Search results for: cross-validation support vector machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10114

Search results for: cross-validation support vector machine

8014 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint

Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.

Keywords: modeling, AC servomotor, permanent magnet synchronous motor-PMSM, genetic algorithm, vector control, robotic manipulator, control

Procedia PDF Downloads 525
8013 Independent Village Planning Based Eco Village and Save Energy in Region of Maritime Tourism

Authors: Muhamad Rasyid Angkotasan

Abstract:

Eco-village is an ecosystem where the countryside or urban communities that are inside trying to integrate the social environment with low impact way of life to achieve this, they integrate the various aspects of ecological design, agriculture permanent, ecological building and the alternative energy. Eco-village in question is eco-village conducted on of marine tourism areas, where natural resources are very good, without ignoring the global issue of climate change. Desperately needed a source of energy, which can support the fulfillment of energy needs in a sustainable. Fulfillment of energy sources that offer is the use or application of environmentally friendly technologies of usage is still very low in Indonesia, the technology namely the Ocean Thermal Energy Conversion (OTEC), OTEC is expected to be a source of the alternative energy, which can support the goal of eco-village of the region's of marine tourism.

Keywords: eco village, saving energy, ocean thermal energy conversion, environmental engineering

Procedia PDF Downloads 460
8012 Abatement of NO by CO on Pd Catalysts: Influence of the Support in Oxyfuel Combustion Conditions

Authors: Joudia Akil, Stephane Siffert, Laurence Pirault-Roy, Renaud Cousin, Christophe Poupin

Abstract:

The CO2 emitted from anthropic activities is perceived as a constraint in industrial activity due to taxes, stringent environmental regulations, impact on global warming… To limit these CO2 emissions, reuse of CO2 represents a promising alternative, with important applications in chemical industry and for power generation. However, CO2 valorization process requires a gas as pure as possible Oxyfuel-combustion that enables obtaining a CO2 rich stream, with water vapor (10%) is then interesting. Nevertheless to decrease the amount of the by-products found with the CO2 (especially CO and NOx which are harmful to the environment) a catalytic treatment must be applied. Nowadays three-way catalysts are well-developed material for simultaneous conversion of unburned hydrocarbons, carbon monoxide (CO) and nitrogen oxides (NOx). The use of Pd attracted considerable attention on the basis of economic factors (the high cost and scarcity of Pt and Rh). This explains the large number of studies concerning the CO-NO reaction on Pd in the recent years. In the present study, we will compare a series of Pd materials supported on different oxides for CO2 purification from the oxyfuel combustion system, by reducing NO with CO in an oxidizing environment containing CO2 rich stream and presence of 8.2% of water. Al2O3, CeO2, MgO, SiO2 and TiO2 were used as support materials of the catalysts. 1wt% Pd/Support catalysts were obtained by wet impregnation on supports with a precursor of palladium [Pd(acac)2]. The obtained samples were subsequently characterized by H2 chemisorption, BET surface area and TEM. Finally, their catalytic performances were evaluated in CO2 purification which is carried out in a fixed-bed flow reactor containing 150 mg of catalyst at atmospheric pressure. The flow of the reactant gases is composed of: 20% CO2, 10% O2, 0.5% CO, 0.02% NO and 8.2% H2O (He as eluent gas) with a total flow of 200mL.min−1, in the same GHSV. The catalytic performance of the Pd catalysts for CO2 purification revealed that: -The support material has a strong influence on the catalytic activity of 1wt.% Pd supported catalysts. depending of the nature of support, the Pd-based catalysts activity changes. -The highest reduction of NO with CO is obtained in the following ranking: TiO2>CeO2>Al2O3. -The supports SiO2 and MgO should be avoided for this reaction, -Total oxidation of CO occurred over different materials, -CO2 purification can reach 97%, -The presence of H2O has a positive effect on the NO reduction due to the production of the reductant H2 from WGS reaction H2O+CO → H2+CO2

Keywords: carbon dioxide, environmental chemistry, heterogeneous catalysis, oxyfuel combustion

Procedia PDF Downloads 257
8011 Hazard Alert in Malaysia Related to Occupational Safety and Health

Authors: Atikah Binti Azudin, Nurin Nazlah Binti Muhamad Yani, Nur Alya Nadhirah Binti Naaidith, Nur Amylia Wahida Binti Mat Ayob, Nurshamimi Shakirah Binti Suboh, Nur Auni Batrisyia Binti Md. Zaini, Nur Aziemah Binti Mohamad, Nurul Suffiyah Binti Sa’Dun, Sabrina Sasha Izzati Binti Zubaile, Umi Huwaina Binti Ahmiruddin, Wan Nur Shafawati Binti Wan Ghazali

Abstract:

A hazard alert is intended to provide brief information about significant incidents or existing difficulties in Department workplaces. The alert gives guidelines for proper processes, practices, and controls to be applied. When operated in accordance with the manufacturer's instructions, any machine or tool utilized at work provides a safe and dependable platform for workers to accomplish job duties. However, when not utilized appropriately, the machine might pose a major hazard to employees. Employers have a duty to keep employees safe in this scenario. This Hazard Alert outlines specific occupational dangers and the controls that employers must apply to prevent injury or fatal accidents. There have been several cases of hazard alerts in Malaysia, which have had a negative impact on a few workers. Looking on the bright side, we can overcome every incident in a variety of ways. One of these is that only qualified individuals operate mobile machinery and equipment. In addition, employees may also perform frequent pre-use inspections of machinery to discover and fix flaws. Hazard alert is very important, and this study would cover a variety of subjects, including the methods employed.

Keywords: safe, hazard, impacts, duties.

Procedia PDF Downloads 96
8010 Investigating the Impact of Factors Associated with Student Academic Achievement and Expectations through the Ecosystemic Perspective in the Greek Context: The Role of the Individual, Family, School and of the Community

Authors: Olga Giovani

Abstract:

In this research, Bronfenbrenner's theory will be used to investigate the individual, microsystemic, and exosystemic factors that may affect adolescents' academic achievement as well as their expectations in Greece. First, the topic of academic achievement in an adolescent developmental context will be set as the target of the proposed study while focusing on the aspects of community influences on adolescents. More specifically, the effect of available resources and the perceived sense of safety and support will be further investigated. Then the issue of family factors will be analyzed, as they are subjectively perceived by the adolescents, focusing on the perceived parental style, parental monitor, and involvement as a mesosystemic factor. In turn, the school will also be discussed with emphasis on the perceived school climate and support as well as the academic aspects of student achievement. Finally, the adolescent's individual perspective will be taken into consideration in developmental terms, examining their perceptions regarding their community/neighborhood, their family, their school, as well as their sense of self-concept and self-esteem as these are expressed through their academic performance and prosocial behavior. The aim of the proposed research is to study these associations through the prism of the systemic perspective, the relationship between aspects of educational achievement and socioeconomic background, with an emphasis on the role of the community, which has not been adequately researched in the Greek context. Community will be defined by the available community resources (recreational activities, public library, local orchestras, free entrance museums, etc.), adolescents' own perception of social support, safety, and support inside that community. These perceptions need to be investigated since they may serve as possible predictors of a child's current cognitive, developmental, and psycho-social outcomes, such as their perceived self-concept and self-esteem, as well as on their future expectations related to the entrance to university and job expectations.

Keywords: bioecological model, developmental psychology, ecosystemic approach, student achievement, microsystemic factors, mesosystemic factors, individual perceptions

Procedia PDF Downloads 143
8009 Improving Exchange Rate Forecasting Accuracy Using Ensemble Learning Techniques: A Comparative Study

Authors: Gokcen Ogruk-Maz, Sinan Yildirim

Abstract:

Introduction: Exchange rate forecasting is pivotal for informed financial decision-making, encompassing risk management, investment strategies, and international trade planning. However, traditional forecasting models often fail to capture the complexity and volatility of currency markets. This study explores the potential of ensemble learning techniques such as Random Forest, Gradient Boosting, and AdaBoost to enhance the accuracy and robustness of exchange rate predictions. Research Objectives The primary objective is to evaluate the performance of ensemble methods in comparison to traditional econometric models such as Uncovered Interest Rate Parity, Purchasing Power Parity, and Monetary Models. By integrating advanced machine learning techniques with fundamental macroeconomic indicators, this research seeks to identify optimal approaches for predicting exchange rate movements across major currency pairs. Methodology: Using historical exchange rate data and economic indicators such as interest rates, inflation, money supply, and GDP, the study develops forecasting models leveraging ensemble techniques. Comparative analysis is performed against traditional models and hybrid approaches incorporating Facebook Prophet, Artificial Neural Networks, and XGBoost. The models are evaluated using statistical metrics like Mean Squared Error, Theil Ratio, and Diebold-Mariano tests across five currency pairs (JPY to USD, AUD to USD, CAD to USD, GBP to USD, and NZD to USD). Preliminary Results: Results indicate that ensemble learning models consistently outperform traditional methods in predictive accuracy. XGBoost shows the strongest performance among the techniques evaluated, achieving significant improvements in forecast precision with consistently low p-values and Theil Ratios. Hybrid models integrating macroeconomic fundamentals into machine learning frameworks further enhance predictive accuracy. Discussion: The findings show the potential of ensemble methods to address the limitations of traditional models by capturing non-linear relationships and complex dynamics in exchange rate movements. While Random Forest and Gradient Boosting are effective, the superior performance of XGBoost suggests that its capacity for handling sparse and irregular data offers a distinct advantage in financial forecasting. Conclusion and Implications: This research demonstrates that ensemble learning techniques, particularly when combined with traditional macroeconomic fundamentals, provide a robust framework for improving exchange rate forecasting. The study offers actionable insights for financial practitioners and policymakers, emphasizing the value of integrating machine learning approaches into predictive modeling for monetary economics.

Keywords: exchange rate forecasting, ensemble learning, financial modeling, machine learning, monetary economics, XGBoost

Procedia PDF Downloads 11
8008 Effective Budget Utilization for the Production of Better Health Professionals

Authors: Tesfahiwot Abay Weldearegay

Abstract:

Ethiopian Federal ministry of health, in collaboration with different partners, provides financial support from sustainable development grants and global fund budget sources to Regional health science colleges through the regional health bureau to improve the quality of training and avail professionals based on the regional health bureau demand from the year of 2012 to 2019EC. It was mainly focused on health extension workers (HEW) Level III&IV, Health Information technicians (HIT), Emergency Medical technicians (EMT), laboratory technicians, Pharmacy technicians, Anesthesia Level V, Radiography, midwifery, Environmental health and biomedical equipment technician. Laboratory technician, Radiography and Pharmacy technician, was retooling program. The study aims at assessing the Utilization and outcome of budgets transferred through regional health bureau to regional health science colleges. The study used both quantitative and qualitative approaches to develop sufficient data to explain the utilization of the budget, and outcomes obtained from the transferred budget and to identify the gaps. The data for the study were obtained through structured questionnaires and interviews was conducted to increase the reliability of the data. Nationally, students enrolled in different disciplines at RHSC through budget support for RHB to improve the quality of training were 87 840 students and the total Budget transferred, according to MOU was 895,752,038 Ethiopian birr. Among the students enrolled nationally in different disciplines at RHSC through budget support only 72% of students have graduated from different disciplines. In Hareri and Addis Ababa, all enrolled students were graduated (100%). At the same time, Oromia 69%, Amara 77%, SNNP 58% students graduated, respectively. The demand of the regional health bureau and the enrollment capacity of health science colleges increased from year to year. The financial support added great value to the HSCs to cop with problems related to student fees, skill lab materials and renovation.

Keywords: emergency medical technician, radiography, Biomedical, health extension

Procedia PDF Downloads 90
8007 The Employment Experiences of Qualified Refugees in the UK and the Impact on Identity, Integration, and Wellbeing: A Qualitative Enquiry

Authors: Amina El-Warari, Agata Vitale, Laura Caulfield, Jennifer Kinloch

Abstract:

Background: Unemployment levels among refugees in the UK are much higher than voluntary migrants and UK-born citizens. The lack of employment and/or of suitable employment has detrimental consequences on refugees’ ability to integrate and become active citizens in the host country. Research indicates that, when individuals are forced to migrate, one of the most significant aspects to building their identity is their previous profession; this particularly applies to qualified refugees. Despite this, there is little support available to them. The current study is set in this context and aims to explore highly qualified refugees’ employment-related experiences in the UK as well as their suggestions on how to develop specific interventions that can support them in finding suitable employment. Methods: A qualitative study design was employed. Qualitative methods are in fact well suited to research with refugees, as they allow them to give their direct opinion, rather than this being filtered by stakeholders. Listening to ‘the refugee’s voice’ means developing ‘a refugee centered perspective’ where the diverse narratives told by participants are organized to tell their direct collective story. A total of 12 refugees, attending a non-profit refugee organization in the south-west of England, took part in the study. The selection criteria were being over 18, having a level of English that allows them to sustain a conversation, and having a University degree and/or professional qualification. All participants were interviewed individually; the data were transcribed and analyzed thematically. Findings: Participants had very little support in finding suitable employment; this often only consisted of a few sessions in their local job centers and English tutorials. They indicated that being unemployed/underemployed negatively affected their sense of identity, their acculturative stress, and their in-group/ out-group relations. They suggested that specific employment interventions for qualified refugees should be delivered to them individually in order to address their specific needs. Furthermore, most participants suggested that these interventions should support them in volunteering in organizations that match their skills/ qualifications. They also indicated that the employment interventions should support them in having their qualifications recognized in the UK as well as building links with universities/ centers where they can receive adequate training on how to understand and adapt to the employments needs in the UK. Conclusions: These findings will provide the basis for the second stage of the research where specific employment interventions will be designed and tested with highly qualified refugees. In addition, these findings shed light refugee integration policy.

Keywords: employment interventions, identity, integration, qualified refugees

Procedia PDF Downloads 269
8006 Organizational Change in the FBI after 9/11: An Institutional Theoretical Analysis

Authors: Ben D. Atkins

Abstract:

This study will examine the impact of September 11, 2001, terrorist attacks on the organizational development of American federal law enforcement through focusing on the Federal Bureau of Investigation. Content analysis of discourse in a federal law enforcement practitioner publication along with official FBI statements will be used to gain a better understanding of FBI organizational changes that have taken place since the events of September 11, 2001. Analysis of content trends in the FBI Law Enforcement Bulletin and public discourse of FBI officials from 1999 to 2005 indicate that, in addition to structural changes, the bureau has also undergone a variety of cultural changes. The results offer some support for the institutional theoretical perspective, suggesting that post-9/11 organizational changes such as new mission priorities and the establishment of new branches were partially initiated due to a variety external pressures, which lends support for coercive isomorphism. Furthermore, structural changes are discussed in relation to the attainment and maintenance of organizational legitimacy.

Keywords: institutional theory, organizational theory, law enforcement, public administration

Procedia PDF Downloads 245
8005 An Exploratory Study of E-Learning Stakeholders’ Experiences of Developing, Implementing and Enhancing E-Courses in One Saudi University

Authors: Zahra Alqahtani

Abstract:

The use of e-learning technologies is gaining momentum in all educational institutions of the world, including Saudi universities. In the e-learning context, there is a growing need and concern among Saudi universities to improve and enhance quality assurance for e-learning systems. Practicing quality assurance activities and applying quality standards in e-learning in Saudi universities is thought to reduce the negative viewpoints of some stakeholders and ensure stakeholders’ satisfaction and needs. As a contribution to improving the quality of e-learning method in Saudi universities, the main purpose of this study is to explore and investigate strategies for the development of quality assurance in e-learning in one university in Saudi Arabia, which is considered a good reference university using the best and ongoing practices in e-learning systems among Saudi universities. In order to ensure the quality of its e-learning methods, Saudi university has adopted Quality Matters Standards as a controlling guide for the quality of its blended and full e-course electronic courses. Furthermore, quality assurance can be further improved if a variety of perspectives are taken into consideration from the comprehensive viewpoints of faculty members, administrative staff, and students.This qualitative research involved the use of different types of interviews, as well as documents that contain data related to e-learning methods in the Saudi university environment. This exploratory case study was undertaken, from the perspectives of various participants, to understand the phenomenon of quality assurance using an inductive technique.The results revealed six main supportive factors that assist in ensuring the quality of e-learning in the Saudi university environment. Essentially, these factors are institutional support, faculty member support, evaluation of faculty, quality of e-course design, technology support, and student support, which together have a remarkable positive effect on quality, forming intrinsic columns connected by bricks leading to quality e-learning. Quality Matters standards are considered to have a strong impact on improving faculty members' skills and on the development of high-quality blended and full e-courses.

Keywords: E-learning, quality assurance, quality matters standards, KKU-supportive factors

Procedia PDF Downloads 127
8004 Attachment and Self Esteem among Adolescents of Separated Parents

Authors: Aswathy Sampath

Abstract:

The study examined the levels of self esteem and attachment among adolescents of divorced and non-divorced parents. Adolescent is a period which is most prodigious yet stressful period of development in a human’s life hence it is important to study the effects on them. The study was conducted on total 60 adolescents, 30 in each group, from the area of Trivandrum, Kerala as it is the top rated in the number of divorce cases in India. The data was collected using Rosenberg’s self esteem scale and IPPA (father, mother and peer) The results of this study were analyzed using t test and found that there is no significance difference in the level of self esteem and attachment (father, mother and peer). This is due to the cultural elements that give support to the individual and also the type of family as it is much different from the west. Although, there was no significant result, there were higher mean scores in the attachment towards peer for children who are from separated family background or in other words adolescents whose parents were divorced. This tells us the essence of social support.

Keywords: adolescent, attachment, self esteem, separation

Procedia PDF Downloads 391
8003 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users

Authors: Devon Brown, Liu Chunmei

Abstract:

This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.

Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework

Procedia PDF Downloads 29
8002 Activism: An Experiential Sharing of Impacts on Businesses and Ways to Engage Activists

Authors: Lee Kar Heng

Abstract:

Activists are people who use strong actions such as public protests or social media accusations in support of or opposition to controversial issues. While activism is the act of using such vigorous campaigns and actions to achieve political or social changes by the activists, today, the pressure and stresses from activism do not only grow in terms of civil rights but also in racial justice, labour reforms, and environmental change, to name a few. Some activism acts are constructive, but many are destructive, and they affect businesses as activists direct their sights on corporations, business entities, and organizations to achieve their supporting objectives beyond reasonable means. The paper attempts to share experiences of businesses being attacked by activists and how the attacks are mitigated. In sharing, this paper will discuss the effectiveness of the activist action and ways to react to them. The positive and negative impacts caused by activists' support action against corporations are also discussed.

Keywords: activism, conflicts, business, social responsibility

Procedia PDF Downloads 83
8001 Financial Service of Financial Institution for SME in Thailand

Authors: Charawee Butbumrung

Abstract:

This research aim to study the financial service of the Thailand financial Institution, second is to identify "best practices" offered by four financial institutions, namely, Kasikornthai Bank, Bangkok Bank, Siam Commercial Bank, and Thanachart Bank. In-depth interviews with managers of financial institution and borrowers reveal best practices from each financial institution. Close monitoring of and a close relationship with borrowers appear to be important for early detection of any problem. Another aspect that may be important is building up loyalty and developing reliability among members. A close and informal relationship with borrowers may also help in monitoring and early detection of problems that may arise in non-repayment of loans. Other factors that may be considered important to the success of a financial service scheme are cooperation and coordination among various agencies that provide additional support to borrowers. Indirectly, these support systems contribute to the success of a SME in Thailand.

Keywords: best practices, financial service, financial institution, SME in Thailand

Procedia PDF Downloads 298
8000 The Role of Muslim Scholars in Promoting Islamic Education in Katsina State, Nigeria

Authors: Abdulbasit Musa Ahmad Karkarku

Abstract:

Knowledge is the best asset you can leave for your child, especially the knowledge of Islam because it facilitates success in this life and the next. This made it necessary for every Muslim male and female to acquire Islamic education. The objective of this research is to highlight the role played by Muslim scholars in promoting Islamic education in Katsina State, Nigeria. There are so many problems facing Muslim scholars in the area of study; some of these problems include a lack of government support for Muslim scholars, a lack of community support, and a lack of financial support from wealthy individuals and philanthropists. In this research, two methods were used concurrently, i.e., library and interview methods. In the library method, the researcher consulted books and other academic works. In the course of this research, parents and religious leaders were interviewed in order to collect needed data information from them. The major findings of this research have shown that the Muslim scholars in area of study have contributed tremendously toward the development of Islamic education. Also, Muslim scholars played a vital role in the promotion of Islamic education in the area of study and beyond. In view of the above, some suggestions were highlighted with the view toward solving the associated problems; the government at every level should come to the aid of these Muslim scholars in order to provide them with basic amenities. The Philanthropists and wealthy individuals should help the Muslim scholars by giving them financial assistance. Also, communities have a vital role to play in order to improve the condition of Muslim scholars by giving them more donations.

Keywords: education, Islamic, Muslim, scholars

Procedia PDF Downloads 134
7999 Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction

Authors: Riad Benelmir, Muhammad Shoaib Ahmed Khan

Abstract:

The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors.

Keywords: biomass, olive oil extraction, adsorption cooling, pyrolisis

Procedia PDF Downloads 96
7998 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 62
7997 Opportunities and Challenges for Decarbonizing Steel Production by Creating Markets for ‘Green Steel’ Products

Authors: Hasan Muslemani, Xi Liang, Kathi Kaesehage, Francisco Ascui, Jeffrey Wilson

Abstract:

The creation of a market for lower-carbon steel products, here called ‘green steel’, has been identified as an important means to support the introduction of breakthrough emission reduction technologies into the steel sector. However, the definition of what ‘green’ entails in the context of steel production, the implications on the competitiveness of green steel products in local and international markets, and the necessary market mechanisms to support their successful market penetration remain poorly explored. This paper addresses this gap by holding semi-structured interviews with international sustainability experts and commercial managers from leading steel trade associations, research institutes and steelmakers. Our findings show that there is an urgent need to establish a set of standards to define what ‘greenness’ means in the steelmaking context; standards that avoid market disruptions, unintended consequences, and opportunities for greenwashing. We also highlight that the introduction of green steel products will have implications on product competitiveness on three different levels: 1) between primary and secondary steelmaking routes, 2) with traditional, lesser green steel, and 3) with other substitutable materials (e.g. cement and plastics). This paper emphasises the need for steelmakers to adopt a transitional approach in deploying different low-carbon technologies, based on their stage of technological maturity, applicability in certain country contexts, capacity to reduce emissions over time, and the ability of the investment community to support their deployment. We further identify market mechanisms to support green steel production, including carbon border adjustments and public procurement, highlighting a need for implementing a combination of complementary policies to ensure the products’ roll-out. The study further shows that the auto industry is a likely candidate for green steel consumption, where a market would be supported by price premiums paid by willing consumers, such as those of high-end luxury vehicles.

Keywords: green steel, decarbonisation, business model innovation, market analysis

Procedia PDF Downloads 139
7996 Co-Creating an International Flipped Faculty Development Model: A US-Afghan Case Study

Authors: G. Alex Ambrose, Melissa Paulsen, Abrar Fitwi, Masud Akbari

Abstract:

In 2016, a U.S. business college was awarded a sub grant to work with FHI360, a nonprofit human development organization, to support a university in Afghanistan funded by the State Department’s U.S. Agency for International Development (USAID). A newly designed Master’s Degree in Finance and Accounting is being implemented to support Afghanistan’s goal of 20% females in higher education and industry by 2020 and to use finance and accounting international standards to attract capital investment for economic development. This paper will present a case study to describe the co-construction of an approach to an International Flipped Faculty Development Model grounded in blended learning theory. Like education in general, faculty development is also evolving from the traditional face to face environment and interactions to the fully online and now to a best of both blends. Flipped faculty development is both a means and a model for careful integration of the strengths of the synchronous and asynchronous dynamics and technologies with the combination of intentional sequencing to pre-online interactions that prepares and enhances the face to face faculty development and mentorship residencies with follow-up post-online support. Initial benefits from this model include giving the Afghan faculty an opportunity to experience and apply modern teaching and learning strategies with technology in their own classroom. Furthermore, beyond the technological and pedagogical affordances, the reciprocal benefits gained from the mentor-mentee, face-to-face relationship will be explored. Evidence to support this model includes: empirical findings from pre- and post-Faculty Mentor/ Mentee survey results, Faculty Mentorship group debriefs, Faculty Mentorship contact logs, and student early/end of semester feedback. In addition to presenting and evaluating this model, practical challenges and recommendations for replicating international flipped faculty development partnerships will be provided.

Keywords: educational development, faculty development, international development, flipped learning

Procedia PDF Downloads 193
7995 Forensic Investigation Into the Variation of Geological Properties of Soils Bintulu, Sarawak

Authors: Jaithish John

Abstract:

In this paper a brief overview is provided of the developments in interdisciplinary knowledge exchange with use of soil and geological (earth) materials in the search for evidence. The aim is to provide background information on the role and value of understanding ‘earth materials’ from the crime scene through to microscopic scale investigations to support law enforcement agencies in solving criminal and environmental concerns and investigations. This involves the sampling, analysis, interpretation and explanation presentation of all these evidences. In this context, field and laboratory methods are highlighted for the controlled / referenced sample, alibi sample and questioned sample. The aim of forensic analyses of earth materials is to associate these samples taken from a questioned source to determine if there are similar and outstanding characteristics features of earth materials crucial to support the investigation to the questioned earth materials and compare it to the controlled / referenced sample and alibi samples.

Keywords: soil, texture, grain, microscopy

Procedia PDF Downloads 87
7994 Applying Artificial Neural Networks to Predict Speed Skater Impact Concussion Risk

Authors: Yilin Liao, Hewen Li, Paula McConvey

Abstract:

Speed skaters often face a risk of concussion when they fall on the ice floor and impact crash mats during practices and competitive races. Several variables, including those related to the skater, the crash mat, and the impact position (body side/head/feet impact), are believed to influence the severity of the skater's concussion. While computer simulation modeling can be employed to analyze these accidents, the simulation process is time-consuming and does not provide rapid information for coaches and teams to assess the skater's injury risk in competitive events. This research paper promotes the exploration of the feasibility of using AI techniques for evaluating skater’s potential concussion severity, and to develop a fast concussion prediction tool using artificial neural networks to reduce the risk of treatment delays for injured skaters. The primary data is collected through virtual tests and physical experiments designed to simulate skater-mat impact. It is then analyzed to identify patterns and correlations; finally, it is used to train and fine-tune the artificial neural networks for accurate prediction. The development of the prediction tool by employing machine learning strategies contributes to the application of AI methods in sports science and has theoretical involvements for using AI techniques in predicting and preventing sports-related injuries.

Keywords: artificial neural networks, concussion, machine learning, impact, speed skater

Procedia PDF Downloads 116
7993 Noise Measurement and Awareness at Construction Site: A Case Study

Authors: Feiruz Ab'lah, Zarini Ismail, Mohamad Zaki Hassan, Siti Nadia Mohd Bakhori, Mohamad Azlan Suhot, Mohd Yusof Md. Daud, Shamsul Sarip

Abstract:

The construction industry is one of the major sectors in Malaysia. Apart from providing facilities, services, and goods it also offers employment opportunities to local and foreign workers. In fact, the construction workers are exposed to a hazardous level of noises that generated from various sources including excavators, bulldozers, concrete mixer, and piling machines. Previous studies indicated that the piling and concrete work was recorded as the main source that contributed to the highest level of noise among the others. Therefore, the aim of this study is to obtain the noise exposure during piling process and to determine the awareness of workers against noise pollution at the construction site. Initially, the reading of noise was obtained at construction site by using a digital sound level meter (SLM), and noise exposure to the workers was mapped. Readings were taken from four different distances; 5, 10, 15 and 20 meters from the piling machine. Furthermore, a set of questionnaire was also distributed to assess the knowledge regarding noise pollution at the construction site. The result showed that the mean noise level at 5m distance was more than 90 dB which exceeded the recommended level. Although the level of awareness regarding the effect of noise pollution is satisfactory, majority of workers (90%) still did not wear ear protecting device during work period. Therefore, the safety module guidelines related to noise pollution controls should be implemented to provide a safe working environment and prevent initial occupational hearing loss.

Keywords: construction, noise awareness, noise pollution, piling machine

Procedia PDF Downloads 391
7992 At the Intersection of Race and Gender in Social Work Education

Authors: LaShawnda N. Fields, Valandra

Abstract:

There remains much to learn about the experiences of Black women within social work education. Higher education, in general, has a strained relationship with this demographic and while social work has espoused a code of ethics and core values, Black women report inequitable experiences similar to those in other disciplines. Research-intensive (R-1) Carnegie-designated institutions typically have lower representation of those with historically marginalized identities; this study focuses on Black women in these schools of social work. This study presents qualitative findings from 9 in-depth interviews with Black women faculty members as well as interviews with 11 Black women doctoral students at R-1 universities. Many of the poor professional outcomes for Black women in academia are a result of their experiences with imposter syndrome and feeling as though they cannot present their authentic selves. The finding of this study highlighted the many ways imposter syndrome manifests within these study participants, from an inability to be productive to overproducing in an effort to win the respect and support of colleagues. Being scrutinized and seen as unprofessional when being authentic has led to some Black women isolating themselves and struggling to remain in academia. Other Black women have decided that regardless of the backlash they may receive, they will proudly present their authentic selves and allow their work to speak for itself rather than conform to the dominant White culture. These semi-structured, in-depth interviews shined a spotlight on the ways Black women doctoral students were denied inclusion throughout their programs. These students often believed both faculty members and peers seemed to actively work to ensure discomfort in these women. In response to these negative experiences and a lack of support, many of these Black women doctoral students created their own networks of support. These networks of support often included faculty members within social work but also beyond their discipline and outside of the academy at large. The faculty members who offered support to this demographic typically shared their race and gender identities. Both Black women faculty members and doctoral students historically have been forced to prioritize surviving, not thriving as a result of toxic environments within their schools of social work. This has negatively impacted their mental health and their levels of productivity. It is necessary for these institutions to build trust with these women by respecting their diverse backgrounds, supporting their race-related research interests, and honoring the rigor in a range of methodologies if substantial, sustainable change is to be achieved.

Keywords: education, equity, inclusion, intersectionality

Procedia PDF Downloads 83
7991 Older Adult Grandparents' Voices as a Principle Care Giver in a Skipped-Generation Family

Authors: Kerdsiri Hongthai, Darunee Jongudomkarn, Rutja Phuphaibul

Abstract:

In Thailand, many adults in rural areas migrate to seek employ¬ment resulting in skipped-generation family where grandparents care for grandchildren with no other adults present. This is a preliminary study using qualitative case study methods, aimed to explore the situations of older adult grandparents' experiences in skipped-generation family in North-East of Thailand. Data were collected by in-depth inter¬views with 6 grandparents living in skipped-generation families; 5 females and 1 males grandparents, aged 62-75, some of them have diabetes mellitus, hypertension, during November to December, 2017. The finding themes are: ‘Caught up in the middle’: the older adults were pleased to have grandchildren but, at the same time, acknowledge the burden that this placed on them, especially when the migrant children failed to send enough money back to support the family. ‘Getting bad health’: they reported to be fatigued and stressed due to burden of caring for their grandchildren without support. This situation can aggravate problems of poor health status and be worsening economic status of the grandparents. In some cases of deprivation, the grandparents feel that having to be the sole care providers of their grandchildren can negative adversely affect their mental status. It is important to find out in other sectors similar to Thailand and lead to more in-depth research to answer the research questions about policy and social support in skipped-generation family in the future.

Keywords: older adult grandparents, experiences, principle care giver, skipped-generation family

Procedia PDF Downloads 148
7990 Constant Dimension Codes via Generalized Coset Construction

Authors: Kanchan Singh, Sheo Kumar Singh

Abstract:

The fundamental problem of subspace coding is to explore the maximum possible cardinality Aq(n, d, k) of a set of k-dimensional subspaces of an n-dimensional vector space over Fq such that the subspace distance satisfies ds(W1, W2) ≥ d for any two distinct subspaces W1, W2 in this set. In this paper, we construct a new class of constant dimension codes (CDCs) by generalizing the coset construction and combining it with CDCs derived from parallel linkage construction and coset construction with an aim to improve the new lower bounds of Aq(n, d, k). We found a remarkable improvement in some of the lower bounds of Aq(n, d, k).

Keywords: constant dimension codes, rank metric codes, coset construction, parallel linkage construction

Procedia PDF Downloads 28
7989 Smart Disassembly of Waste Printed Circuit Boards: The Role of IoT and Edge Computing

Authors: Muhammad Mohsin, Fawad Ahmad, Fatima Batool, Muhammad Kaab Zarrar

Abstract:

The integration of the Internet of Things (IoT) and edge computing devices offers a transformative approach to electronic waste management, particularly in the dismantling of printed circuit boards (PCBs). This paper explores how these technologies optimize operational efficiency and improve environmental sustainability by addressing challenges such as data security, interoperability, scalability, and real-time data processing. Proposed solutions include advanced machine learning algorithms for predictive maintenance, robust encryption protocols, and scalable architectures that incorporate edge computing. Case studies from leading e-waste management facilities illustrate benefits such as improved material recovery efficiency, reduced environmental impact, improved worker safety, and optimized resource utilization. The findings highlight the potential of IoT and edge computing to revolutionize e-waste dismantling and make the case for a collaborative approach between policymakers, waste management professionals, and technology developers. This research provides important insights into the use of IoT and edge computing to make significant progress in the sustainable management of electronic waste

Keywords: internet of Things, edge computing, waste PCB disassembly, electronic waste management, data security, interoperability, machine learning, predictive maintenance, sustainable development

Procedia PDF Downloads 38
7988 Deploying a Platform as a Service Cloud Solution to Support Student Learning

Authors: Jiangping Wang

Abstract:

This presentation describes the design and implementation of PaaS (platform as a service) cloud-based labs that are used in database-related courses to teach students practical skills. Traditionally, all labs are implemented in a desktop-based environment where students have to install heavy client software to access database servers. In order to release students from that burden, we have successfully deployed the cloud-based solution to support database-related courses, from which students and teachers can practice and learn database topics in various database courses via cloud access. With its development environment, execution runtime, web server, database server, and collaboration capability, it offers a shared pool of configurable computing resources and comprehensive environment that supports students’ needs without the complexity of maintaining the infrastructure.

Keywords: PaaS, database environment, e-learning, web server

Procedia PDF Downloads 273
7987 A Framework for an Automated Decision Support System for Selecting Safety-Conscious Contractors

Authors: Rawan A. Abdelrazeq, Ahmed M. Khalafallah, Nabil A. Kartam

Abstract:

Selection of competent contractors for construction projects is usually accomplished through competitive bidding or negotiated contracting in which the contract bid price is the basic criterion for selection. The evaluation of contractor’s safety performance is still not a typical criterion in the selection process, despite the existence of various safety prequalification procedures. There is a critical need for practical and automated systems that enable owners and decision makers to evaluate contractor safety performance, among other important contractor selection criteria. These systems should ultimately favor safety-conscious contractors to be selected by the virtue of their past good safety records and current safety programs. This paper presents an exploratory sequential mixed-methods approach to develop a framework for an automated decision support system that evaluates contractor safety performance based on a multitude of indicators and metrics that have been identified through a comprehensive review of construction safety research, and a survey distributed to domain experts. The framework is developed in three phases: (1) determining the indicators that depict contractor current and past safety performance; (2) soliciting input from construction safety experts regarding the identified indicators, their metrics, and relative significance; and (3) designing a decision support system using relational database models to integrate the identified indicators and metrics into a system that assesses and rates the safety performance of contractors. The proposed automated system is expected to hold several advantages including: (1) reducing the likelihood of selecting contractors with poor safety records; (2) enhancing the odds of completing the project safely; and (3) encouraging contractors to exert more efforts to improve their safety performance and practices in order to increase their bid winning opportunities which can lead to significant safety improvements in the construction industry. This should prove useful to decision makers and researchers, alike, and should help improve the safety record of the construction industry.

Keywords: construction safety, contractor selection, decision support system, relational database

Procedia PDF Downloads 283
7986 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption and GDP for Iran: Time Series Analysis, 1980-2010

Authors: Jinhoa Lee

Abstract:

The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: Crude oil, coal, natural gas, and electricity), CO2 emissions and gross domestic product (GDP) for Iran using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen’s maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in VECM suggests that all energy consumption variables in this study have significant impacts on GDP in the long term. The consumption of petroleum products and the direct combustion of crude oil and natural gas decrease GDP, while the coal and electricity use enhanced the GDP between 1980-2010 in Iran. In the short term, only electricity use enhances the GDP as well as its long-run effects. All variables of this study, except the CO2 emissions, show significant effects on the GDP in the country for the long term. The long-run equilibrium in VECM suggests that the consumption of petroleum products and the direct combustion of crude oil and natural gas use have positive impacts on the GDP while the consumptions of electricity and coal have adverse impacts on the GDP in the long term. In the short run, electricity use enhances the GDP over period of 1980-2010 in Iran. Overall, the results partly support arguments that there are relationships between energy use and economic output, but the associations can be differed by the sources of energy in the case of Iran over period of 1980-2010. However, there is no significant relationship between the CO2 emissions and the GDP and between the CO2 emissions and the energy use both in the short term and long term.

Keywords: CO2 emissions, energy consumption, GDP, Iran, time series analysis

Procedia PDF Downloads 595
7985 Reconstructability Analysis for Landslide Prediction

Authors: David Percy

Abstract:

Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.

Keywords: reconstructability analysis, machine learning, landslides, raster analysis

Procedia PDF Downloads 73