, unstructured interview was used to collect data. Data were analysed using open coding method. Measures to ensure trustworthiness and ethical considerations were adhered to. Findings revealed factors affecting health literacy for diabetic self-care activities amongst patients were; patient, family, disease and facility related. Proposed recommendations were; to strengthen diabetes education and patient-provider partnership. This is important and must be transferred to strengthen self-care activities to fully benefit the patient.Keywords: compliance, diabetes mellitus, diabetic regimen, health literacy, self activities
Procedia PDF Downloads 29123718 Pyrroloquinoline Quinone Enhances the Mitochondrial Function by Increasing Beta-Oxidation and a Balanced Mitochondrial Recycling in Mice Granulosa Cells
Authors: Moustafa Elhamouly, Masayuki Shimada
Abstract:
The production of competent oocytes is essential for reproductivity in mammals. Maintenance of mitochondrial efficiency is required to supply the ATP necessary for granulosa cell proliferation during the follicular development process. Treatment with Pyrroloquinoline quinone (PQQ) has been reported to increase the number of ovulated oocytes and pups per delivery in mice by maintaining healthy mitochondrial function. This study aimed to elucidate how PQQ maintains mitochondrial function during ovarian follicle growth. To do this, both in vitro and in vivo experiments were performed with granulosa cells from superovulated immature (3-week-old) mice that were pretreated with or without PQQ. The effects of PQQ on beta-oxidation, mitochondrial function, mitophagy, and mitochondrial biogenesis were examined. PQQ increased beta-oxidation-related genes and CPT1 protein content in granulosa cells and this was associated with a decreased phosphorylation of P38 signaling protein. Using the fatty acid oxidation assay on the flux analyzer, PQQ increased the reliance of beta-oxidation on the endogenous fatty acids and was associated with a mild UCP-dependant mitochondrial uncoupling, ATP production, mitophagy, and mitochondrial biogenesis. PQQ also increased the expression of endogenous antioxidant enzymes. Thus, PQQ induced beta-oxidation in growing granulosa cells relying on endogenous fatty acids. And reduced the Reactive oxygen species (ROS) production by inducing a mild mitochondrial uncoupling with keeping high mitochondrial function. Damaged mitochondria were recycled by the induced mitophagy and replaced by the increased mitochondrial biogenesis. Collectively, PQQ may enhance reproductivity by maintaining the efficiency of mitochondria to produce enough ATP required for normal folliculogenesis.Keywords: granulosa cells, mitochondrial uncoupling, mitophagy, pyrroloquinoline quinone (PQQ), reactive oxygen species (ROS).
Procedia PDF Downloads 8523717 Effectiveness Evaluation of a Machine Design Process Based on the Computation of the Specific Output
Authors: Barenten Suciu
Abstract:
In this paper, effectiveness of a machine design process is evaluated on the basis of the specific output calculus. Concretely, a screw-worm gear mechanical transmission is designed by using the classical and the 3D-CAD methods. Strength analysis and drawing of the designed parts is substantially aided by employing the SolidWorks software. Quality of the design process is assessed by manufacturing (printing) the parts, and by computing the efficiency, specific load, as well as the specific output (work) of the mechanical transmission. Influence of the stroke, travelling velocity and load on the mechanical output, is emphasized. Optimal design of the mechanical transmission becomes possible by the appropriate usage of the acquired results.Keywords: mechanical transmission, design, screw, worm-gear, efficiency, specific output, 3D-printing
Procedia PDF Downloads 14523716 Space Vector Pulse Width Modulation Based Design and Simulation of a Three-Phase Voltage Source Converter Systems
Authors: Farhan Beg
Abstract:
A space vector based pulse width modulation control technique for the three-phase PWM converter is proposed in this paper. The proposed control scheme is based on a synchronous reference frame model. High performance and efficiency is obtained with regards to the DC bus voltage and the power factor considerations of the PWM rectifier thus leading to low losses. MATLAB/SIMULINK are used as a platform for the simulations and a SIMULINK model is presented in the paper. The results show that the proposed model demonstrates better performance and properties compared to the traditional SPWM method and the method improves the dynamic performance of the closed loop drastically. For the space vector based pulse width modulation, sine signal is the reference waveform and triangle waveform is the carrier waveform. When the value of sine signal is larger than triangle signal, the pulse will start producing to high; and then when the triangular signals higher than sine signal, the pulse will come to low. SPWM output will change by changing the value of the modulation index and frequency used in this system to produce more pulse width. When more pulse width is produced, the output voltage will have lower harmonics contents and the resolution will increase.Keywords: power factor, SVPWM, PWM rectifier, SPWM
Procedia PDF Downloads 33723715 Development of Composition and Technology of Vincristine Nanoparticles Using High-Molecular Carbohydrates of Plant Origin
Authors: L. Ebralidze, A. Tsertsvadze, D. Berashvili, A. Bakuridze
Abstract:
Current cancer therapy strategies are based on surgery, radiotherapy and chemotherapy. The problems associated with chemotherapy are one of the biggest challenges for clinical medicine. These include: low specificity, broad spectrum of side effects, toxicity and development of cellular resistance. Therefore, anti-cance drugs need to be develop urgently. Particularly, in order to increase efficiency of anti-cancer drugs and reduce their side effects, scientists work on formulation of nano-drugs. The objective of this study was to develop composition and technology of vincristine nanoparticles using high-molecular carbohydrates of plant origin. Plant polysacharides, particularly, soy bean seed polysaccharides, flaxseed polysaccharides, citrus pectin, gum arabic, sodium alginate were used as objects. Based on biopharmaceutical research, vincristine containing nanoparticle formulations were prepared. High-energy emulsification and solvent evaporation methods were used for preparation of nanosystems. Polysorbat 80, polysorbat 60, sodium dodecyl sulfate, glycerol, polyvinyl alcohol were used in formulation as emulsifying agent and stabilizer of the system. The ratio of API and polysacharides, also the type of the stabilizing and emulsifying agents are very effective on the particle size of the final product. The influence of preparation technology, type and concentration of stabilizing agents on the properties of nanoparticles were evaluated. For the next stage of research, nanosystems were characterized. Physiochemical characterization of nanoparticles: their size, shape, distribution was performed using Atomic force microscope and Scanning electron microscope. The present study explored the possibility of production of NPs using plant polysaccharides. Optimal ratio of active pharmaceutical ingredient and plant polysacharids, the best stabilizer and emulsifying agent was determined. The average range of nanoparticles size and shape was visualized by SEM.Keywords: nanoparticles, target delivery, natural high molecule carbohydrates, surfactants
Procedia PDF Downloads 27223714 Ranking All of the Efficient DMUs in DEA
Authors: Elahe Sarfi, Esmat Noroozi, Farhad Hosseinzadeh Lotfi
Abstract:
One of the important issues in Data Envelopment Analysis is the ranking of Decision Making Units. In this paper, a method for ranking DMUs is presented through which the weights related to efficient units should be chosen in a way that the other units preserve a certain percentage of their efficiency with the mentioned weights. To this end, a model is presented for ranking DMUs on the base of their superefficiency by considering the mentioned restrictions related to weights. This percentage can be determined by decision Maker. If the specific percentage is unsuitable, we can find a suitable and feasible one for ranking DMUs accordingly. Furthermore, the presented model is capable of ranking all of the efficient units including nonextreme efficient ones. Finally, the presented models are utilized for two sets of data and related results are reported.Keywords: data envelopment analysis, efficiency, ranking, weight
Procedia PDF Downloads 46023713 Modeling and Temperature Control of Water-cooled PEMFC System Using Intelligent Algorithm
Authors: Chen Jun-Hong, He Pu, Tao Wen-Quan
Abstract:
Proton exchange membrane fuel cell (PEMFC) is the most promising future energy source owing to its low operating temperature, high energy efficiency, high power density, and environmental friendliness. In this paper, a comprehensive PEMFC system control-oriented model is developed in the Matlab/Simulink environment, which includes the hydrogen supply subsystem, air supply subsystem, and thermal management subsystem. Besides, Improved Artificial Bee Colony (IABC) is used in the parameter identification of PEMFC semi-empirical equations, making the maximum relative error between simulation data and the experimental data less than 0.4%. Operation temperature is essential for PEMFC, both high and low temperatures are disadvantageous. In the thermal management subsystem, water pump and fan are both controlled with the PID controller to maintain the appreciate operation temperature of PEMFC for the requirements of safe and efficient operation. To improve the control effect further, fuzzy control is introduced to optimize the PID controller of the pump, and the Radial Basis Function (RBF) neural network is introduced to optimize the PID controller of the fan. The results demonstrate that Fuzzy-PID and RBF-PID can achieve a better control effect with 22.66% decrease in Integral Absolute Error Criterion (IAE) of T_st (Temperature of PEMFC) and 77.56% decrease in IAE of T_in (Temperature of inlet cooling water) compared with traditional PID. In the end, a novel thermal management structure is proposed, which uses the cooling air passing through the main radiator to continue cooling the secondary radiator. In this thermal management structure, the parasitic power dissipation can be reduced by 69.94%, and the control effect can be improved with a 52.88% decrease in IAE of T_in under the same controller.Keywords: PEMFC system, parameter identification, temperature control, Fuzzy-PID, RBF-PID, parasitic power
Procedia PDF Downloads 9023712 On Exploring Search Heuristics for improving the efficiency in Web Information Extraction
Authors: Patricia Jiménez, Rafael Corchuelo
Abstract:
Nowadays the World Wide Web is the most popular source of information that relies on billions of on-line documents. Web mining is used to crawl through these documents, collect the information of interest and process it by applying data mining tools in order to use the gathered information in the best interest of a business, what enables companies to promote theirs. Unfortunately, it is not easy to extract the information a web site provides automatically when it lacks an API that allows to transform the user-friendly data provided in web documents into a structured format that is machine-readable. Rule-based information extractors are the tools intended to extract the information of interest automatically and offer it in a structured format that allow mining tools to process it. However, the performance of an information extractor strongly depends on the search heuristic employed since bad choices regarding how to learn a rule may easily result in loss of effectiveness and/or efficiency. Improving search heuristics regarding efficiency is of uttermost importance in the field of Web Information Extraction since typical datasets are very large. In this paper, we employ an information extractor based on a classical top-down algorithm that uses the so-called Information Gain heuristic introduced by Quinlan and Cameron-Jones. Unfortunately, the Information Gain relies on some well-known problems so we analyse an intuitive alternative, Termini, that is clearly more efficient; we also analyse other proposals in the literature and conclude that none of them outperforms the previous alternative.Keywords: information extraction, search heuristics, semi-structured documents, web mining.
Procedia PDF Downloads 34123711 Removal of Protein from Chromium Tanning Bath by Biological Treatment Using Pseudomonas sp.
Authors: Amel Benhadji, Mourad Taleb Ahmed, Rachida Maachi
Abstract:
The challenge for the new millennium is to develop an industrial system that has minimal socio-ecological impacts, without compromising quality of life. Leather industry is one of these industries demanding environmentally friendly products. In this study, we investigated the possibility of applying innovative low cost biological treatment using Pseudomonas aeruginosa. This strain tested the efficiency of the batch biological treatment in the recovery of protein and hexavalent chromium from chromium tanning bath. We have compared suspended and fixed bacteria culture. The results showed the removal of the total protein of treatment and a decrease of hexavalent chromium concentration is during the treatment. The better efficiency of the biological treatment is obtained when using fixed culture of P. aeruginosa.Keywords: tanning wastewater, biological treatment, protein removal, hexavalent chromium
Procedia PDF Downloads 369