Search results for: groundwater pollution
234 Impact of Urban Densification on Travel Behaviour: Case of Surat and Udaipur, India
Authors: Darshini Mahadevia, Kanika Gounder, Saumya Lathia
Abstract:
Cities, an outcome of natural growth and migration, are ever-expanding due to urban sprawl. In the Global South, urban areas are experiencing a switch from public transport to private vehicles, coupled with intensified urban agglomeration, leading to frequent longer commutes by automobiles. This increase in travel distance and motorized vehicle kilometres lead to unsustainable cities. To achieve the nationally pledged GHG emission mitigation goal, the government is prioritizing a modal shift to low-carbon transport modes like mass transit and paratransit. Mixed land-use and urban densification are crucial for the economic viability of these projects. Informed by desktop assessment of mobility plans and in-person primary surveys, the paper explores the challenges around urban densification and travel patterns in two Indian cities of contrasting nature- Surat, a metropolitan industrial city with a 5.9 million population and a very compact urban form, and Udaipur, a heritage city attracting large international tourists’ footfall, with limited scope for further densification. Dense, mixed-use urban areas often improve access to basic services and economic opportunities by reducing distances and enabling people who don't own personal vehicles to reach them on foot/ cycle. But residents travelling on different modes end up contributing to similar trip lengths, highlighting the non-uniform distribution of land-uses and lack of planned transport infrastructure in the city and the urban-peri urban networks. Additionally, it is imperative to manage these densities to reduce negative externalities like congestion, air/noise pollution, lack of public spaces, loss of livelihood, etc. The study presents a comparison of the relationship between transport systems with the built form in both cities. The paper concludes with recommendations for managing densities in urban areas along with promoting low-carbon transport choices like improved non-motorized transport and public transport infrastructure and minimizing personal vehicle usage in the Global South.Keywords: India, low-carbon transport, travel behaviour, trip length, urban densification
Procedia PDF Downloads 217233 Inhibitory Action of Fatty Acid Salts against Cladosporium cladosporioides and Dermatophagoides farinae
Authors: Yui Okuno, Mariko Era, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita
Abstract:
Introduction: Fungus and mite are known as allergens that cause an allergic disease for example asthma bronchiale and allergic rhinitis. Cladosporium cladosporioides is one of the most often detected fungi in the indoor environment and causes pollution and deterioration. Dermatophagoides farinae is major mite allergens indoors. Therefore, the creation of antifungal agents with high safety and the antifungal effect is required. Fatty acid salts are known that have antibacterial activities. This report describes the effects of fatty acid salts against Cladosporium cladosporioides NBRC 30314 and Dermatophagoides farinae. Methods: Potassium salts of 9 fatty acids (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:1, C18:2, C18:3) were prepared by mixing the fatty acid with the appropriate amount of KOH solution to a concentration of 175 mM and pH 10.5. The antifungal method, the spore suspension (3.0×104 spores/mL) was mixed with a sample of fatty acid potassium (final concentration of 175 mM). Samples were counted at 0, 10, 60, 180 min by plating (100 µL) on PDA. Fungal colonies were counted after incubation for 3 days at 30 °C. The MIC (minimum inhibitory concentration) against the fungi was determined by the two-fold dilution method. Each fatty acid salts were inoculated separately with 400 µL of C. cladosporioides at 3.0 × 104 spores/mL. The mixtures were incubated at the respective temperature for each organism for 10 min. The tubes were then contacted with the fungi incubated at 30 °C for 7 days and examined for growth of spores on PDA. The acaricidal method, twenty D. farinae adult females were used and each adult was covered completely with 2 µL fatty acid potassium for 1 min. The adults were then dried with filter paper. The filter paper was folded and fixed by two clips and kept at 25 °C and 64 % RH. Mortalities were determained 48 h after treatment under the microscope. D. farina was considered to be dead if appendages did not move when prodded with a pin. Results and Conclusions: The results show that C8K, C10K, C12K, C14K was effective to decrease survival rate (4 log unit) of the fatty acids potassium incubated time for 10 min against C. cladosporioides. C18:3K was effective to decrease 4 log unit of the fatty acids potassium incubated time for 60 min. Especially, C12K was the highest antifungal activity and the MIC of C12K was 0.7 mM. On the other hand, the fatty acids potassium showed no acaricidal effects against D. farinae. The activity of D. farinae was not adversely affected after 48 hours. These results indicate that C12K has high antifungal activity against C. cladosporioides and suggest the fatty acid potassium will be used as an antifungal agent.Keywords: fatty acid salts, antifungal effects, acaricidal effects, Cladosporium cladosporioides, Dermatophagoides farinae
Procedia PDF Downloads 273232 Switching of Series-Parallel Connected Modules in an Array for Partially Shaded Conditions in a Pollution Intensive Area Using High Powered MOSFETs
Authors: Osamede Asowata, Christo Pienaar, Johan Bekker
Abstract:
Photovoltaic (PV) modules may become a trend for future PV systems because of their greater flexibility in distributed system expansion, easier installation due to their nature, and higher system-level energy harnessing capabilities under shaded or PV manufacturing mismatch conditions. This is as compared to the single or multi-string inverters. Novel residential scale PV arrays are commonly connected to the grid by a single DC–AC inverter connected to a series, parallel or series-parallel string of PV panels, or many small DC–AC inverters which connect one or two panels directly to the AC grid. With an increasing worldwide interest in sustainable energy production and use, there is renewed focus on the power electronic converter interface for DC energy sources. Three specific examples of such DC energy sources that will have a role in distributed generation and sustainable energy systems are the photovoltaic (PV) panel, the fuel cell stack, and batteries of various chemistries. A high-efficiency inverter using Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs) for all active switches is presented for a non-isolated photovoltaic and AC-module applications. The proposed configuration features a high efficiency over a wide load range, low ground leakage current and low-output AC-current distortion with no need for split capacitors. The detailed power stage operating principles, pulse width modulation scheme, multilevel bootstrap power supply, and integrated gate drivers for the proposed inverter is described. Experimental results of a hardware prototype, show that not only are MOSFET efficient in the system, it also shows that the ground leakage current issues are alleviated in the proposed inverter and also a 98 % maximum associated driver circuit is achieved. This, in turn, provides the need for a possible photovoltaic panel switching technique. This will help to reduce the effect of cloud movements as well as improve the overall efficiency of the system.Keywords: grid connected photovoltaic (PV), Matlab efficiency simulation, maximum power point tracking (MPPT), module integrated converters (MICs), multilevel converter, series connected converter
Procedia PDF Downloads 127231 Urban Compactness and Sustainability: Beijing Experience
Authors: Xilu Liu, Ameen Farooq
Abstract:
Beijing has several compact residential housing settings in many of its urban districts. The study in this paper reveals that urban compactness, as predictor of density, may carry an altogether different meaning in the developing world when compared to the U.S for achieving objectives of urban sustainability. Recent urban design studies in the U.S are debating for compact and mixed-use higher density housing to achieve sustainable and energy efficient living environments. While the concept of urban compactness is widely accepted as an approach in modern architectural and urban design fields, this belief may not directly carry well into all areas within cities of developing countries. Beijing’s technology-driven economy, with its historic and rich cultural heritage and a highly speculated real-estate market, extends its urban boundaries into multiple compact urban settings of varying scales and densities. The accelerated pace of migration from the countryside for better opportunities has led to unsustainable and uncontrolled buildups in order to meet the growing population demand within and outside of the urban center. This unwarranted compactness in certain urban zones has produced an unhealthy physical density with serious environmental and ecological challenging basic living conditions. In addition, crowding, traffic congestion, pollution and limited housing surrounding this compactness is a threat to public health. Several residential blocks in close proximity to each other were found quite compacted, or ill-planned, with residential sites due to lack of proper planning in Beijing. Most of them at first sight appear to be compact and dense but further analytical studies revealed that what appear to be dense actually are not as dense as to make a good case that could serve as the corner stone of sustainability and energy efficiency. This study considered several factors including floor area ratio (FAR), ground coverage (GSI), open space ratio (OSR) as indicators in analyzing urban compactness as a predictor of density. The findings suggest that these measures, influencing the density of residential sites under study, were much smaller in density than expected given their compact adjacencies. Further analysis revealed that several residential housing appear to support the notion of density in its compact layout but are actually compacted due to unregulated planning marred by lack of proper urban design standards, policies and guidelines specific to their urban context and condition.Keywords: Beijing, density, sustainability, urban compactness
Procedia PDF Downloads 424230 Conflict around the Brownfield Reconversion of the Canadian Forces Base Rockcliffe in Ottawa: A Clash of Ambitions and Visions in Canadian Urban Sustainability
Authors: Kenza Benali
Abstract:
Over the past decade, a number of remarkable projects in urban brownfield reconversion emerged across Canada, including the reconversion of former military bases owned by the Canada Lands Company (CLC) into sustainable communities. However, unlike other developments, the regeneration project of the former Canadian Forces Base Rockcliffe in Ottawa – which was announced as one of the most ambitious Smart growth projects in Canada – faced serious obstacles in terms of social acceptance by the local community, particularly urban minorities composed of Francophones, Indigenous and vulnerable groups who live near or on the Base. This turn of events led to the project being postponed and even reconsidered. Through an analysis of its press coverage, this research aims to understand the causes of this urban conflict which lasted for nearly ten years. The findings reveal that the conflict is not limited to the “standard” issues common to most conflicts related to urban mega-projects in the world – e.g., proximity issues (threads to the quality of the surrounding neighbourhoods; noise, traffic, pollution, New-build gentrification) often associated with NIMBY phenomena. In this case, the local actors questioned the purpose of the project (for whom and for what types of uses is it conceived?), its local implementation (to what extent are the local history and existing environment taken into account?), and the degree of implication of the local population in the decision-making process (with whom is the project built?). Moreover, the interests of the local actors have “jumped scales” and transcend the micro-territorial level of their daily life to take on a national and even international dimension. They defined an alternative view of how this project, considered strategic by his location in the nation’s capital, should be a reference as well as an international showcase of Canadian ambition and achievement in terms of urban sustainability. This vision promoted, actually, a territorial and national identity approach - in which some cultural values are highly significant (respect of social justice, inclusivity, ethnical diversity, cultural heritage, etc.)- as a counterweight to planners’ vision which is criticized as a normative/ universalist logic that ignore the territorial peculiarities.Keywords: smart growth, brownfield reconversion, sustainable neighborhoods, Canada Lands Company, Canadian Forces Base Rockcliffe, urban conflicts
Procedia PDF Downloads 382229 Identifying the Determinants of Compliance with Maritime Environmental Legislation in the North and Baltic Sea Area: A Model Developed from Exploratory Qualitative Data Collection
Authors: Thea Freese, Michael Gille, Andrew Hursthouse, John Struthers
Abstract:
Ship operators on the North and Baltic Sea have been experiencing increased political interest in marine environmental protection and cleaner vessel operations. Stricter legislation on SO2 and NOx emissions, ballast water management and other measures of protection are currently being phased in or will come into force in the coming years. These measures benefit the health of the marine environment, while increasing company’s operational costs. In times of excess shipping capacity and linked consolidation in the industry non-compliance with environmental rules is one way companies might hope to stay competitive with both intra- and inter-modal trade. Around 5-15% of industry participants are believed to neglect laws on vessel-source pollution willingly or unwillingly. Exploratory in-depth interviews conducted with 12 experts from various stakeholder groups informed the researchers about variables influencing compliance levels, including awareness and apprehension, willingness to comply, ability to comply and effectiveness of controls. Semi-structured expert interviews were evaluated using qualitative content analysis. A model of determinants of compliance was developed and is presented here. While most vessel operators endeavour to achieve full compliance with environmental rules, a lack of availability of technical solutions, expediency of implementation and operation and economic feasibility might prove a hindrance. Ineffective control systems on the other hand foster willing non-compliance. With respect to motivations, lacking time, lacking financials and the absence of commercial advantages decrease compliance levels. These and other variables were inductively developed from qualitative data and integrated into a model on environmental compliance. The outcomes presented here form part of a wider research project on economic effects of maritime environmental legislation. Research on determinants of compliance might inform policy-makers about actual behavioural effects of shipping companies and might further the development of a comprehensive legal system for environmental protection.Keywords: compliance, marine environmental protection, exploratory qualitative research study, clean vessel operations, North and Baltic Sea area
Procedia PDF Downloads 383228 Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts
Authors: Yawen Dai, Ping Cheng, Jian Ru Gong
Abstract:
Photoelctrochemical (PEC) water splitting using semiconductors (SCs) provides a convenient way to convert sustainable but intermittent solar energy into clean hydrogen energy, and it has been regarded as one of most promising technology to solve the energy crisis and environmental pollution in modern society. However, the record energy conversion efficiency of a PEC cell (~3%) is still far lower than the commercialization requirement (~10%). The sluggish kinetics of oxygen evolution reaction (OER) half reaction on photoanodes is a significant limiting factor of the PEC device efficiency, and electrocatalysts (ECs) are always deposited on SCs to accelerate the hole injection for OER. However, an active EC cannot guarantee enhanced PEC performance, since the newly emerged SC-EC interface complicates the interfacial charge behavior. Herein, α-Fe2O3 photoanodes coated with Co3O4 and CoO ECs are taken as the model system to glean fundamental understanding on the EC-dependent interfacial charge behavior. Intensity modulated photocurrent spectroscopy and electrochemical impedance spectroscopy were used to investigate the competition between interfacial charge transfer and recombination, which was found to be dominated by the charge storage capacities of ECs. The combined results indicate that both ECs can store holes and increase the hole density on photoanode surface. It is like a double-edged sword that benefit the multi-hole participated OER, as well as aggravate the SC-EC interfacial charge recombination due to the Coulomb attraction, thus leading to a nonmonotonic PEC performance variation trend with the increasing surface hole density. Co3O4 has low hole storage capacity which brings limited interfacial charge recombination, and thus the increased surface holes can be efficiently utilized for OER to generate enhanced photocurrent. In contrast, CoO has overlarge hole storage capacity that causes severe interfacial charge recombination, which hinders hole transfer to electrolyte for OER. Therefore, the PEC performance of α-Fe2O3 is improved by Co3O4 but decreased by CoO despite the similar electrocatalytic activity of the two ECs. First-principle calculation was conducted to further reveal how the charge storage capacity depends on the EC’s intrinsic property, demonstrating that the larger hole storage capacity of CoO than that of Co3O4 is determined by their Co valence states and original Fermi levels. This study raises up a new strategy to manipulate interfacial charge behavior and the resultant PEC performance by the charge storage capacity of ECs, providing insightful guidance for the interface design in PEC devices.Keywords: charge storage capacity, electrocatalyst, interfacial charge behavior, photoelectrochemistry, water-splitting
Procedia PDF Downloads 141227 Sertraline Chronic Exposure: Impact on Reproduction and Behavior on the Key Benthic Invertebrate Capitella teleta
Authors: Martina Santobuono, Wing Sze Chan, Elettra D'Amico, Henriette Selck
Abstract:
Chemicals in modern society are fundamental in many different aspects of daily human life. We use a wide range of substances, including polychlorinated compounds, pesticides, plasticizers, and pharmaceuticals, to name a few. These compounds are excessively produced, and this has led to their introduction to the environment and food resources. Municipal and industrial effluents, landfills, and agricultural runoffs are a few examples of sources of chemical pollution. Many of these compounds, such as pharmaceuticals, have been proven to mimic or alter the performance of the hormone system, thus disrupting its normal function and altering the behavior and reproductive capability of non-target organisms. Antidepressants are pharmaceuticals commonly detected in the environment, usually in the range of ng L⁻¹ and µg L⁻¹. Since they are designed to have a biological effect at low concentrations, they might pose a risk to the native species, especially if exposure lasts for long periods. Hydrophobic antidepressants, like the selective serotonin reuptake inhibitor (SSRI) Sertraline, can sorb to the particles in the water column and eventually accumulate in the sediment compartment. Thus, deposit-feeding organisms may be at particular risk of exposure. The polychaete Capitella teleta is widespread in estuarine organically enriched sediments, being a key deposit-feeder involved in geochemistry processes happening in sediments. Since antidepressants are neurotoxic chemicals and endocrine disruptors, the aim of this work was to test if sediment-associated Sertraline impacts burrowing- and feeding behavior as well as reproduction capability in Capitella teleta in a chronic exposure set-up, which could better mimic what happens in the environment. 7 days old juveniles were selected and exposed to different concentrations of Sertraline for an entire generation until the mature stage was reached. This work was able to show that some concentrations of Sertraline altered growth and the time of first reproduction in Capitella teleta juveniles, potentially disrupting the population’s capability of survival. Acknowledgments: This Ph.D. position is part of the CHRONIC project “Chronic exposure scenarios driving environmental risks of Chemicals”, which is an Innovative Training Network (ITN) funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Actions (MSCA).Keywords: antidepressants, Capitella teleta, chronic exposure, endocrine disruption, sublethal endpoints, neurotoxicity
Procedia PDF Downloads 95226 Soil Quality Response to Long-Term Intensive Resources Management and Soil Texture
Authors: Dalia Feiziene, Virginijus Feiza, Agne Putramentaite, Jonas Volungevicius, Kristina Amaleviciute, Sarunas Antanaitis
Abstract:
The investigations on soil conservation are one of the most important topics in modern agronomy. Soil management practices have great influence on soil physico-chemical quality and GHG emission. Research objective: To reveal the sensitivity and vitality of soils with different texture to long-term antropogenisation on Cambisol in Central Lithuania and to compare them with not antropogenised soil resources. Methods: Two long-term field experiments (loam on loam; sandy loam on loam) with different management intensity were estimated. Disturbed and undisturbed soil samples were collected from 5-10, 15-20 and 30-35 cm depths. Soil available P and K contents were determined by ammonium lactate extraction, total N by the dry combustion method, SOC content by Tyurin titrimetric (classical) method, texture by pipette method. In undisturbed core samples soil pore volume distribution, plant available water (PAW) content were determined. A closed chamber method was applied to quantify soil respiration (SR). Results: Long-term resources management changed soil quality. In soil with loam texture, within 0-10, 10-20 and 30-35 cm soil layers, significantly higher PAW, SOC and mesoporosity (MsP) were under no-tillage (NT) than under conventional tillage (CT). However, total porosity (TP) under NT was significantly higher only in 0-10 cm layer. MsP acted as dominant factor for N, P and K accumulation in adequate layers. P content in all soil layers was higher under NT than in CT. N and K contents were significantly higher than under CT only in 0-10 cm layer. In soil with sandy loam texture, significant increase in SOC, PAW, MsP, N, P and K under NT was only in 0-10 cm layer. TP under NT was significantly lower in all layers. PAW acted as strong dominant factor for N, P, K accumulation. The higher PAW the higher NPK contents were determined. NT did not secure chemical quality within deeper layers than CT. Long-term application of mineral fertilisers significantly increased SOC and soil NPK contents primarily in top-soil. Enlarged fertilization determined the significantly higher leaching of nutrients to deeper soil layers (CT) and increased hazards of top-soil pollution. Straw returning significantly increased SOC and NPK accumulation in top-soil. The SR on sandy loam was significantly higher than on loam. At dry weather conditions, on loam SR was higher in NT than in CT, on sandy loam SR was higher in CT than in NT. NPK fertilizers promoted significantly higher SR in both dry and wet year, but suppressed SR on sandy loam during usual year. Not antropogenised soil had similar SOC and NPK distribution within 0-35 cm layer and depended on genesis of soil profile horizons.Keywords: fertilizers, long-term experiments, soil texture, soil tillage, straw
Procedia PDF Downloads 299225 An Analysis of Insulation Defects in TRNC: The Case of Toros Dormitory of Eastern Mediterranean University
Authors: Arash Imani Fooladi
Abstract:
In recent years, with the growing population and decrease in the amount of non-renewable energy supplies, which is caused by the uncontrolled energy use, the world witnesses air pollution and destruction of the natural resources. Most of the buildings which are constructed in order to inhabit this great amount of population have minimum facilities. With the passing time researchers began to feel anxious about increase in the amount of energy which people are continuously using and they tried to find some ways to solve it. One of the methods, which human being has used all during the history, was considering the orientation, size, form and shape of the building during design process and trying to take advantage of the methods which his ancestors used in order to make buildings thermally comfortable. In the last forty years with the development of building materials a new way of conserving energy, called insulation, was invented. In North Cyprus, with its adverse weather condition (hot and dry summers and rainy winters) no method was used to make buildings thermally comfortable. This fact leads to wasting a noticeable amount of energy for heating and cooling the buildings. The main aim of this article is to evaluate the defects of insulation in North Cyprus and to introduce some suggestions to improve the current defects of insulation. Therefore, this paper focuses on the Toros dormitory and the construction firms in TRNC. Toros Dormitory is situated in North Cyprus and it is one of the dormitories of Eastern Mediterranean University. Lots of problems are observed with its insulation. Forty students who inhabit in this dormitory are selected randomly in order to study these defects. Close ended questionnaires are used to find out the level of satisfaction of these students on the subject. Furthermore, eight constructors in North Cyprus are selected to study their level of satisfaction, the most important factors for choosing an insulation type and the material they often use as insulation. The results demonstrated that most of the students in the dormitory are not satisfied with the thermal conditions. Constructors are also unsatisfied with the insulating conditions in TRNC. They claimed that polystyrene which is commonly used is not the proper material for insulation in this area. Finally ICF system is evaluated, it is a new system of construction which also works as an insulation and recently it is being used all over the world. The material is suggested as a proper insulation type for North Cyprus.Keywords: thermal comfort, insulation, building envelop, hot and humid climate, ICF system
Procedia PDF Downloads 343224 Analysis of Ozone Episodes in the Forest and Vegetation Areas with Using HYSPLIT Model: A Case Study of the North-West Side of Biga Peninsula, Turkey
Authors: Deniz Sari, Selahattin İncecik, Nesimi Ozkurt
Abstract:
Surface ozone, which named as one of the most critical pollutants in the 21th century, threats to human health, forest and vegetation. Specifically, in rural areas surface ozone cause significant influences on agricultural productions and trees. In this study, in order to understand to the surface ozone levels in rural areas we focus on the north-western side of Biga Peninsula which covers by the mountainous and forested area. Ozone concentrations were measured for the first time with passive sampling at 10 sites and two online monitoring stations in this rural area from 2013 and 2015. Using with the daytime hourly O3 measurements during light hours (08:00–20:00) exceeding the threshold of 40 ppb over the 3 months (May, June and July) for agricultural crops, and over the six months (April to September) for forest trees AOT40 (Accumulated hourly O3 concentrations Over a Threshold of 40 ppb) cumulative index was calculated. AOT40 is defined by EU Directive 2008/50/EC to evaluate whether ozone pollution is a risk for vegetation, and is calculated by using hourly ozone concentrations from monitoring systems. In the present study, we performed the trajectory analysis by The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to follow the long-range transport sources contributing to the high ozone levels in the region. The ozone episodes observed between 2013 and 2015 were analysed using the HYSPLIT model developed by the NOAA-ARL. In addition, the cluster analysis is used to identify homogeneous groups of air mass transport patterns can be conducted through air trajectory clustering by grouping similar trajectories in terms of air mass movement. Backward trajectories produced for 3 years by HYSPLIT model were assigned to different clusters according to their moving speed and direction using a k-means clustering algorithm. According to cluster analysis results, northerly flows to study area cause to high ozone levels in the region. The results present that the ozone values in the study area are above the critical levels for forest and vegetation based on EU Directive 2008/50/EC.Keywords: AOT40, Biga Peninsula, HYSPLIT, surface ozone
Procedia PDF Downloads 255223 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction
Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso
Abstract:
The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.Keywords: LiDAR, OBIA, remote sensing, local scale
Procedia PDF Downloads 282222 Equilibrium, Kinetic and Thermodynamic Studies of the Biosorption of Textile Dye (Yellow Bemacid) onto Brahea edulis
Authors: G. Henini, Y. Laidani, F. Souahi, A. Labbaci, S. Hanini
Abstract:
Environmental contamination is a major problem being faced by the society today. Industrial, agricultural, and domestic wastes, due to the rapid development in the technology, are discharged in the several receivers. Generally, this discharge is directed to the nearest water sources such as rivers, lakes, and seas. While the rates of development and waste production are not likely to diminish, efforts to control and dispose of wastes are appropriately rising. Wastewaters from textile industries represent a serious problem all over the world. They contain different types of synthetic dyes which are known to be a major source of environmental pollution in terms of both the volume of dye discharged and the effluent composition. From an environmental point of view, the removal of synthetic dyes is of great concern. Among several chemical and physical methods, adsorption is a promising technique due to the ease of use and low cost compared to other applications in the process of discoloration, especially if the adsorbent is inexpensive and readily available. The focus of the present study was to assess the potentiality of Brahea edulis (BE) for the removal of synthetic dye Yellow bemacid (YB) from aqueous solutions. The results obtained here may transfer to other dyes with a similar chemical structure. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, initial dye concentration, and temperature. The biosorption kinetic data of the material (BE) was tested by the pseudo first-order and the pseudo-second-order kinetic models. Thermodynamic parameters including the Gibbs free energy ΔG, enthalpy ΔH, and entropy ΔS have revealed that the adsorption of YB on the BE is feasible, spontaneous, and endothermic. The equilibrium data were analyzed by using Langmuir, Freundlich, Elovich, and Temkin isotherm models. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g: 12 mg/g; 1.5 g: 47.44 mg/g). The maximum biosorption occurred at around pH value of 2 for the YB. The equilibrium uptake was increased with an increase in the initial dye concentration in solution (Co = 120 mg/l; q = 35.97 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficient (R2 > 0.998) and a maximum monolayer adsorption capacity of 35.97 mg/g for YB.Keywords: adsorption, Brahea edulis, isotherm, yellow Bemacid
Procedia PDF Downloads 177221 Evaluation of Health Services after Emergency Decrees in Turkey
Authors: Sengul Celik, Alper Ketenci
Abstract:
In Turkish Constitution about health care in Article 56, it is said that: everyone has the right to live in a healthy and balanced environment. It is the duty of the state and citizens to improve the environment, protect environmental health, and prevent environmental pollution. The state ensures that everyone lives their lives in physical and mental health; it organizes the planning and service of health institutions from a single source in order to realize cooperation by increasing savings and efficiency in human and substance power. The state fulfills this task by utilizing and supervising health and social institutions in the public and private sectors. General health insurance can be established by law for the widespread delivery of health services. To have health care is one of the basic rights of patients. After the coupe attempt in July 2016, the Government of Turkey has announced a state of emergency and issued lots of emergency decrees. By these emergency decrees, lots of people were dismissed from their jobs and lost their some basic social rights. The violations occur in social life. One of the most common observations is the discrimination by government in health care system. This study aims to put forward the violation of human rights in health care system in Turkey due to their discriminated position by an emergency decree. The study is a case study that is based on nine interviews with the people or relatives of people who lost their jobs by an emergency decree in Turkey. In this study, no personally identifiable information was obtained for the safety of individuals. Also no distinctive questions regarding the identity of individuals were asked. The interviews are obtained through internet call applications. The data were analyzed through the requirements of regular health care system in Turkey. The interviews expose that the people or the relatives of people lost their right to have regular health care. They have to pay extra amount both in clinical services and in medication treatment. The patient right to quality medical care without prejudice is violated. It was assessed that the people who are involved in emergency decree and their relatives are discriminated by government and deprived of regular medical care and supervision. Although international legal arrangements and legal responsibilities of the state have been put forward by Article 56, they are violated in practice. To prevent these kinds of violations, some measures should be taken against the deprivation in health care system especially towards the discriminated people by an emergency decree.Keywords: emergency decree in Turkey, health care, discriminated people, patients rights
Procedia PDF Downloads 109220 Safe Disposal of Processed Industrial Biomass as Alternative Organic Manure in Agriculture
Authors: V. P. Ramani, K. P. Patel, S. B. Patel
Abstract:
It is necessary to dispose of generated industrial wastes in the proper way to overcome the further pollution for a safe environment. Waste can be used in agriculture for good quality higher food production. In order to evaluate the effect and rate of processed industrial biomass on yield, contents, uptake and soil status in maize, a field experiment was conducted during 2009 - 2011 at Anand on loamy sand soil for two years. The treatments of different levels of NPK i.e. 100% RD, 75% RD and 50% RD were kept to study the possibility of reduction in fertilizer application with the use of processed biomass (BM) in different proportion with FYM. (Where, RD= Recommended dose, FYM= Farm Yard Manure, BM= Processed Biomass.) The significantly highest grain yield of maize was recorded under the treatment of 75% NPK + BM application @ 10t ha-1. The higher (10t ha-1) and lower (5t ha-1) application rate of BM with full dose of NPK was found beneficial being at par with the treatment 75% NPK along with BM application @ 10t ha-1. There is saving of 25% recommended dose of NPK when combined with BM application @ 10.0t ha-1 or 50% saving of organics when applied with full dose (100%) of NPK. The highest straw yield (7734 kg ha-1) of maize on pooled basis was observed under the treatment of recommended dose of NPK along with FYM application at 7.5t ha-1 coupled with BM application at 2.5t ha-1. It was also observed that highest straw yield was at par under all the treatments except control and application of 100% recommended dose of NPK coupled with BM application at 7.5t ha-1. The Fe content of maize straw were found altered significantly due to different treatments on pooled basis and it was noticed that biomass application at 7.5t ha-1 along with recommended dose of NPK showed significant enhancement in Fe content of straw over other treatments. Among heavy metals, Co, Pb and Cr contents of grain were found significantly altered due to application of different treatments variably during the pooled. While, Ni content of maize grain was not altered significantly due to application of different organics. However, at higher rate of BM application i.e. of 10t ha-1, there was slight increase in heavy metal content of grain/ straw as well as DTPA heavy metals in soil; although the increase was not alarming Thus, the overall results indicated that the application of BM at 5t ha-1 along with full dose of NPK is beneficial to get higher yield of maize without affecting soil / plant health adversely. It also indicated that the 5t BM ha-1 could be utilized in place of 10t FYM ha-1 where FYM availability is scarce. The 10t BM ha-1 helps to reduce a load of chemical fertilizer up to 25 percent in agriculture. The lower use of agro-chemicals always favors safe environment. However, the continuous use of biomass needs periodical monitoring to check any buildup of heavy metals in soil/ plant over the years.Keywords: alternate use of industrial waste, heavy metals, maize, processed industrial biomass
Procedia PDF Downloads 324219 Immuno-Modulatory Role of Weeds in Feeds of Cyprinus Carpio
Authors: Vipin Kumar Verma, Neeta Sehgal, Om Prakash
Abstract:
Cyprinus carpio has a wide spread occurrence in the lakes and rivers of Europe and Asia. Heavy losses in natural environment due to anthropogenic activities, including pollution as well as pathogenic diseases have landed this fish in IUCN red list of vulnerable species. The significance of a suitable diet in preserving the health status of fish is widely recognized. In present study, artificial feed supplemented with leaves of two weed plants, Eichhornia crassipes and Ricinus communis were evaluated for their role on the fish immune system. To achieve this objective fish were acclimatized to laboratory conditions (25 ± 1 °C; 12 L: 12D) for 10 days prior to start of experiment and divided into 4 groups: non-challenged (negative control= A), challenged [positive control (B) and experimental (C & D)]. Group A, B were fed with non-supplemented feed while group C & D were fed with feed supplemented with 5% Eichhornia crassipes and 5% Ricinus communis respectively. Supplemented feeds were evaluated for their effect on growth, health, immune system and disease resistance in fish when challenged with Vibrio harveyi. Fingerlings of C. carpio (weight, 2.0±0.5 g) were exposed with fresh overnight culture of V. harveyi through bath immunization (concentration 2 Χ 105) for 2 hours on 10 days interval for 40 days. The growth was monitored through increase in their relative weight. The rate of mortality due to bacterial infection as well as due to effect of feed was recorded accordingly. Immune response of fish was analyzed through differential leucocyte count, percentage phagocytosis and phagocytic index. The effect of V. harveyi on fish organs were examined through histo-pathological examination of internal organs like spleen, liver and kidney. The change in the immune response was also observed through gene expression analysis. The antioxidant potential of plant extracts was measured through DPPH and FRAP assay and amount of total phenols and flavonoids were calculates through biochemical analysis. The chemical composition of plant’s methanol extracts was determined by GC-MS analysis, which showed presence of various secondary metabolites and other compounds. Investigation revealed immuno-modulatory effect of plants, when supplemented with the artificial feed of fish.Keywords: immuno-modulation, gc-ms, Cyprinus carpio, Eichhornia crassipes, Ricinus communis
Procedia PDF Downloads 491218 Removal of Chromium by UF5kDa Membrane: Its Characterization, Optimization of Parameters, and Evaluation of Coefficients
Authors: Bharti Verma, Chandrajit Balomajumder
Abstract:
Water pollution is escalated owing to industrialization and random ejection of one or more toxic heavy metal ions from the semiconductor industry, electroplating, metallurgical, mining, chemical manufacturing, tannery industries, etc., In semiconductor industry various kinds of chemicals in wafers preparation are used . Fluoride, toxic solvent, heavy metals, dyes and salts, suspended solids and chelating agents may be found in wastewater effluent of semiconductor manufacturing industry. Also in the chrome plating, in the electroplating industry, the effluent contains heavy amounts of Chromium. Since Cr(VI) is highly toxic, its exposure poses an acute risk of health. Also, its chronic exposure can even lead to mutagenesis and carcinogenesis. On the contrary, Cr (III) which is naturally occurring, is much less toxic than Cr(VI). Discharge limit of hexavalent chromium and trivalent chromium are 0.05 mg/L and 5 mg/L, respectively. There are numerous methods such as adsorption, chemical precipitation, membrane filtration, ion exchange, and electrochemical methods for the heavy metal removal. The present study focuses on the removal of Chromium ions by using flat sheet UF5kDa membrane. The Ultra filtration membrane process is operated above micro filtration membrane process. Thus separation achieved may be influenced due to the effect of Sieving and Donnan effect. Ultrafiltration is a promising method for the rejection of heavy metals like chromium, fluoride, cadmium, nickel, arsenic, etc. from effluent water. Benefits behind ultrafiltration process are that the operation is quite simple, the removal efficiency is high as compared to some other methods of removal and it is reliable. Polyamide membranes have been selected for the present study on rejection of Cr(VI) from feed solution. The objective of the current work is to examine the rejection of Cr(VI) from aqueous feed solutions by flat sheet UF5kDa membranes with different parameters such as pressure, feed concentration and pH of the feed. The experiments revealed that with increasing pressure, the removal efficiency of Cr(VI) is increased. Also, the effect of pH of feed solution, the initial dosage of chromium in the feed solution has been studied. The membrane has been characterized by FTIR, SEM and AFM before and after the run. The mass transfer coefficients have been estimated. Membrane transport parameters have been calculated and have been found to be in a good correlation with the applied model.Keywords: heavy metal removal, membrane process, waste water treatment, ultrafiltration
Procedia PDF Downloads 139217 Analysis of Urban Flooding in Wazirabad Catchment of Kabul City with Help of Geo-SWMM
Authors: Fazli Rahim Shinwari, Ulrich Dittmer
Abstract:
Like many megacities around the world, Kabul is facing severe problems due to the rising frequency of urban flooding. Since 2001, Kabul is experiencing rapid population growth because of the repatriation of refugees and internal migration. Due to unplanned development, green areas inside city and hilly areas within and around the city are converted into new housing towns that had increased runoff. Trenches along the roadside comprise the unplanned drainage network of the city that drains the combined sewer flow. In rainy season overflow occurs, and after streets become dry, the dust particles contaminate the air which is a major cause of air pollution in Kabul city. In this study, a stormwater management model is introduced as a basis for a systematic approach to urban drainage planning in Kabul. For this purpose, Kabul city is delineated into 8 watersheds with the help of one-meter resolution LIDAR DEM. Storm, water management model, is developed for Wazirabad catchment by using available data and literature values. Due to lack of long term metrological data, the model is only run for hourly rainfall data of a rain event that occurred in April 2016. The rain event from 1st to 3rd April with maximum intensity of 3mm/hr caused huge flooding in Wazirabad Catchment of Kabul City. Model-estimated flooding at some points of the catchment as an actual measurement of flooding was not possible; results were compared with information obtained from local people, Kabul Municipality and Capital Region Independent Development Authority. The model helped to identify areas where flooding occurred because of less capacity of drainage system and areas where the main reason for flooding is due to blockage in the drainage canals. The model was used for further analysis to find a sustainable solution to the problem. The option to construct new canals was analyzed, and two new canals were proposed that will reduce the flooding frequency in Wazirabad catchment of Kabul city. By developing the methodology to develop a stormwater management model from digital data and information, the study had fulfilled the primary objective, and similar methodology can be used for other catchments of Kabul city to prepare an emergency and long-term plan for drainage system of Kabul city.Keywords: urban hydrology, storm water management, modeling, SWMM, GEO-SWMM, GIS, identification of flood vulnerable areas, urban flooding analysis, sustainable urban drainage
Procedia PDF Downloads 153216 Understanding the Accumulation of Microplastics in Riverbeds and Soils
Authors: Gopala Krishna Darbha
Abstract:
Microplastics (MPs) are secondary fragments of large-sized plastic debris released into the environment and fall in the size range of less than 5 mm. Though reports indicate the abundance of MPs in both riverine and soil environments, their fate is still not completely understood due to the complexity of natural conditions. Mineral particles are ubiquitous in the rivers and may play a vital role in accumulating MPs to the riverbed, thus affecting the benthic life and posing a threat to the river's health. Apart, the chemistry (pH, ionic strength, humics) at the interface can be very prominent. The MPs can also act as potential vectors to transport other contaminants in the environment causing secondary water pollution. The present study focuses on understanding the interaction of MPs with weathering sequence of minerals (feldspar, kaolinite and gibbsite) under batch mode under relevant environmental and natural conditions. Simultaneously, we performed stability studies and transport (column) experiments to understand the mobility of MPs under varying soil solutions (SS) chemistry and the influence of contaminants (CuO nanoparticles). Results showed that the charge and morphology of the gibbsite played an significant role in sorption of NPs (108.1 mg/g) compared to feldspar (7.7 mg/g) and kaolinite (11.9 mg/g). The Fourier transform infrared spectroscopy data supports the complexation of NPs with gibbsite particles via hydrogen bonding. In case of feldspar and kaolinite, a weak interaction with NPs was observed which can be due to electrostatic repulsions and low surface area to volume ration of the mineral particles. The study highlights the enhanced mobility in presence of feldspar and kaolinite while gibbsite rich zones can cause entrapment of NPs accumulating in the riverbeds. In the case of soils, in the absence of MPs, a very high aggregation of CuO NPs observed in SS extracted from black, lateritic, and red soils, which can be correlated with ionic strength (IS) and type of ionic species. The sedimentation rate (Ksed(1/h)) for CuO NPs was >0.5 h−1 in the case of these SS. Interestingly, the stability and sedimentation behavior of CuO NPs varied significantly in the presence of MPs. The Ksed for CuO NPs decreased to half and found <0.25 h−1 in the presence of MPs in all SS. C/C0 values in breakthrough curves increased drastically (black < alluvial < laterite < red) in the presence of MPs. Results suggest that the release of MPs in the terrestrial ecosystem is a potential threat leading to increased mobility of metal nanoparticles in the environment.Keywords: microplastics, minerals, sorption, soils
Procedia PDF Downloads 90215 Reorientation of Sustainable Livestock Management: A Case Study Applied to Wastes Management in Faculty of Animal Husbandry, Padjadjaran University, Indonesia
Authors: Raka Rahmatulloh, Mohammad Ilham Nugraha, Muhammad Ifan Fathurrahman
Abstract:
The agricultural sector covers a wide area, one of them is livestock subsector that supply needs of the food source of animal protein. Animal protein is produced by the main livestock production such as meat, milk, eggs, etc. Besides the main production, livestock would produce metabolic residue, so called livestock wastes. Characteristics of livestock wastes can be either solid (feces), liquid (urine), and gas (methane) which turned out to be useful and has economical value when well-processed and well-controlled. Nowadays, this livestock wastes is considered as a source of pollutants, especially water pollution. If the source of pollutants used in an integrated way, it will have a positive impact on organic farming and a healthy environment. Management of livestock wastes can be integrated with the farming sector to the planting and caring that rely on fertilizers. Most Indonesian farmers still use chemical fertilizers, where the use of it in the long term will disturb the ecological balance of the environment. One of the main efforts is to use organic fertilizers instead of chemical fertilizer that conducted by the Faculty of Animal Husbandry, Padjadjaran University. The method is to use the solid waste of livestock and agricultural wastes into liquid organic fertilizer, feed additive, biogas and vermicompost through decomposition. The decomposition takes as long as 14 days including aeration and extraction process using water as a nutrients solvent media which contained in decomposes and disinfection media to release pathogenic microorganisms in decomposes. Liquid organic fertilizer has highly efficient for the farmers to have a ratio of carbon/nitrogen (C/N) 25/1 to 30/1 and neutral pH (6.5-7.5) which is good for plant growth. Feed additive may be given to improve the digestibility of feed so that substances can be easily absorbed by the body for production. Biogas contains methane (CH4), which has a high enough heat to produce electricity. Vermicompost is an overhaul of waste organic material that has excellent structure, porosity, aeration, drainage, and moisture holding capacity. Based on the case study above, an integrated livestock wastes management program strongly supports the Indonesian government in the achievement of sustainable livestock development.Keywords: integrated, livestock wastes, organic fertilizer, sustainable livestock development
Procedia PDF Downloads 434214 Establishing a Sustainable Construction Industry: Review of Barriers That Inhibit Adoption of Lean Construction in Lesotho
Authors: Tsepiso Mofolo, Luna Bergh
Abstract:
The Lesotho construction industry fails to embrace environmental practices, which has then lead to excessive consumption of resources, land degradation, air and water pollution, loss of habitats, and high energy usage. The industry is highly inefficient, and this undermines its capability to yield the optimum contribution to social, economic and environmental developments. Sustainable construction is, therefore, imperative to ensure the cultivation of benefits from all these intrinsic themes of sustainable development. The development of a sustainable construction industry requires a holistic approach that takes into consideration the interaction between Lean Construction principles, socio-economic and environmental policies, technological advancement and the principles of construction or project management. Sustainable construction is a cutting-edge phenomenon, forming a component of a subjectively defined concept called sustainable development. Sustainable development can be defined in terms of attitudes and judgments to assist in ensuring long-term environmental, social and economic growth in society. The key concept of sustainable construction is Lean Construction. Lean Construction emanates from the principles of the Toyota Production System (TPS), namely the application and adaptation of the fundamental concepts and principles that focus on waste reduction, the increase in value to the customer, and continuous improvement. The focus is on the reduction of socio-economic waste, and protestation of environmental degradation by reducing carbon dioxide emission footprint. Lean principles require a fundamental change in the behaviour and attitudes of the parties involved in order to overcome barriers to cooperation. Prevalent barriers to adoption of Lean Construction in Lesotho are mainly structural - such as unavailability of financing, corruption, operational inefficiency or wastage, lack of skills and training and inefficient construction legislation and political interferences. The consequential effects of these problems trigger down to quality, cost and time of the project - which then result in an escalation of operational costs due to the cost of rework or material wastage. Factor and correlation analysis of these barriers indicate that they are highly correlated, which then poses a detrimental potential to the country’s welfare, environment and construction safety. It is, therefore, critical for Lesotho’s construction industry to develop a robust governance through bureaucracy reforms and stringent law enforcement.Keywords: construction industry, sustainable development, sustainable construction industry, lean construction, barriers to sustainable construction
Procedia PDF Downloads 294213 Insectivorous Medicinal Plant Drosera Ecologyand its Biodiversity Conservation through Tissue Culture and Sustainable Biotechnology
Authors: Sushil Pradhan
Abstract:
Biotechnology contributes to sustainable development in several ways such as biofertilizer production, biopesticide production and management of environmental pollution, tissue culture and biodiversity conservation in vitro, in vivo and in situ, Insectivorous medicinal plant Drosera burmannii Vahl belongs to the Family-Droseraceae under Order-Caryophyllales, Dicotyledoneae, Angiospermeae which has 31 (thirty one) living genera and 194 species besides 7 (seven) extinct (fossil) genera. Locally it is known as “Patkanduri” in Odia. Its Hindi name is “Mukhajali” and its English name is “Sundew”. The earliest species of Drosera was first reported in 1753 by Carolous Linnaeus called Drosera indica L (Indian Sundew). The latest species of Drosera reported by Fleisch A, Robinson, AS, McPherson S, Heinrich V, Gironella E and Madulida D.A. (2011) is Drosera ultramafica from Malaysia. More than 50 % species of Drosera have been reported from Australia and next to Australia is South Africa. India harbours only 3 species such as D. indica L, Drosera burmannii Vahl and D. peltata L. From our Odisha only D. burmannii Vahl is being reported for the first time from the district of Subarnapur near Sonepur (Arjunpur Reserve Forest Area). Drosera plant is autotrophic but to supplement its Nitrogen (N2) requirement it adopts heterotrophic mode of nutrition (insectivorous/carnivorous) as well. The colour of plant in mostly red and about 20-30cm in height with beautiful pink or white pentamerous flowers. Plants grow luxuriantly during November to February in shady and moist places near small water bodies of running water stream. Medicinally it is a popular herb in the locality for the treatment of cold and cough in children in rainy season by the local Doctors (Kabiraj and Baidya). In the present field investigation an attempt has been made to understand the unique reproductive phase and life cycle of the plant thereby planning for its conservation and propagation through various techniques of tissue culture and biotechnology. More importantly besides morphological and anatomical studies, cytological investigation is being carried out to find out the number of chromosomes in the cell and its genomics as there is no such report as yet for Drosera burmannii Vahl. The ecological significance and biodiversity conservation of Drosera with special reference to energy, environmental and chemical engineering has been discussed in the research paper presentation.Keywords: insectivorous, medicinal, drosera, biotechnology, chromosome, genome
Procedia PDF Downloads 383212 Influence of CO₂ on the Curing of Permeable Concrete
Authors: A. M. Merino-Lechuga, A. González-Caro, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodriguez
Abstract:
Since the mid-19th century, the boom in the economy and industry has grown exponentially. This has led to an increase in pollution due to rising Greenhouse Gas (GHG) emissions and the accumulation of waste, leading to an increasingly imminent future scarcity of raw materials and natural resources. Carbon dioxide (CO₂) is one of the primary greenhouse gases, accounting for up to 55% of Greenhouse Gas (GHG) emissions. The manufacturing of construction materials generates approximately 73% of CO₂ emissions, with Portland cement production contributing to 41% of this figure. Hence, there is scientific and social alarm regarding the carbon footprint of construction materials and their influence on climate change. Carbonation of concrete is a natural process whereby CO₂ from the environment penetrates the material, primarily through pores and microcracks. Once inside, carbon dioxide reacts with calcium hydroxide (Ca(OH)2) and/or CSH, yielding calcium carbonates (CaCO3) and silica gel. Consequently, construction materials act as carbon sinks. This research investigated the effect of accelerated carbonation on the physical, mechanical, and chemical properties of two types of non-structural vibrated concrete pavers (conventional and draining) made from natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method, and the CO₂ capture capacity was calculated. Two curing environments were utilized: a carbonation chamber with 5% CO₂ and a standard climatic chamber with atmospheric CO₂ concentration. Additionally, the effect of curing times of 1, 3, 7, 14, and 28 days on concrete properties was analyzed. Accelerated carbonation in-creased the apparent dry density, reduced water-accessible porosity, improved compressive strength, and decreased setting time to achieve greater mechanical strength. The maximum CO₂ capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t) in the draining paver. Accelerated carbonation conditions led to a 525% increase in carbon capture compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO₂ capture and utilization, offering a means to mitigate the effects of climate change and promote the new paradigm of circular economy.Keywords: accelerated carbonation, CO₂ curing, CO₂ uptake and construction and demolition waste., circular economy
Procedia PDF Downloads 65211 Integrating Reactive Chlorine Species Generation with H2 Evolution in a Multifunctional Photoelectrochemical System for Low Operational Carbon Emissions Saline Sewage Treatment
Authors: Zexiao Zheng, Irene M. C. Lo
Abstract:
Organic pollutants, ammonia, and bacteria are major contaminants in sewage, which may adversely impact ecosystems without proper treatment. Conventional wastewater treatment plants (WWTPs) are operated to remove these contaminants from sewage but suffer from high carbon emissions and are powerless to remove emerging organic pollutants (EOPs). Herein, we have developed a low operational carbon emissions multifunctional photoelectrochemical (PEC) system for saline sewage treatment to simultaneously remove organic compounds, ammonia, and bacteria, coupled with H2 evolution. A reduced BiVO4 (r-BiVO4) with improved PEC properties due to the construction of oxygen vacancies and V4+ species was developed for the multifunctional PEC system. The PEC/r-BiVO4 process could treat saline sewage to meet local WWTPs’ discharge standard in 40 minutes at 2.0 V vs. Ag/AgCl and completely degrade carbamazepine (one of the EOPs), coupled with significant evolution of H2. A remarkable reduction in operational carbon emissions was achieved by the PEC/r-BiVO4 process compared with large-scale WWTPs, attributed to the restrained direct carbon emissions from the generation of greenhouse gases. Mechanistic investigation revealed that the PEC system could activate chloride ions in sewage to generate reactive chlorine species and facilitate •OH production, promoting contaminants removal. The PEC system exhibited operational feasibility at different pH and total suspended solids concentrations and has outstanding reusability and stability, confirming its promising practical potential. The study combined the simultaneous removal of three major contaminants from saline sewage and H2 evolution in a single PEC process, demonstrating a viable approach to supplementing and extending the existing wastewater treatment technologies. The study generated profound insights into the in-situ activation of existing chloride ions in sewage for contaminants removal and offered fundamental theories for applying the PEC system in sewage remediation with low operational carbon emissions. The developed PEC system can fit well with the future needs of wastewater treatment because of the following features: (i) low operational carbon emissions, benefiting the carbon neutrality process; (ii) higher quality of the effluent due to the elimination of EOPs; (iii) chemical-free in the operation of sewage treatment; (iv) easy reuse and recycling without secondary pollution.Keywords: contaminants removal, H2 evolution, multifunctional PEC system, operational carbon emissions, saline sewage treatment, r-BiVO4 photoanodes
Procedia PDF Downloads 159210 CO2 Capture in Porous Silica Assisted by Lithium
Authors: Lucero Gonzalez, Salvador Alfaro
Abstract:
Carbon dioxide (CO2) and methane (CH4) are considered as the compounds with higher abundance among the greenhouse gases (CO2, NOx, SOx, CxHx, etc.), due to its higher concentration, this two gases have a greater impact in the environment pollution and provokes global warming. So, recovery, disposal and subsequent reuse, are of great interest, especially from the ecological and health perspective. By one hand, porous inorganic materials are good candidates to capture gases, because these type of materials are higher stability from the point view of thermal, chemical and mechanical under adsorption gas processes. By another hand, during the design and the synthetic preparation of the porous materials is possible add other intrinsic properties (physicochemical and structural) by adding chemical compounds as dopants or using structured directed agents or surfactants to improve the porous structure, the above features allow to have alternative materials for separation, capture and storage of greenhouse gases. In this work, ordered mesoporous materials base silica were prepared using Surfynol as surfactant. The surfactant micelles are commonly used as self-assembly templates for the development of new structure porous silica’s, adding a variety of textures and structures. By another hand, the Surfynol is a commercial surfactant, is non-ionic, for that is necessary determine its critical micelles concentration (cmc) by the pyrene I1/I3 ratio method, before to prepare silica particles. One time known the CMC, a precursor gel was prepared via sol-gel process at room temperature using TEOS as silica precursor, NH4OH as catalyst, Surfynol as template and H2O as solvent. Then, the gel precursor was treatment hydrothermally in a Teflon-lined stainless steel autoclave with a volume of 100 mL and kept at 100 ºC for 24 h under static conditions in a convection oven. After that, the porous silica particles obtained were impregnated with lithium to improve the CO2 adsorption capacity. Then the silica particles were characterized physicochemical, morphology and structurally, by XRD, FTIR, BET and SEM techniques. The thermal stability and the CO2 adsorption capacity was evaluated by thermogravimetric analysis (TGA). According the results, we found that the Surfynol is a good candidate to prepare silica particles with an ordered structure. Also the TGA analysis shown that the particles has a good thermal stability in the range of 250 °C and 800 °C. The best materials had, the capacity to adsorbing 70 and 90 mg per gram of silica particles and its CO2 adsorption capacity depends on the way to thermal pretreatment of the porous silica before of the adsorption experiments and of the concentration of surfactant used during the synthesis of silica particles. Acknowledgments: This work was supported by SIP-IPN through project SIP-20161862.Keywords: CO2 adsorption, lithium as dopant, porous silica, surfynol as surfactant, thermogravimetric analysis
Procedia PDF Downloads 268209 Sustainable Treatment of Vegetable Oil Industry Wastewaters by Xanthomonas campestris
Authors: Bojana Ž. Bajić, Siniša N. Dodić, Vladimir S. Puškaš, Jelena M. Dodić
Abstract:
Increasing industrialization as a response to the demands of the consumer society greatly exploits resources and generates large amounts of waste effluents in addition to the desired product. This means it is a priority to implement technologies with the maximum utilization of raw materials and energy, minimum generation of waste effluents and/or their recycling (secondary use). Considering the process conditions and the nature of the raw materials used by the vegetable oil industry, its wastewaters can be used as substrates for the biotechnological production which requires large amounts of water. This way the waste effluents of one branch of industry become raw materials for another branch which produces a new product while reducing wastewater pollution and thereby reducing negative environmental impacts. Vegetable oil production generates wastewaters during the process of rinsing oils and fats which contain mainly fatty acid pollutants. The vegetable oil industry generates large amounts of waste effluents, especially in the processes of degumming, deacidification, deodorization and neutralization. Wastewaters from the vegetable oil industry are generated during the whole year in significant amounts, based on the capacity of the vegetable oil production. There are no known alternative applications for these wastewaters as raw materials for the production of marketable products. Since the literature has no data on the potential negative impact of fatty acids on the metabolism of the bacterium Xanthomonas campestris, these wastewaters were considered as potential raw materials for the biotechnological production of xanthan. In this research, vegetable oil industry wastewaters were used as the basis for the cultivation media for xanthan production with Xanthomonas campestris ATCC 13951. Examining the process of biosynthesis of xanthan on vegetable oil industry wastewaters as the basis for the cultivation media was performed to obtain insight into the possibility of its use in the aforementioned biotechnological process. Additionally, it was important to experimentally determine the absence of substances that have an inhibitory effect on the metabolism of the production microorganism. Xanthan content, rheological parameters of the cultivation media, carbon conversion into xanthan and conversions of the most significant nutrients for biosynthesis (carbon, nitrogen and phosphorus sources) were determined as indicators of the success of biosynthesis. The obtained results show that biotechnological production of the biopolymer xanthan by bacterium Xanthomonas campestris on vegetable oil industry wastewaters based cultivation media simultaneously provides preservation of the environment and economic benefits which is a sustainable solution to the problem of wastewater treatment.Keywords: biotechnology, sustainable bioprocess, vegetable oil industry wastewaters, Xanthomonas campestris
Procedia PDF Downloads 150208 Driving Environmental Quality through Fuel Subsidy Reform in Nigeria
Authors: O. E. Akinyemi, P. O. Alege, O. O. Ajayi, L. A. Amaghionyediwe, A. A. Ogundipe
Abstract:
Nigeria as an oil-producing developing country in Africa is one of the many countries that had been subsidizing consumption of fossil fuel. Despite the numerous advantage of this policy ranging from increased energy access, fostering economic and industrial development, protecting the poor households from oil price shocks, political considerations, among others; they have been found to impose economic cost, wasteful, inefficient, create price distortions discourage investment in the energy sector and contribute to environmental pollution. These negative consequences coupled with the fact that the policy had not been very successful at achieving some of its stated objectives, led to a number of organisations and countries such as the Group of 7 (G7), World Bank, International Monetary Fund (IMF), International Energy Agency (IEA), Organisation for Economic Co-operation and Development (OECD), among others call for global effort towards reforming fossil fuel subsidies. This call became necessary in view of seeking ways to harmonise certain existing policies which may by design hamper current effort at tackling environmental concerns such as climate change. This is in addition to driving a green growth strategy and low carbon development in achieving sustainable development. The energy sector is identified to play a vital role. This study thus investigates the prospects of using fuel subsidy reform as a viable tool in driving an economy that de-emphasizes carbon growth in Nigeria. The method used is the Johansen and Engle-Granger two-step Co-integration procedure in order to investigate the existence or otherwise of a long-run equilibrium relationship for the period 1971 to 2011. Its theoretical framework is rooted in the Environmental Kuznet Curve (EKC) hypothesis. In developing three case scenarios (case of subsidy payment, no subsidy payment and effective subsidy), findings from the study supported evidence of a long run sustainable equilibrium model. Also, estimation results reflected that the first and the second scenario do not significantly influence the indicator of environmental quality. The implication of this is that in reforming fuel subsidy to drive environmental quality for an economy like Nigeria, strong and effective regulatory framework (measure that was interacted with fuel subsidy to yield effective subsidy) is essential.Keywords: environmental quality, fuel subsidy, green growth, low carbon growth strategy
Procedia PDF Downloads 326207 A webGIS Methodology to Support Sediments Management in Wallonia
Authors: Nathalie Stephenne, Mathieu Veschkens, Stéphane Palm, Christophe Charlemagne, Jacques Defoux
Abstract:
According to Europe’s first River basin Management Plans (RBMPs), 56% of European rivers failed to achieve the good status targets of the Water Framework Directive WFD. In Central European countries such as Belgium, even more than 80% of rivers failed to achieve the WFD quality targets. Although the RBMP’s should reduce the stressors and improve water body status, their potential to address multiple stress situations is limited due to insufficient knowledge on combined effects, multi-stress, prioritization of measures, impact on ecology and implementation effects. This paper describes a webGis prototype developed for the Walloon administration to improve the communication and the management of sediment dredging actions carried out in rivers and lakes in the frame of RBMPs. A large number of stakeholders are involved in the management of rivers and lakes in Wallonia. They are in charge of technical aspects (client and dredging operators, organizations involved in the treatment of waste…), management (managers involved in WFD implementation at communal, provincial or regional level) or policy making (people responsible for policy compliance or legislation revision). These different kinds of stakeholders need different information and data to cover their duties but have to interact closely at different levels. Moreover, information has to be shared between them to improve the management quality of dredging operations within the ecological system. In the Walloon legislation, leveling dredged sediments on banks requires an official authorization from the administration. This request refers to spatial information such as the official land use map, the cadastral map, the distance to potential pollution sources. The production of a collective geodatabase can facilitate the management of these authorizations from both sides. The proposed internet system integrates documents, data input, integration of data from disparate sources, map representation, database queries, analysis of monitoring data, presentation of results and cartographic visualization. A prototype of web application using the API geoviewer chosen by the Geomatic department of the SPW has been developed and discussed with some potential users to facilitate the communication, the management and the quality of the data. The structure of the paper states the why, what, who and how of this communication tool.Keywords: sediments, web application, GIS, rivers management
Procedia PDF Downloads 405206 Coastal Water Characteristics along the Saudi Arabian Coastline
Authors: Yasser O. Abualnaja1, Alexandra Pavlidou2, Taha Boksmati3, Ahmad Alharbi3, Hammad Alsulmi3, Saleh Omar Maghrabi3, Hassan Mowalad3, Rayan Mutwalli3, James H. Churchill4, Afroditi Androni2, Dionysios Ballas2, Ioannis Hatzianestis2, Harilaos Kontoyiannis2, Angeliki Konstantinopoulou2, Georgios Krokkos1, 5, Georgios Pappas2, Vassilis P. Papadopoulos2, Konstantinos Parinos2, Elvira Plakidi2, Eleni Rousselaki2, Dimitris Velaoras2, Panagiota Zachioti2, Theodore Zoulias2, Ibrahim Hoteit5.
Abstract:
The coastal areas along the Kingdom of Saudi Arabia on both the Red Sea and Arabian Gulf have been witnessing in the past decades an unprecedented economic growth and a rapid increase in anthropogenic activities. Therefore, the Saudi Arabian government has decided to frame a strategy for sustainable development of the coastal and marine environments, which comes in the context of the Vision 2030, aimed at providing the first comprehensive ‘Status Quo Assessment’ of the Kingdom’s coastal and marine environments. This strategy will serve as a baseline assessment for future monitoring activities; this baseline is relied on scientific evidence of the drivers, pressures, and their impact on the environments of the Red Sea and Arabian Gulf. A key element of the assessment was the cumulative pressures of the hotspots analysis, which was developed following the principles of the Driver-Pressure-State-Impact-Response (DPSIR) framework and using the cumulative pressure and impact assessment methodology. Ten hotspot sites were identified, eight in the Red Sea and two in the Arabian Gulf. Thus, multidisciplinary research cruises were conducted throughout the Red Sea and the Arabian Gulf coastal and marine environments in June/July 2021 and September 2021, respectively, in order to understand the relative impact of hydrography and the various pressures on the quality of seawater and sediments. The main objective was to record the physical and biogeochemical parameters along the coastal waters of the Kingdom, tracing the dispersion of contaminants related to specific pressures. The assessment revealed the effect of hydrography on the trophic status of the southern marine coastal areas of the Red Sea. Jeddah Lagoon system seems to face significant eutrophication and pollution challenges, whereas sediments are enriched in some heavy metals in many areas of the Red Sea and the Arabian Gulf. This multidisciplinary research in the Red Sea and the Arabian Gulf coastal waters will pave the way for future detailed environmental monitoring strategies for the Saudi Arabian marine environment.Keywords: arabian gulf, contaminants, hotspot, red sea
Procedia PDF Downloads 113205 Effect of Manure Treatment on Furrow Erosion: A Case Study of Sagawika Irrigation Scheme in Kasungu, Malawi
Authors: Abel Mahowe
Abstract:
Furrow erosion is the major problem menacing sustainability of irrigation in Malawi and polluting water bodies resulting in death of many aquatic animals. Many rivers in Malawi are drying due to some poor practices that are being practiced around these water bodies, furrow erosion is one of the cause of sedimentation in these rivers although it has gradual effect on deteriorating of these rivers hence neglected, but has got long term disastrous effect on water bodies. Many aquatic animals also suffer when these sediments are taken into these water bodies. An assessment of effect of manure treatment on furrow erosion was carried out in Sagawika irrigation scheme located in Kasungu District north part of Malawi. The soil on the field was clay loam and had just been tilled. The average furrow slope of 0.2% and was divided into two blocks, A and B. Each block had 20V-shaped furrow having a length of 10 m. Three different manure were used to construct these furrows by mixing it with soil which was moderately moist and 5 furrows from each block were constructed without manure. In each block 5furrow were made using a specific type of manure, and one set of five furrows in each block was made without manure treatment. The types of manure that were used were goat manure, pig manure, and manure from crop residuals. The manure application late was 5 kg/m. The furrow was constructed at a spacing of 0.6 m. Tomato was planted in the two blocks at spacing of 0.15 m between rows and 0.15 m between planting stations. Irrigation water was led from feeder canal into the irrigation furrows using siphons. The siphons discharge into each furrow was set at 1.86 L/S. The ¾ rule was used to determine the cut-off time for the irrigation cycles in order to reduce the run-off at the tail end. During each irrigation cycle, samples of the runoff water were collected at one-minute intervals and analyzed for total sediment concentration for use in estimating the total soil sediment loss. The results of the study have shown that a significant amount of soil is lost in soils without many organic matters, there was a low level of erosion in furrows that were constructed using manure treatment within the blocks. In addition, the results have shown that manure also differs in their ability to control erosion since pig manure proved to have greater abilities in binding the soil together than other manure since they were reduction in the amount of sediments at the tail end of furrows constructed by this type of manure. The results prove that manure contains organic matters which helps soil particles to bind together hence resisting the erosive force of water. The use of manure when constructing furrows in soil with less organic matter can highly reduce erosion hence reducing also pollution of water bodies and improve the conditions of aquatic animals.Keywords: aquatic, erosion, furrow, soil
Procedia PDF Downloads 286