Search results for: bi-directional long and short-term memory networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9540

Search results for: bi-directional long and short-term memory networks

7440 Predictors of Survival of Therapeutic Hypothermia Based on Analysis of a Consecutive American Inner City Population over 4 Years

Authors: Jorge Martinez, Brandon Roberts, Holly Payton Toca

Abstract:

Background: Therapeutic hypothermia (TH) is the international standard of care for all comatose patients after cardiac arrest, but criticism focuses on poor outcomes. We sought to develop criteria to identify American urban patients more likely to benefit from TH. Methods: Retrospective chart review of 107 consecutive adults undergoing TH in downtown New Orleans from 2010-2014 yielded records for 99 patients with all 44 survivors or families contacted up to four years. Results: 69 males and 38 females with a mean age of 60.2 showed 63 dead (58%) and 44 survivors (42%). Presenting cardiac rhythm was divided into shockable (Pulseless Ventricular Tachycardia, Ventricular Fibrillation) and non-shockable (Pulseless Electrical Activity, Asystole). Presenting in shockable rhythms with ROSC <20 minutes were 21 patients with 15 (71%) survivors (p=.001). Time >20 minutes until ROSC in shockable rhythms had 5 patients with 3 survivors (78%, p=0.001). Presenting in non-shockable rhythms with ROSC <20 minutes were 54 patients with 18 survivors (33%, p=.001). ROSC >20 minutes in non-shockable rhythms had 19 patients with 2 survivors (8%, p=.001). Survivors of shockable rhythms showed 19 (100%) living post TH. 15 survivors (79%, n=19, p=.001) had CPC score 1 or 2 with 4 survivors (21%, n=19) having a CPC score of 3. A total of 25 survived non-shockable rhythm. Acute survival of patients with non-shockable rhythm showed 18 expired <72 hours (72%, n=25) with long-term survival of 4 patients (5%, n=74) and CPC scores of 1 or 2 (p=.001). Interestingly, patients with time to ROSC <20 minutes exhibiting more than one loss of sustained ROSC showed 100% mortality (p=.001). Patients presenting with shockable >20 minutes ROSC had overall survival of 70% (p=.001), but those undergoing >3 cardiac rhythm changes had 100% mortality (p=.001). Conclusion: Patients presenting with shockable rhythms undergoing TH had overall acute survival of 70% followed by long-term survival of 100% after 4 years. In contrast, patients presenting with non-shockable rhythm had long-term survival of 5%. TH is not recommended for patients presenting with non-shockable rhythm and requiring greater than 20 minutes for restoration of ROSC.

Keywords: cardiac rhythm changes, Pulseless Electrical Activity (PEA), Therapeutic Hypothermia (TH)

Procedia PDF Downloads 211
7439 Investigating Non-suicidal Self-Injury Discussions on Twitter

Authors: Muhammad Abubakar Alhassan, Diane Pennington

Abstract:

Social networking sites have become a space for people to discuss public health issues such as non-suicidal self-injury (NSSI). There are thousands of tweets containing self-harm and self-injury hashtags on Twitter. It is difficult to distinguish between different users who participate in self-injury discussions on Twitter and how their opinions change over time. Also, it is challenging to understand the topics surrounding NSSI discussions on Twitter. We retrieved tweets using #selfham and #selfinjury hashtags and investigated those from the United kingdom. We applied inductive coding and grouped tweeters into different categories. This study used the Latent Dirichlet Allocation (LDA) algorithm to infer the optimum number of topics that describes our corpus. Our findings revealed that many of those participating in NSSI discussions are non-professional users as opposed to medical experts and academics. Support organisations, medical teams, and academics were campaigning positively on rais-ing self-injury awareness and recovery. Using LDAvis visualisation technique, we selected the top 20 most relevant terms from each topic and interpreted the topics as; children and youth well-being, self-harm misjudgement, mental health awareness, school and mental health support and, suicide and mental-health issues. More than 50% of these topics were discussed in England compared to Scotland, Wales, Ireland and Northern Ireland. Our findings highlight the advantages of using the Twitter social network in tackling the problem of self-injury through awareness. There is a need to study the potential risks associated with the use of social networks among self-injurers.

Keywords: self-harm, non-suicidal self-injury, Twitter, social networks

Procedia PDF Downloads 132
7438 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.

Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text

Procedia PDF Downloads 115
7437 Big Data Analysis with RHadoop

Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim

Abstract:

It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.

Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop

Procedia PDF Downloads 437
7436 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 225
7435 Structural and Functional Correlates of Reaction Time Variability in a Large Sample of Healthy Adolescents and Adolescents with ADHD Symptoms

Authors: Laura O’Halloran, Zhipeng Cao, Clare M. Kelly, Hugh Garavan, Robert Whelan

Abstract:

Reaction time (RT) variability on cognitive tasks provides the index of the efficiency of executive control processes (e.g. attention and inhibitory control) and is considered to be a hallmark of clinical disorders, such as attention-deficit disorder (ADHD). Increased RT variability is associated with structural and functional brain differences in children and adults with various clinical disorders, as well as poorer task performance accuracy. Furthermore, the strength of functional connectivity across various brain networks, such as the negative relationship between the task-negative default mode network and task-positive attentional networks, has been found to reflect differences in RT variability. Although RT variability may provide an index of attentional efficiency, as well as being a useful indicator of neurological impairment, the brain substrates associated with RT variability remain relatively poorly defined, particularly in a healthy sample. Method: Firstly, we used the intra-individual coefficient of variation (ICV) as an index of RT variability from “Go” responses on the Stop Signal Task. We then examined the functional and structural neural correlates of ICV in a large sample of 14-year old healthy adolescents (n=1719). Of these, a subset had elevated symptoms of ADHD (n=80) and was compared to a matched non-symptomatic control group (n=80). The relationship between brain activity during successful and unsuccessful inhibitions and gray matter volume were compared with the ICV. A mediation analysis was conducted to examine if specific brain regions mediated the relationship between ADHD symptoms and ICV. Lastly, we looked at functional connectivity across various brain networks and quantified both positive and negative correlations during “Go” responses on the Stop Signal Task. Results: The brain data revealed that higher ICV was associated with increased structural and functional brain activation in the precentral gyrus in the whole sample and in adolescents with ADHD symptoms. Lower ICV was associated with lower activation in the anterior cingulate cortex (ACC) and medial frontal gyrus in the whole sample and in the control group. Furthermore, our results indicated that activation in the precentral gyrus (Broadman Area 4) mediated the relationship between ADHD symptoms and behavioural ICV. Conclusion: This is the first study first to investigate the functional and structural correlates of ICV collectively in a large adolescent sample. Our findings demonstrate a concurrent increase in brain structure and function within task-active prefrontal networks as a function of increased RT variability. Furthermore, structural and functional brain activation patterns in the ACC, and medial frontal gyrus plays a role-optimizing top-down control in order to maintain task performance. Our results also evidenced clear differences in brain morphometry between adolescents with symptoms of ADHD but without clinical diagnosis and typically developing controls. Our findings shed light on specific functional and structural brain regions that are implicated in ICV and yield insights into effective cognitive control in healthy individuals and in clinical groups.

Keywords: ADHD, fMRI, reaction-time variability, default mode, functional connectivity

Procedia PDF Downloads 255
7434 Food Safety and Quality Assurance and Skills Development among Farmers in Georgia

Authors: Kakha Nadiardze, Nana Phirosmanashvili

Abstract:

The goal of this paper is to present the problems of lack of information among farmers in food safety. Global food supply chains are becoming more and more diverse, making traceability systems much harder to implement across different food markets. In this abstract, we will present our work for analyzing the key developments in Georgian food market from regulatory controls to administrative procedures to traceability technologies. Food safety and quality assurance are most problematic issues in Georgia as food trade networks become more and more complex, food businesses are under more and more pressure to ensure that their products are safe and authentic. The theme follow-up principles from farm to table must be top-of-mind for all food manufacturers, farmers and retailers. Following the E. coli breakout last year, as well as more recent cases of food mislabeling, developments in food traceability systems is essential to food businesses if they are to present a credible brand image. Alongside this are the ever-developing technologies in food traceability networks, technologies that manufacturers and retailers need to be aware of if they are to keep up with food safety regulations and avoid recall. How to examine best practice in food management is the main question in order to protect company brand through safe and authenticated food. We are working with our farmers to work with our food safety experts and technology developers throughout the food supply chain. We provide time by time food analyses on heavy metals, pesticide residues and different pollutants. We are disseminating information among farmers how the latest food safety regulations will impact the methods to use to identify risks within their products.

Keywords: food safety, GMO, LMO, E. coli, quality

Procedia PDF Downloads 514
7433 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications

Procedia PDF Downloads 123
7432 3G or 4G: A Predilection for Millennial Generation of Indian Society

Authors: Rishi Prajapati

Abstract:

3G is the abbreviation of third generation of wireless mobile telecommunication technologies. 3G is a mode that finds application in wireless voice telephony, mobile internet access, fixed wireless internet access, video calls and mobile TV. It also provides mobile broadband access to smartphones and mobile modems in laptops and computers. The first 3G networks were introduced in 1998, followed by 4G networks in 2008. 4G is the abbreviation of fourth generation of wireless mobile telecommunication technologies. 4G is termed to be the advanced form of 3G. 4G was firstly introduced in South Korea in 2007. Many abstracts have floated researches that depicted the diversity and similarity between the third and the fourth generation of wireless mobile telecommunications technology, whereas this abstract reflects the study that focuses on analyzing the preference between 3G versus 4G given by the elite group of the Indian society who are known as adolescents or the Millennial Generation aging from 18 years to 25 years. The Millennial Generation was chosen for this study as they have the easiest access to the latest technology. A sample size of 200 adolescents was selected and a structured survey was carried out which had several closed ended as well as open ended questions, to aggregate the result of this study. It was made sure that the effect of environmental factors on the subjects was as minimal as possible. The data analysis comprised of primary data collection reflecting it as quantitative research. The rationale behind this research is to give brief idea of how 3G and 4G are accepted by the Millennial Generation in India. The findings of this research would materialize a framework which depicts whether Millennial Generation would prefer 4G over 3G or vice versa.

Keywords: fourth generation, wireless telecommunication technology, Indian society, millennial generation, market research, third generation

Procedia PDF Downloads 270
7431 Assessing the Influence of Station Density on Geostatistical Prediction of Groundwater Levels in a Semi-arid Watershed of Karnataka

Authors: Sakshi Dhumale, Madhushree C., Amba Shetty

Abstract:

The effect of station density on the geostatistical prediction of groundwater levels is of critical importance to ensure accurate and reliable predictions. Monitoring station density directly impacts the accuracy and reliability of geostatistical predictions by influencing the model's ability to capture localized variations and small-scale features in groundwater levels. This is particularly crucial in regions with complex hydrogeological conditions and significant spatial heterogeneity. Insufficient station density can result in larger prediction uncertainties, as the model may struggle to adequately represent the spatial variability and correlation patterns of the data. On the other hand, an optimal distribution of monitoring stations enables effective coverage of the study area and captures the spatial variability of groundwater levels more comprehensively. In this study, we investigate the effect of station density on the predictive performance of groundwater levels using the geostatistical technique of Ordinary Kriging. The research utilizes groundwater level data collected from 121 observation wells within the semi-arid Berambadi watershed, gathered over a six-year period (2010-2015) from the Indian Institute of Science (IISc), Bengaluru. The dataset is partitioned into seven subsets representing varying sampling densities, ranging from 15% (12 wells) to 100% (121 wells) of the total well network. The results obtained from different monitoring networks are compared against the existing groundwater monitoring network established by the Central Ground Water Board (CGWB). The findings of this study demonstrate that higher station densities significantly enhance the accuracy of geostatistical predictions for groundwater levels. The increased number of monitoring stations enables improved interpolation accuracy and captures finer-scale variations in groundwater levels. These results shed light on the relationship between station density and the geostatistical prediction of groundwater levels, emphasizing the importance of appropriate station densities to ensure accurate and reliable predictions. The insights gained from this study have practical implications for designing and optimizing monitoring networks, facilitating effective groundwater level assessments, and enabling sustainable management of groundwater resources.

Keywords: station density, geostatistical prediction, groundwater levels, monitoring networks, interpolation accuracy, spatial variability

Procedia PDF Downloads 58
7430 The Impact of Neuroscience Knowledge on the Field of Education

Authors: Paula Andrea Segura Delgado, Martha Helena Ramírez-Bahena

Abstract:

Research on how the brain learns has a transcendental application in the educational context. It is crucial for teacher training to understand the nature of brain changes and their direct influence on learning processes. This communication is based on a literature review focused on neuroscience, neuroeducation, and the impact of digital technology on the human brain. Information was gathered from both English and Spanish language sources, using online journals, books and reports. The general objective was to analyze the role of neuroscience knowledge in enriching our understanding of the learning process. In fact, the authors have focused on the impact of digital technology on the human brain as well as its influence in the field of education..Neuroscience knowledge can contribute significantly to improving the training of educators and therefore educational practices. Education as an instrument of change and school as an agent of socialization, it is necessary to understand what it aims to transform: the human brain. Understanding the functioning of the human brain has important repercussions on education: this elucidates cognitive skills, psychological processes and elements that influence the learning process (memory, executive functions, emotions and the circadian cycle); helps identify psychological and neurological deficits that can impede learning processes (dyslexia, autism, hyperactivity); It allows creating environments that promote brain development and contribute to the advancement of brain capabilities in alignment with the stages of neurobiological development. The digital age presents diverse opportunities to every social environment. The frequent use of digital technology (DT) has had a significant and abrupt impact on both the cognitive abilities and physico-chemical properties of the brain, significantly influencing educational processes. Hence, educational community, with the insights from advances in neuroscience, aspire to identify the positive and negative effects of digital technology on the human brain. This knowledge helps ensure the alignment of teacher training and practices with these findings. The knowledge of neuroscience enables teachers to develop teaching methods that are aligned with the way the brain works. For example, neuroscience research has shown that digital technology is having a significant impact on the human brain (addition, anxiety, high levels of dopamine, circadian cycle disorder, decrease in attention, memory, concentration, problems with their social relationships). Therefore, it is important to understand the nature of these changes, their impact on the learning process, and how educators should effectively adapt their approaches based on these brain's changes.

Keywords: digital technology, learn process, neuroscience knowledge, neuroeducation, training proffesors

Procedia PDF Downloads 62
7429 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series

Authors: Mohammad H. Fattahi

Abstract:

Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. The noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.

Keywords: chaotic behavior, wavelet, noise reduction, river flow

Procedia PDF Downloads 468
7428 Support Systems for Vehicle Use

Authors: G. González, J. Ramírez, A. Rubiano

Abstract:

This article describes different patented systems for safe use in vehicles based on GPS technology, speed sensors, gyroscopes, maps, communication systems, and monitors, that inform the driver about traffic jam, obstruction in the road, speed limits, among others. Once the information is analyzed and contrasted to final propose new technical needs to be solved.

Keywords: GPS, information technology, telecommunications, communication networks, gyroscope, environmental pollution

Procedia PDF Downloads 468
7427 Fundamental Study on Reconstruction of 3D Image Using Camera and Ultrasound

Authors: Takaaki Miyabe, Hideharu Takahashi, Hiroshige Kikura

Abstract:

The Government of Japan and Tokyo Electric Power Company Holdings, Incorporated (TEPCO) are struggling with the decommissioning of Fukushima Daiichi Nuclear Power Plants, especially fuel debris retrieval. In fuel debris retrieval, amount of fuel debris, location, characteristics, and distribution information are important. Recently, a survey was conducted using a robot with a small camera. Progress report in remote robot and camera research has speculated that fuel debris is present both at the bottom of the Pressure Containment Vessel (PCV) and inside the Reactor Pressure Vessel (RPV). The investigation found a 'tie plate' at the bottom of the containment, this is handles on the fuel rod. As a result, it is assumed that a hole large enough to allow the tie plate to fall is opened at the bottom of the reactor pressure vessel. Therefore, exploring the existence of holes that lead to inside the RCV is also an issue. Investigations of the lower part of the RPV are currently underway, but no investigations have been made inside or above the PCV. Therefore, a survey must be conducted for future fuel debris retrieval. The environment inside of the RPV cannot be imagined due to the effect of the melted fuel. To do this, we need a way to accurately check the internal situation. What we propose here is the adaptation of a technology called 'Structure from Motion' that reconstructs a 3D image from multiple photos taken by a single camera. The plan is to mount a monocular camera on the tip of long-arm robot, reach it to the upper part of the PCV, and to taking video. Now, we are making long-arm robot that has long-arm and used at high level radiation environment. However, the environment above the pressure vessel is not known exactly. Also, fog may be generated by the cooling water of fuel debris, and the radiation level in the environment may be high. Since camera alone cannot provide sufficient sensing in these environments, we will further propose using ultrasonic measurement technology in addition to cameras. Ultrasonic sensor can be resistant to environmental changes such as fog, and environments with high radiation dose. these systems can be used for a long time. The purpose is to develop a system adapted to the inside of the containment vessel by combining a camera and an ultrasound. Therefore, in this research, we performed a basic experiment on 3D image reconstruction using a camera and ultrasound. In this report, we select the good and bad condition of each sensing, and propose the reconstruction and detection method. The results revealed the strengths and weaknesses of each approach.

Keywords: camera, image processing, reconstruction, ultrasound

Procedia PDF Downloads 104
7426 Renegotiating International Contract Clauses: The Case of Investment Environment Changes in Egypt

Authors: Marwa Zein

Abstract:

The long-term of the contract is one of the major features that distinguish international trade and investment contracts from other internal contracts. This is due to the nature of the contract and the huge works required to be performed from one hand or the desire of the parties to achieve stability in their transactions. However, long-term contracts might expose them to certain events and circumstances that impact the capability of the parties to execute their obligations pursuant to these contracts. During the year 2016, the Egyptian government has taken series of economic decisions which greatly impacted the economic and investment environment. Consequently, many contracts have encountered many problems in their execution due to such changes that greatly influence the performance of their obligation, a matter that necessitated the renegotiation of the conditions of these contracts on the basis of the unpredicted changes that could be listed under the Force Majeure Clause. The principle of fair and equitable treatment in investment placed on an obligation on the Egyptian government to consider the renegotiation of contract clauses based on the new conditions. This paper will discuss the idea of renegotiating international trade and investment contracts in Egypt with reference to the changes the economic environment has witnessed lately.

Keywords: change of circumstances, international contracts, investment contracts, renegotiation

Procedia PDF Downloads 197
7425 An Approach for Reducing Morphological Operator Dataset and Recognize Optical Character Based on Significant Features

Authors: Ashis Pradhan, Mohan P. Pradhan

Abstract:

Pattern Matching is useful for recognizing character in a digital image. OCR is one such technique which reads character from a digital image and recognizes them. Line segmentation is initially used for identifying character in an image and later refined by morphological operations like binarization, erosion, thinning, etc. The work discusses a recognition technique that defines a set of morphological operators based on its orientation in a character. These operators are further categorized into groups having similar shape but different orientation for efficient utilization of memory. Finally the characters are recognized in accordance with the occurrence of frequency in hierarchy of significant pattern of those morphological operators and by comparing them with the existing database of each character.

Keywords: binary image, morphological patterns, frequency count, priority, reduction data set and recognition

Procedia PDF Downloads 414
7424 Charter versus District Schools and Student Achievement: Implications for School Leaders

Authors: Kara Rosenblatt, Kevin Badgett, James Eldridge

Abstract:

There is a preponderance of information regarding the overall effectiveness of charter schools and their ability to increase academic achievement compared to traditional district schools. Most research on the topic is focused on comparing long and short-term outcomes, academic achievement in mathematics and reading, and locale (i.e., urban, v. Rural). While the lingering unanswered questions regarding effectiveness continue to loom for school leaders, data on charter schools suggests that enrollment increases by 10% annually and that charter schools educate more than 2 million U.S. students across 40 states each year. Given the increasing share of U.S. students educated in charter schools, it is important to better understand possible differences in student achievement defined in multiple ways for students in charter schools and for those in Independent School District (ISD) settings in the state of Texas. Data were retrieved from the Texas Education Agency’s (TEA) repository that includes data organized annually and available on the TEA website. Specific data points and definitions of achievement were based on characterizations of achievement found in the relevant literature. Specific data points include but were not limited to graduation rate, student performance on standardized testing, and teacher-related factors such as experience and longevity in the district. Initial findings indicate some similarities with the current literature on long-term student achievement in English/Language Arts; however, the findings differ substantially from other recent research related to long-term student achievement in social studies. There are a number of interesting findings also related to differences between achievement for students in charters and ISDs and within different types of charter schools in Texas. In addition to findings, implications for leadership in different settings will be explored.

Keywords: charter schools, ISDs, student achievement, implications for PK-12 school leadership

Procedia PDF Downloads 128
7423 A Conjugate Gradient Method for Large Scale Unconstrained Optimization

Authors: Mohammed Belloufi, Rachid Benzine, Badreddine Sellami

Abstract:

Conjugate gradient methods is useful for solving large scale optimization problems in scientific and engineering computation, characterized by the simplicity of their iteration and their low memory requirements. It is well known that the search direction plays a main role in the line search method. In this paper, we propose a search direction with the Wolfe line search technique for solving unconstrained optimization problems. Under the above line searches and some assumptions, the global convergence properties of the given methods are discussed. Numerical results and comparisons with other CG methods are given.

Keywords: unconstrained optimization, conjugate gradient method, strong Wolfe line search, global convergence

Procedia PDF Downloads 421
7422 An Investigation of the Association between Pathological Personality Dimensions and Emotion Dysregulation among Virtual Network Users: The Mediating Role of Cyberchondria Behaviors

Authors: Mehdi Destani, Asghar Heydari

Abstract:

Objective: The present study aimed to investigate the association between pathological personality dimensions and emotion dysregulation through the mediating role of Cyberchondria behaviors among users of virtual networks. Materials and methods: A descriptive–correlational research method was used in this study, and the statistical population consisted of all people active on social network sites in 2020. The sample size was 300 people who were selected through Convenience Sampling. Data collection was carried out in a survey method using online questionnaires, including the "Difficulties in Emotion Regulation Scale" (DERS), Personality Inventory for DSM-5 Brief Form (PID-5-BF), and Cyberchondria Severity Scale Brief Form (CSS-12). Data analysis was conducted using Pearson's Correlation Coefficient and Structural Equation Modeling (SEM). Findings: Findings suggested that pathological personality dimensions and Cyberchondria behaviors have a positive and significant association with emotion dysregulation (p<0.001). The presented model had a good fit with the data. The variable “pathological personality dimensions” with an overall effect (p<0.001, β=0.658), a direct effect (p<0.001, β=0.528), and an indirect mediating effect through Cyberchondria Behaviors (p<.001), β=0.130), accounted for emotion dysregulation among virtual network users. Conclusion: The research findings showed a necessity to pay attention to the pathological personality dimensions as a determining variable and Cyberchondria behaviors as a mediator in the vulnerability of users of social network sites to emotion dysregulation.

Keywords: cyberchondria, emotion dysregulation, pathological personality dimensions, social networks

Procedia PDF Downloads 104
7421 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives

Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic

Abstract:

The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).

Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences

Procedia PDF Downloads 319
7420 A Comparative Study of Costumes for Religious Festivals in ASEAN Countries

Authors: Jaruphan Supprung

Abstract:

Aims of this research were to study the major religious festivals of merit making and joyful celebrations (nationwide) in each country of ASEAN countries and to compare the costumes for these major religious festivals among these countries. This documentary research employed qualitative research methodology. The findings of the research disclosed that there are 28 main religious festivals in ASEAN countries: 3 Islamic festivals in Brunei Darussalam such as Hari Raya Aidiladha Festival, Mauludin Nabi Festival and Hari Raya Aidilfitri Festival; 2 Buddhist festivals in Cambodia such as Pchum Ben Festival and Khmer New Year Festival; 3 Islamic festivals in Indonesia such as Eid al-Adha Festival, Maulid Nabi Festival and Eid ul-Fitr Festival; 5 Buddhist festivals in Laos such as Boun Awk Pansa Festival, Boun Pha Vet Festival, Boun Pi Mai Festival, Boun Khao Pradabdin Festival and Boun Khao Salak Festival; 3 Islamic festivals in Malaysia such as Hari Raya Aidil Adha Festival, Maulidur Rasul Festival and Hari Raya Aidilfitri Festival; 4 Buddhist festivals in Myanmar such as Thadingyut Festival, Tazaungmon Full Moon Festival, Htamane Festival, and Thingyan Festival; 2 Christian festivals in Philippines such as Christmas Festival and Feast of the Santo Niño; Only 1 Buddhist festival in Singapore: Festival of Vesak Day; 4 Buddhist festivals in Thailand such as Songkran Festival (Thai New Year), Sart Thai Festival, Khao Pansa Festival and Awk Pansa Festival; and only 1 Buddhist festival in Vietnam: Tet Nguyen Dan Festival. For the comparison of the costumes for these major religious festivals, it can be concluded that the most popular style of male costume for religious festivals in ASEAN countries consists of stand-up collar (100%), long sleeves (100%), shirt (90%), and long pants (100%), and the most popular style of male costume for religious festivals in ASEAN countries consists of round neck (90%), long sleeves (80%), blouse (60%), and maxi tube skirt (80%).

Keywords: costume, religious festival, ASEAN countries, visual and performing arts

Procedia PDF Downloads 300
7419 Migration in Times of Uncertainty

Authors: Harman Jaggi, David Steinsaltz, Shripad Tuljapurkar

Abstract:

Understanding the effect of fluctuations on populations is crucial in the context of increasing habitat fragmentation, climate change, and biological invasions, among others. Migration in response to environmental disturbances enables populations to escape unfavorable conditions, benefit from new environments and thereby ride out fluctuations in variable environments. Would populations disperse if there is no uncertainty? Karlin showed in 1982 that when sub-populations experience distinct but fixed growth rates at different sites, greater mixing of populations will lower the overall growth rate relative to the most favorable site. Here we ask if and when environmental variability favors migration over no-migration. Specifically, in random environments, would a small amount of migration increase the overall long-run growth rate relative to the zero migration case? We use analysis and simulations to show how long-run growth rate changes with migration rate. Our results show that when fitness (dis)advantages fluctuate over time across sites, migration may allow populations to benefit from variability. When there is one best site with highest growth rate, the effect of migration on long-run growth rate depends on the difference in expected growth between sites, scaled by the variance of the difference. When variance is large, there is a substantial probability of an inferior site experiencing higher growth rate than its average. Thus, a high variance can compensate for a difference in average growth rates between sites. Positive correlations in growth rates across sites favor less migration. With multiple sites and large fluctuations, the length of shortest cycle (excursion) from the best site (on average) matters, and we explore the interplay between excursion length, average differences between sites and the size of fluctuations. Our findings have implications for conservation biology: even when there are superior sites in a sea of poor habitats, variability and habitat quality across space may be key to determining the importance of migration.

Keywords: migration, variable-environments, random, dispersal, fluctuations, habitat-quality

Procedia PDF Downloads 139
7418 Learning Based on Computer Science Unplugged in Computer Science Education: Design, Development, and Assessment

Authors: Eiko Takaoka, Yoshiyuki Fukushima, Koichiro Hirose, Tadashi Hasegawa

Abstract:

Although all high school students in Japan are required to learn informatics, many of them do not learn this topic sufficiently. In response to this situation, we propose a support package for high school informatics classes. To examine what students learned and if they sufficiently understood the context of the lessons, a questionnaire survey was distributed to 186 students. We analyzed the results of the questionnaire and determined the weakest units, which were “basic computer configuration” and “memory and secondary storage”. We then developed a package for teaching these units. We propose that our package be applied in high school classrooms.

Keywords: computer science unplugged, computer science outreach, high school curriculum, experimental evaluation

Procedia PDF Downloads 387
7417 Convolutional Neural Networks-Optimized Text Recognition with Binary Embeddings for Arabic Expiry Date Recognition

Authors: Mohamed Lotfy, Ghada Soliman

Abstract:

Recognizing Arabic dot-matrix digits is a challenging problem due to the unique characteristics of dot-matrix fonts, such as irregular dot spacing and varying dot sizes. This paper presents an approach for recognizing Arabic digits printed in dot matrix format. The proposed model is based on Convolutional Neural Networks (CNN) that take the dot matrix as input and generate embeddings that are rounded to generate binary representations of the digits. The binary embeddings are then used to perform Optical Character Recognition (OCR) on the digit images. To overcome the challenge of the limited availability of dotted Arabic expiration date images, we developed a True Type Font (TTF) for generating synthetic images of Arabic dot-matrix characters. The model was trained on a synthetic dataset of 3287 images and 658 synthetic images for testing, representing realistic expiration dates from 2019 to 2027 in the format of yyyy/mm/dd. Our model achieved an accuracy of 98.94% on the expiry date recognition with Arabic dot matrix format using fewer parameters and less computational resources than traditional CNN-based models. By investigating and presenting our findings comprehensively, we aim to contribute substantially to the field of OCR and pave the way for advancements in Arabic dot-matrix character recognition. Our proposed approach is not limited to Arabic dot matrix digit recognition but can also be extended to text recognition tasks, such as text classification and sentiment analysis.

Keywords: computer vision, pattern recognition, optical character recognition, deep learning

Procedia PDF Downloads 93
7416 Volcanoscape Space Configuration Zoning Based on Disaster Mitigation by Utilizing GIS Platform in Mt. Krakatau Indonesia

Authors: Vega Erdiana Dwi Fransiska, Abyan Rai Fauzan Machmudin

Abstract:

Particularly, space configuration zoning is the very first juncture of a complete space configuration and region planning. Zoning is aimed to define discrete knowledge based on a local wisdom. Ancient predecessor scientifically study the sign of natural disaster towards ethnography approach by operating this knowledge. There are three main functions of space zoning, which are control function, guidance function, and additional function. The control function refers to an instrument for development control and as one of the essentials in controlling land use. Hence, the guidance function indicates as guidance for proposing operational planning and technical development or land usage. Any additional function is useful as a supplementary for region or province planning details. This phase likewise accredits to define boundary in an open space based on geographical appearance. Informant who is categorized as an elder lives in earthquake prone area, to be precise the area is the surrounding of Mount Krakatau. The collected data is one of method for analyzed with thematic model. Later on, it will be verified. In space zoning, long-range distance sensor is applied to determine visualization of the area, which will be zoned before the step of survey to validate the data. The data, which is obtained from long-range distance sensor and site survey, will be overlaid using GIS Platform. Comparing the knowledge based on a local wisdom that is well known by elderly in that area, some of it is relevant to the research, while the others are not. Based on the site survey, the interpretation of a long-range distance sensor, and determining space zoning by considering various aspects resulted in the pattern map of space zoning. This map can be integrated with disaster mitigation affected by volcano eruption.

Keywords: elderly, GIS platform, local wisdom, space zoning

Procedia PDF Downloads 254
7415 A Review of Brain Implant Device: Current Developments and Applications

Authors: Ardiansyah I. Ryan, Ashsholih K. R., Fathurrohman G. R., Kurniadi M. R., Huda P. A

Abstract:

The burden of brain-related disease is very high. There are a lot of brain-related diseases with limited treatment result and thus raise the burden more. The Parkinson Disease (PD), Mental Health Problem, or Paralysis of extremities treatments had risen concern, as the patients for those diseases usually had a low quality of life and low chance to recover fully. There are also many other brain or related neural diseases with the similar condition, mainly the treatments for those conditions are still limited as our understanding of the brain function is insufficient. Brain Implant Technology had given hope to help in treating this condition. In this paper, we examine the current update of the brain implant technology. Neurotechnology is growing very rapidly worldwide. The United States Food and Drug Administration (FDA) has approved the use of Deep Brain Stimulation (DBS) as a brain implant in humans. As for neural implant both the cochlear implant and retinal implant are approved by FDA too. All of them had shown a promising result. DBS worked by stimulating a specific region in the brain with electricity. This device is planted surgically into a very specific region of the brain. This device consists of 3 main parts: Lead (thin wire inserted into the brain), neurostimulator (pacemaker-like device, planted surgically in the chest) and an external controller (to turn on/off the device by patient/programmer). FDA had approved DBS for the treatment of PD, Pain Management, Epilepsy and Obsessive Compulsive Disorder (OCD). The target treatment of DBS in PD is to reduce the tremor and dystonia symptoms. DBS has been showing the promising result in animal and limited human trial for other conditions such as Alzheimer, Mental Health Problem (Major Depression, Tourette Syndrome), etc. Every surgery has risks of complications, although in DBS the chance is very low. DBS itself had a very satisfying result as long as the subject criteria to be implanted this device based on indication and strictly selection. Other than DBS, there are several brain implant devices that still under development. It was included (not limited to) implant to treat paralysis (In Spinal Cord Injury/Amyotrophic Lateral Sclerosis), enhance brain memory, reduce obesity, treat mental health problem and treat epilepsy. The potential of neurotechnology is unlimited. When brain function and brain implant were fully developed, it may be one of the major breakthroughs in human history like when human find ‘fire’ for the first time. Support from every sector for further research is very needed to develop and unveil the true potential of this technology.

Keywords: brain implant, deep brain stimulation (DBS), deep brain stimulation, Parkinson

Procedia PDF Downloads 155
7414 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks

Authors: Lei Zhu, Nan Li

Abstract:

Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.

Keywords: springback, cold stamping, convolutional neural networks, machine learning

Procedia PDF Downloads 149
7413 Theoretical Modeling of Self-Healing Polymers Crosslinked by Dynamic Bonds

Authors: Qiming Wang

Abstract:

Dynamic polymer networks (DPNs) crosslinked by dynamic bonds have received intensive attention because of their special crack-healing capability. Diverse DPNs have been synthesized using a number of dynamic bonds, including dynamic covalent bond, hydrogen bond, ionic bond, metal-ligand coordination, hydrophobic interaction, and others. Despite the promising success in the polymer synthesis, the fundamental understanding of their self-healing mechanics is still at the very beginning. Especially, a general analytical model to understand the interfacial self-healing behaviors of DPNs has not been established. Here, we develop polymer-network based analytical theories that can mechanistically model the constitutive behaviors and interfacial self-healing behaviors of DPNs. We consider that the DPN is composed of interpenetrating networks crosslinked by dynamic bonds. bonds obey a force-dependent chemical kinetics. During the self-healing process, we consider the The network chains follow inhomogeneous chain-length distributions and the dynamic polymer chains diffuse across the interface to reform the dynamic bonds, being modeled by a diffusion-reaction theory. The theories can predict the stress-stretch behaviors of original and self-healed DPNs, as well as the healing strength in a function of healing time. We show that the theoretically predicted healing behaviors can consistently match the documented experimental results of DPNs with various dynamic bonds, including dynamic covalent bonds (diarylbibenzofuranone and olefin metathesis), hydrogen bonds, and ionic bonds. We expect our model to be a powerful tool for the self-healing community to invent, design, understand, and optimize self-healing DPNs with various dynamic bonds.

Keywords: self-healing polymers, dynamic covalent bonds, hydrogen bonds, ionic bonds

Procedia PDF Downloads 187
7412 Civic Participation as a Promoter of Active Ageing in Europe

Authors: Andrea Vega-Tinoco, Ana I. Gil-Lacruz, Marta Gil-Lacruz

Abstract:

The main objective of this research is to acknowledge whether civic participation affects the well-being of the elderly, thus being a key activity of active aging. It is also of interest to recognize any differences among genders, generational cohorts or country of residence. If a positive relationship is found between civic participation and well-being, the actions that promote this participation will benefit the quality of life of senior citizens. Otherwise, independent action must be taken in the improvement of social and human capital. The sample consists of approximately 50.000 individuals from the European Social Survey (2002-2016). Only individuals born before 1965 in 15 European countries were considered. The sample was distributed according to gender, year of birth, country, level of studies and ESS wave to form pseudo-panel data cohorts, leaving a total of 1.318 observations. The data were analyzed through a Cross-Lagged Model using Fixed-Effects. A bidirectional association is observed between the civic participation and well-being variables. However, participating in the past seems to have a higher impact on today’s health, happiness and life satisfaction than the other way around. Furthermore, 26% of the respondents expressed to be satisfied with their life, 27% to be happy and 57% to have good health. On the other hand, 49% have participated civically in the last year, being the most common activities: signing petitions, boycotting products and volunteer work in non-political organizations. A slight trend of BabyBoomers and men towards greater participation can be observed, as well as a higher impact of this participation on their well-being. In addition, international differences exhibit a stronger relation for Nordic, East European and Mediterranean countries. The given results support the hypothesis that civic participation is a promoter of well-being for the elderly. This paper positively highlights the activity of involving in political and non-political organizations, as well as wearing badges. At any rate, almost all forms of civic participation show a positive relationship with well-being and should therefore be promoted, although differences between countries must be taken into consideration.

Keywords: active aging, civic participation, Europe, well-being

Procedia PDF Downloads 83
7411 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective

Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli

Abstract:

In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.

Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks

Procedia PDF Downloads 82