Search results for: high conservation value area
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26439

Search results for: high conservation value area

5379 Ovarian Hormones and Antioxidants Biomarkers in Dromedary Camels Synchronized with Controlled Intravaginal Drug Release/Ovsynch GPG Program during Breeding Season

Authors: Heba Hozyen, Ragab Mohamed, Amal Abd El Hameed, Amal Abo El-Maaty

Abstract:

This study aimed to investigate the effect of CIDR and ovsynch (Gonadotropin-prostaglandine-gonadotropin GPG) protocols for synchronization of follicular waves of dromedary camels on ovarian hormones, oxidative stress and conception during breeding season. Twelve dark colored dromedary camels were divided into two equal groups. The first group was subjected to CIDR insertion for 7 days and blood samples were collected each other day from the day of CIDR insertion (day 0) till day 21. The other group was subjected to GPG system (Ovsynch) and blood samples were collected daily for 11 days. Progesterone (P4) and estradiol were assayed using commercial ELISA diagnostic EIA kits. Catalase (CAT), total antioxidants capacity (TAC), glutathione reduced (GHD), lipid peroxide product (malondialdehyde, MDA) and nitric oxide (NO) were measured colorimetrically using spectrophotometer. Results revealed that CIDR treated camels had significantly high P4 (P= 0.0001), estradiol (P= 0.0001), CAT (P= 0.034), NO (P= 0.016) and TAC (P= 0.04) but significantly low MDA (P= 0.001) and GHD (P= 0.003) compared to GPG treated ones. Camels inserted with CIDR had higher conception rate (66.7%) compared to those treated with GPG (33%). In conclusion, camels treated with CIDR had higher hormonal response and antioxidant capacity than those synchronized with GPG which positively reflected on their conception rate. The better response of camels to CIDR and the higher conception compared to GPG protocol recommends its use for future reproductive management in camels.

Keywords: antioxidants, camel, CIDR, season, steroid hormones

Procedia PDF Downloads 274
5378 Iris Cancer Detection System Using Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Iris cancer, so called intraocular melanoma is a cancer that starts in the iris; the colored part of the eye that surrounds the pupil. There is a need for an accurate and cost-effective iris cancer detection system since the available techniques used currently are still not efficient. The combination of the image processing and artificial neural networks has a great efficiency for the diagnosis and detection of the iris cancer. Image processing techniques improve the diagnosis of the cancer by enhancing the quality of the images, so the physicians diagnose properly. However, neural networks can help in making decision; whether the eye is cancerous or not. This paper aims to develop an intelligent system that stimulates a human visual detection of the intraocular melanoma, so called iris cancer. The suggested system combines both image processing techniques and neural networks. The images are first converted to grayscale, filtered, and then segmented using prewitt edge detection algorithm to detect the iris, sclera circles and the cancer. The principal component analysis is used to reduce the image size and for extracting features. Those features are considered then as inputs for a neural network which is capable of deciding if the eye is cancerous or not, throughout its experience adopted by many training iterations of different normal and abnormal eye images during the training phase. Normal images are obtained from a public database available on the internet, “Mile Research”, while the abnormal ones are obtained from another database which is the “eyecancer”. The experimental results for the proposed system show high accuracy 100% for detecting cancer and making the right decision.

Keywords: iris cancer, intraocular melanoma, cancerous, prewitt edge detection algorithm, sclera

Procedia PDF Downloads 486
5377 Radiosensitization Properties of Gold Nanoparticles in Brachytherapy of Uterus Cancer by High Dose Rate I-125 Seed: A Simulation Study by MCNPX and MCNP6 Codes

Authors: Elham Mansouri, Asghar Mesbahi

Abstract:

Purpose: In the current study, we aimed to investigate the macroscopic and microscopic dose enhancement effect of metallic nanoparticles in interstitial brachytherapy of uterus cancer by Iodin-125 source using a nano-lattice model in MCNPX (5) and MCNP6.1 codes. Materials and methods: Based on a nano-lattice simulation model containing a radiation source and a tumor tissue with cellular compartments loaded with 7mg/g spherical nanoparticles (bismuth, gold, and gadolinium), the energy deposited by the secondary electrons in microscopic and macroscopic level was estimated. Results: The results show that the values of macroscopic DEF is higher than microscopic DEF values and the macroscopic DEF values decreases as a function of distance from the brachytherapy source surface. Also, the results revealed a remarkable discrepancy between the DEF and secondary electron spectra calculated by MCNPX (5) and MCNP6.1 codes, which could be justified by the difference in energy cut-off and electron transport algorithms of two codes. Conclusion: According to the both MCNPX (5) and MCNP6.1 outputs, it could be concluded that the presence of metallic nanoparticles in the tumor tissue of uteruscancer increases the physical effectiveness of brachytherapy by I-125 source. The results presented herein give a physical view of radiosensitization potential of different metallic nanoparticles and could be considered in design of analytical and experimental radiosensitization studies in tumor regions using various radiotherapy modalities in the presence of heavy nanomaterials.

Keywords: MCNPX, MCNP6, nanoparticle, brachytherapy

Procedia PDF Downloads 88
5376 Participation in Co-Curricular Activities of Undergraduate Nursing Students Attending the Leadership Promoting Program Based on Self-Directed Learning Approach

Authors: Porntipa Taksin, Jutamas Wongchan, Amornrat Karamee

Abstract:

The researchers’ experience of student affairs in 2011-2013, we found that few undergraduate nursing students become student association members who participated in co-curricular activities, they have limited skill of self-directed-learning and leadership. We developed “A Leadership Promoting Program” using Self-Directed Learning concept. The program included six activities: 1) Breaking the ice, Decoding time, Creative SMO, Know me-Understand you, Positive thinking, and Creative dialogue, which include four aspects of these activities: decision-making, implementation, benefits, and evaluation. The one-group, pretest-posttest quasi-experimental research was designed to examine the effects of the program on participation in co-curricular activities. Thirty five students participated in the program. All were members of the board of undergraduate nursing student association of Boromarajonani College of Nursing, Chonburi. All subjects completed the questionnaire about participation in the activities at beginning and at the end of the program. Data were analyzed using descriptive statistics and dependent t-test. The results showed that the posttest scores of all four aspects mean were significantly higher than the pretest scores (t=3.30, p<.01). Three aspects had high mean scores, Benefits (Mean = 3.24, S.D. = 0.83), Decision-making (Mean = 3.21, S.D. = 0.59), and Implementation (Mean=3.06, S.D.=0.52). However, scores on evaluation falls in moderate scale (Mean = 2.68, S.D. = 1.13). Therefore, the Leadership Promoting Program based on Self-Directed Learning Approach could be a method to improve students’ participation in co-curricular activities and leadership.

Keywords: participation in co-curricular activities, undergraduate nursing students, leadership promoting program, self-directed learning

Procedia PDF Downloads 339
5375 Study of Suezmax Shuttle Tanker Energy Efficiency for Operations at the Brazilian Pre-Salt Region

Authors: Rodrigo A. Schiller, Rubens C. Da Silva, Kazuo Nishimoto, Claudio M. P. Sampaio

Abstract:

The need to reduce fossil fuels consumption due to the current scenario of trying to restrain global warming effects and reduce air pollution is dictating a series of transformations in shipping. This study introduces, at first, the changes of the regulatory framework concerning gas emissions control and fuel consumption efficiency on merchant ships. Secondly, the main operational procedures with high potential reduction of fuel consumption are discussed, with focus on existing vessels, using ship speed reduction procedure. This procedure shows the positive impacts on both operating costs reduction and also on energy efficiency increase if correctly applied. Finally, a numerical analysis of the fuel consumption variation with the speed was carried out for a Suezmax class oil tanker, which has been adapted to oil offloading operations for FPSOs in Brazilian offshore oil production systems. In this analysis, the discussions about the variations of vessel energy efficiency from small speed rate reductions and the possible applications of this improvement, taking into account the typical operating profile of the vessel in such a way to have significant economic impacts on the operation. This analysis also evaluated the application of two different numerical methods: one based only on regression equations produced by existing data, semi-empirical method, and another using a CFD simulations for estimating the hull shape parameters that are most relevant for determining fuel consumption, analyzing inaccuracies and impact on the final results.

Keywords: energy efficiency, offloading operations, speed reduction, Suezmax oil tanker

Procedia PDF Downloads 516
5374 A Transient Coupled Numerical Analysis of the Flow of Magnetorheological Fluids in Closed Domains

Authors: Wael Elsaady, S. Olutunde Oyadiji, Adel Nasser

Abstract:

The non-linear flow characteristics of magnetorheological (MR) fluids in MR dampers are studied via a coupled numerical approach that incorporates a two-phase flow model. The approach couples the Finite Element (FE) modelling of the damper magnetic circuit, with the Computational Fluid Dynamics (CFD) analysis of the flow field in the damper. The two-phase flow CFD model accounts for the effect of fluid compressibility due to the presence of liquid and gas in the closed domain of the damper. The dynamic mesh model included in ANSYS/Fluent CFD solver is used to simulate the movement of the MR damper piston in order to perform the fluid excitation. The two-phase flow analysis is studied by both Volume-Of-Fluid (VOF) model and mixture model that are included in ANSYS/Fluent. The CFD models show that the hysteretic behaviour of MR dampers is due to the effect of fluid compressibility. The flow field shows the distributions of pressure, velocity, and viscosity contours. In particular, it shows the high non-Newtonian viscosity in the affected fluid regions by the magnetic field and the low Newtonian viscosity elsewhere. Moreover, the dependence of gas volume fraction on the liquid pressure inside the damper is predicted by the mixture model. The presented approach targets a better understanding of the complicated flow characteristics of viscoplastic fluids that could be applied in different applications.

Keywords: viscoplastic fluid, magnetic FE analysis, computational fluid dynamics, two-phase flow, dynamic mesh, user-defined functions

Procedia PDF Downloads 157
5373 In-silico Antimicrobial Activity of Bioactive Compounds of Ricinus communis against DNA Gyrase of Staphylococcus aureus as Molecular Target

Authors: S. Rajeswari

Abstract:

Medicinal Plant extracts and their bioactive compounds have been used for antimicrobial activities and have significant remedial properties. In the recent years, a wide range of investigations have been carried out throughout the world to confirm antimicrobial properties of different medicinally important plants. A number of plants showed efficient antimicrobial activities, which were comparable to that of synthetic standard drugs or antimicrobial agents. The large family Euphorbiaceae contains nearly about 300 genera and 7,500 speciesand one among is Ricinus communis or castor plant which has high traditional and medicinal value for disease free healthy life. Traditionally the plant is used as laxative, purgative, fertilizer and fungicide etc. whereas the plant possess beneficial effects such as anti-oxidant, antihistamine, antinociceptive, antiasthmatic, antiulcer, immunomodulatory anti diabetic, hepatoprotective, anti inflammatory, antimicrobial, and many other medicinal properties. This activity of the plant possess due to the important phytochemical constituents like flavonoids, saponins, glycosides, alkaloids and steroids. The presents study includes the phytochemical properties of Ricinus communis and to prediction of the anti-microbial activity of Ricinus communis using DNA gyrase of Staphylococcus aureus as molecular target. Docking results of varies chemicals compounds of Ricinus communis against DNA gyrase of Staphylococcus aureus by maestro 9.8 of Schrodinger show that the phytochemicals are effective against the target protein DNA gyrase. our studies suggest that the phytochemical from Ricinus communis such has INDICAN (G.Score 4.98) and SUPLOPIN-2(G.Score 5.74) can be used as lead molecule against Staphylococcus infections.

Keywords: euphorbiaceae, antimicrobial activity, Ricinus communis, Staphylococcus aureus

Procedia PDF Downloads 467
5372 Millennials' Viewpoints about Sustainable Hotels' Practices in Egypt: Promoting Responsible Consumerism

Authors: Jailan Mohamed El Demerdash

Abstract:

Millennials are a distinctive and dominant consumer group whose behavior, preferences and purchase decisions are broadly explored but not fully understood yet. Making up the largest market segment in the world, and in Egypt, they have the power to reinvent the hospitality industry and contribute to forming prospective demand for green hotels by showing willingness to adopting their environmental-friendly practices. The current study aims to enhance better understanding of Millennials' perception about sustainable initiatives and to increase the prediction power of their intentions regarding green hotel practices in Egypt. In doing so, the study is exploring the relation among different factors; Millennials' environmental awareness, their acceptance of green practices and their willingness to pay more for them. Millennials' profile, their preferences and environmental decision-making process are brought under light to stimulate actions of hospitality decision-makers and hoteliers. Bearing in mind that responsible consumerism is depending on understanding the different influences on consumption. The study questionnaire was composed of four sections and it was distributed to random Egyptian travelers' blogs and Facebook groups, with approximately 8000 members. Analysis of variance test (ANOVA) was used to examine the study variables. The findings indicated that Millennials' environmental awareness will not be a significant factor in their acceptance of hotel green practices, as well as, their willingness to pay more for them. However, Millennials' acceptance of the level of hotel green practices will have an impact on their willingness to pay more. Millennials were found to have a noticeable level of environmental awareness but lack commitment to tolerating hotel green practices and their associated high prices.

Keywords: millennials, environment, awareness, paying more

Procedia PDF Downloads 130
5371 The Effect of Exercise, Reflexology and Chrome on Metabolic Syndrome

Authors: F. Arslan, S.D. Guven, A. Özcan, H. Vatansev, Ö. Taşgin

Abstract:

Weight, hypertension and dyslipidemia control and increased physical activity are required for the treatment of metabolic syndrome (METS). The purpose of this study was to investigate the effect of core exercise, reflexology and intake chrome picolinate on METS. This study comprised a twelve-week randomized controlled trial. A total of 25 university workers with metabolic risk factors participated in this study voluntarily. They were randomly divided into three groups: Those undertaking a core exercise program (n=7), reflexology intervention group (n=8) and intake chrome group (n=10). The subjects took part in a core exercise program for one hour per day, three days a week and a reflexology interfered for thirty minutes per day, one days a week and chrome group took chrome picolinate every day in week for twelve weeks. The components of metabolic syndrome were analyzed before and after the completion of all the intervention. There were significant differences at pre-prandial blood glucose in the core exercise group and at systolic blood pressure in chrome group after the twelve week interventions (p < 0.005). While High Density Lipoprotein (HDL) excluding the components of METS decreased after the interventions on the all groups; levels of HDL and the other components of METS decreased in reflexology group. There was a clear response to the twelve-week interventions in terms of METS control. Besides, the reflexology intervention should not be applied to individuals with low HDL levels and core exercise and intake chrome picolinate suggested to improve the components of METS.

Keywords: blood pressure, body mass index, exercise, METS, pre-prandial blood glucose

Procedia PDF Downloads 432
5370 Effect of Burdock Root Extract Concentration on Physiochemical Property of Coated Jasmine Rice by Using Top-Spay Fluidized Bed Coating Technique

Authors: Donludee Jaisut, Norihisa Kato, Thanutchaporn Kumrungsee, Kiyoshi Kawai, Somkiat Prachayawarakorn, Patchalee Tungtrakul

Abstract:

Jasmine Rice is a principle food of Thai people. However, glycemic index of jasmine rice is in high level, risk of type II diabetes after consuming. Burdock root is a good source of non-starch polysaccharides such as inulin. Inulin acts as prebiotic and helps reduce blood-sugar level. The purpose of this research was to reduce digestion rate of jasmine rice by coating burdock root extract on rice surface, using top-spay fluidized bed coating technique. Coating experiments were performed by spraying burdock root solution onto Jasmine rice kernels (Khao Dawk Mali-105; KDML), which had an initial moisture content of 11.6% wet basis, suspended in the fluidized bed. The experimental conditions were: solution spray rates of 31.7 mL/min, atomization pressure of 1.5 bar, spray time of 10 min, time of drying after spraying of 30 s, superficial air velocity of 3.2 m/s and drying temperatures of 60°C. The coated rice quality was evaluated in terms of the moisture content, texture, whiteness and digestion rate. The results showed that initial and final moisture contents of samples were the same in concentration 8% (v/v) and 10% (v/v). The texture was insignificantly changed from that of uncoated sample. The whiteness values were varied on concentration of burdock root extract. Coated samples were slower digested.

Keywords: burdock root, digestion, drying, rice

Procedia PDF Downloads 279
5369 Interaction Evaluation of Silver Ion and Silver Nanoparticles with Dithizone Complexes Using DFT Calculations and NMR Analysis

Authors: W. Nootcharin, S. Sujittra, K. Mayuso, K. Kornphimol, M. Rawiwan

Abstract:

Silver has distinct antibacterial properties and has been used as a component of commercial products with many applications. An increasing number of commercial products cause risks of silver effects for human and environment such as the symptoms of Argyria and the release of silver to the environment. Therefore, the detection of silver in the aquatic environment is important. The colorimetric chemosensor is designed by the basic of ligand interactions with a metal ion, leading to the change of signals for the naked-eyes which are very useful method to this application. Dithizone ligand is considered as one of the effective chelating reagents for metal ions due to its high selectivity and sensitivity of a photochromic reaction for silver as well as the linear backbone of dithizone affords the rotation of various isomeric forms. The present study is focused on the conformation and interaction of silver ion and silver nanoparticles (AgNPs) with dithizone using density functional theory (DFT). The interaction parameters were determined in term of binding energy of complexes and the geometry optimization, frequency of the structures and calculation of binding energies using density functional approaches B3LYP and the 6-31G(d,p) basis set. Moreover, the interaction of silver–dithizone complexes was supported by UV–Vis spectroscopy, FT-IR spectrum that was simulated by using B3LYP/6-31G(d,p) and 1H NMR spectra calculation using B3LYP/6-311+G(2d,p) method compared with the experimental data. The results showed the ion exchange interaction between hydrogen of dithizone and silver atom, with minimized binding energies of silver–dithizone interaction. However, the result of AgNPs in the form of complexes with dithizone. Moreover, the AgNPs-dithizone complexes were confirmed by using transmission electron microscope (TEM). Therefore, the results can be the useful information for determination of complex interaction using the analysis of computer simulations.

Keywords: silver nanoparticles, dithizone, DFT, NMR

Procedia PDF Downloads 194
5368 Influence of Yield Stress and Compressive Strength on Direct Shear Behaviour of Steel Fibre-Reinforced Concrete

Authors: Bensaid Boulekbache, Mostefa Hamrat, Mohamed Chemrouk, Sofiane Amziane

Abstract:

This study aims in examining the influence of the paste yield stress and compressive strength on the behaviour of fibre-reinforced concrete (FRC) versus direct shear. The parameters studied are the steel fibre contents, the aspect ratio of fibres and the concrete strength. Prismatic specimens of dimensions 10x10x35cm made of concrete of various yield stress reinforced with steel fibres hooked at the ends with three fibre volume fractions (i.e. 0, 0.5, and 1%) and two aspects ratio (65 and 80) were tested to direct shear. Three types of concretes with various compressive strength and yield stress were tested, an ordinary concrete (OC), a self-compacting concrete (SCC) and a high strength concrete (HSC). The concrete strengths investigated include 30 MPa for OC, 60 MPa for SCC and 80 MPa for HSC. The results show that the shear strength and ductility are affected and have been improved very significantly by the fibre contents, fibre aspect ratio and concrete strength. As the compressive strength and the volume fraction of fibres increase, the shear strength increases. However, yield stress of concrete has an important influence on the orientation and distribution of the fibres in the matrix. The ductility was much higher for ordinary and self-compacting concretes (concrete with good workability). The ductility in direct shear depends on the fibre orientation and is significantly improved when the fibres are perpendicular to the shear plane. On the contrary, for concrete with poor workability, an inadequate distribution and orientation of fibres occurred, leading to a weak contribution of the fibres to the direct shear behaviour.

Keywords: concrete, fibre, direct shear, yield stress, orientation, strength

Procedia PDF Downloads 526
5367 Changes in Physicochemical Characteristics of a Serpentine Soil and in Root Architecture of a Hyperaccumulating Plant Cropped with a Legume

Authors: Ramez F. Saad, Ahmad Kobaissi, Bernard Amiaud, Julien Ruelle, Emile Benizri

Abstract:

Agromining is a new technology that establishes agricultural systems on ultramafic soils in order to produce valuable metal compounds such as nickel (Ni), with the final aim of restoring a soil's agricultural functions. But ultramafic soils are characterized by low fertility levels and this can limit yields of hyperaccumulators and metal phytoextraction. The objectives of the present work were to test if the association of a hyperaccumulating plant (Alyssum murale) and a Fabaceae (Vicia sativa var. Prontivesa) could induce changes in physicochemical characteristics of a serpentine soil and in root architecture of a hyperaccumulating plant then lead to efficient agromining practices through soil quality improvement. Based on standard agricultural systems, consisting in the association of legumes and another crop such as wheat or rape, a three-month rhizobox experiment was carried out to study the effect of the co-cropping (Co) or rotation (Ro) of a hyperaccumulating plant (Alyssum murale) with a legume (Vicia sativa) and incorporating legume biomass to soil, in comparison with mineral fertilization (FMo), on the structure and physicochemical properties of an ultramafic soil and on root architecture. All parameters measured (biomass, C and N contents, and taken-up Ni) on Alyssum murale conducted in co-cropping system showed the highest values followed by the mineral fertilization and rotation (Co > FMo > Ro), except for root nickel yield for which rotation was better than the mineral fertilization (Ro > FMo). The rhizosphere soil of Alyssum murale in co-cropping had larger soil particles size and better aggregates stability than other treatments. Using geostatistics, co-cropped Alyssum murale showed a greater root surface area spatial distribution. Moreover, co-cropping and rotation-induced lower soil DTPA-extractable nickel concentrations than other treatments, but higher pH values. Alyssum murale co-cropped with a legume showed a higher biomass production, improved soil physical characteristics and enhanced nickel phytoextraction. This study showed that the introduction of a legume into Ni agromining systems could improve yields of dry biomass of the hyperaccumulating plant used and consequently, the yields of Ni. Our strategy can decrease the need to apply fertilizers and thus minimizes the risk of nitrogen leaching and underground water pollution. Co-cropping of Alyssum murale with the legume showed a clear tendency to increase nickel phytoextraction and plant biomass in comparison to rotation treatment and fertilized mono-culture. In addition, co-cropping improved soil physical characteristics and soil structure through larger and more stabilized aggregates. It is, therefore, reasonable to conclude that the use of legumes in Ni-agromining systems could be a good strategy to reduce chemical inputs and to restore soil agricultural functions. Improving the agromining system by the replacement of inorganic fertilizers could simultaneously be a safe way of rehabilitating degraded soils and a method to restore soil quality and functions leading to the recovery of ecosystem services.

Keywords: plant association, legumes, hyperaccumulating plants, ultramafic soil physicochemical properties

Procedia PDF Downloads 153
5366 Management of Fitness-For-Duty for Human Error Prevention in Nuclear Power Plants

Authors: Hyeon-Kyo Lim, Tong-Il Jang, Yong-Hee Lee

Abstract:

For the past several decades, not a few researchers have warned that even a trivial human error may result in unexpected accidents, especially in Nuclear Power Plants. To prevent accidents in Nuclear Power Plants, it is quite indispensable to make any factors under the effective control that may raise the possibility of human errors for accident prevention. This study aimed to develop a risk management program, especially in the sense that guaranteeing Fitness-for-Duty (FFD) of human beings working in Nuclear Power Plants. Throughout a literal survey, it was found that work stress and fatigue are major psychophysical factors requiring sophisticated management. A set of major management factors related to work stress and fatigue was through repetitive literal surveys and classified into several categories. To maintain the fitness of human workers, a 4-level – individual worker, team, staff within plants, and external professional - approach was adopted for FFD management program. Moreover, the program was arranged to envelop the whole employment cycle from selection and screening of workers, job allocation, and job rotation. Also, a managerial care program was introduced for employee assistance based on the concept of Employee Assistance Program (EAP). The developed program was reviewed with repetition by ex-operators in nuclear power plants, and assessed in the affirmative. As a whole, responses implied additional treatment to guarantee high performance of human workers not only in normal operations but also in emergency situations. Consequently, the program is under administrative modification for practical application.

Keywords: fitness-for-duty (FFD), human error, work stress, fatigue, Employee-Assistance-Program (EAP)

Procedia PDF Downloads 290
5365 The Use of Sustainability Criteria on Infrastructure Design to Encourage Sustainable Engineering Solutions on Infrastructure Projects

Authors: Shian Saroop, Dhiren Allopi

Abstract:

In order to stay competitive and to meet upcoming stricter environmental regulations and customer requirements, designers have a key role in designing civil infrastructure so that it is environmentally sustainable. There is an urgent need for engineers to apply technologies and methods that deliver better and more sustainable performance of civil infrastructure as well as a need to establish a standard of measurement for greener infrastructure, rather than merely use tradition solutions. However, there are no systems in place at the design stage that assesses the environmental impact of design decisions on township infrastructure projects. This paper identifies alternative eco-efficient civil infrastructure design solutions and developed sustainability criteria and a toolkit to analyse the eco efficiency of infrastructure projects. The proposed toolkit is aimed at promoting high-performance, eco-efficient, economical and environmentally friendly design decisions on stormwater, roads, water and sanitation related to township infrastructure projects. These green solutions would bring a whole new class of eco-friendly solutions to current infrastructure problems, while at the same time adding a fresh perspective to the traditional infrastructure design process. A variety of projects were evaluated using the green infrastructure toolkit and their results are compared to each other, to assess the results of using greener infrastructure verses the traditional method of designing infrastructure. The application of ‘green technology’ would ensure a sustainable design of township infrastructure services assisting the design to consider alternative resources, the environmental impacts of design decisions, ecological sensitivity issues, innovation, maintenance and materials, at the design stage of a project.

Keywords: eco-efficiency, green infrastructure, infrastructure design, sustainable development

Procedia PDF Downloads 210
5364 High Temperature Oxidation of Additively Manufactured Silicon Carbide/Carbon Fiber Nanocomposites

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao, Robyn L. Bradford, Donald Klosterman

Abstract:

An additive manufacturing process and subsequent pyrolysis cycle were used to fabricate SiC matrix/carbon fiber hybrid composites. The matrix was fabricated using a mixture of preceramic polymer and acrylate monomers, while polyacrylonitrile (PAN) precursor was used to fabricate fibers via electrospinning. The precursor matrix and reinforcing fibers at 0, 2, 5, or 10 wt% were printed using digital light processing, and both were simultaneously pyrolyzed to yield the final ceramic matrix composite structure. After pyrolysis, XRD and SEAD analysis proved the existence of SiC nanocrystals and turbostratic carbon structure in the matrix, while the reinforcement phase was shown to have a turbostratic carbon structure similar to commercial carbon fibers. Thermogravimetric analysis (TGA) in the air up to 1400 °C was used to evaluate the oxidation resistance of this material. TGA results showed some weight loss due to oxidation of SiC and/or carbon up to about 900 °C, followed by weight gain to about 1200 °C due to the formation of a protective SiO2 layer. Although increasing carbon fiber content negatively impacted the total mass loss for the first heating cycle, exposure of the composite to second-run air revealed negligible weight chance. This is explained by SiO2 layer formation, which acts as a protective film that prevents oxygen diffusion. Oxidation of SiC and the formation of a glassy layer has been proven to protect the sample from further oxidation, as well as provide healing of surface cracks and defects, as revealed by SEM analysis.

Keywords: silicon carbide, carbon fibers, additive manufacturing, composite

Procedia PDF Downloads 60
5363 Computer Assisted Instructions for a Better Achievement in and Attitude towards Agricultural Economics

Authors: Abiodun Ezekiel Adesina, Alice M. Olagunju

Abstract:

This study determined the effects of Computer Assisted Instructions (CAI) and Academic Self-Concepts (ASC) on pre-service teachers’ achievement in AE concepts in CoE in Southwest, Nigeria. The study adopted pretest-posttest, control group, quasi-experimental design. Six CoE with e-library facilities were purposively selected. Two hundred and thirty-two intact 200 level Agricultural education students offering introduction to AE course across the six CoE were participants. The participants were assigned to three groups (D&PM, 77, TM, 73 and control, 82). Treatment lasted eight weeks. The AE achievement test (r=0.76), pre-service teachers’ ASC Scale (r=0.81); instructional guides for tutorial (r=0.76), drill and practice (r=0.81) and conventional lecture modes (r=0.83), and teacher performance assessment sheet were used for data collection. Data were analysed using analysis of covariance and Scheffe post-hoc at 0.05 level of significance. The participants were 55.6% female with mean age of 20.8 years. Treatment had significant main effects on pre-service teachers’ achievement (F(2,207)=60.52; η²=0.21; p < 0.05). Participants in D&PM (x̄ =27.83) had the best achievement compared to those in TM (x̄ =25.41) and control (x̄ =18.64) groups. ASC had significant main effect on pre-service teachers’ achievement (F(1,207)=22.011; η²=0.166; p < 0.05). Participants with high ASC (x̄ =27.52) had better achievement compared to those with low ASC (x̄ =22.37). The drill and practice and tutorial instructional modes enhanced students’ achievement in Agricultural Economics concepts. Therefore, the two instructional modes should be adopted for improved learning outcomes in agricultural economics concepts among pre-service teachers.

Keywords: achievement in agricultural economics concepts, colleges of education in southwestern Nigeria, computer-assisted instruction, drill and practice instructional mode, tutorial instructional mode

Procedia PDF Downloads 188
5362 The Effects of Teacher Efficacy, Instructional Leadership and Professional Learning Communities on Student Achievement in Literacy and Numeracy: A Look at Primary Schools within Sibu Division

Authors: Jarrod Sio Jyh Lih

Abstract:

This paper discusses the factors contributing to student achievement in literacy and numeracy in primary schools within Sibu division. The study involved 694 level 1 primary schoolteachers. Using descriptive statistics, the study observed high levels of practice for teacher efficacy, instructional leadership and professional learning communities (PLCs). The differences between gender, teaching experience and academic qualification were analyzed using the t-test and one-way analysis of variance (ANOVA). The study reported significant differences in respondent perceptions based on teaching experience vis-à-vis teacher efficacy. Here, the post hoc Tukey test revealed that efficaciousness grows with experience. A correlation test observed positive and significant correlations between all independent variables. Binary logistic regression was applied to predict the independent variables’ influence on student achievement. The findings revealed that a dimension of instructional leadership – ‘monitoring student progress’ - emerged as the best predictor of student achievement for literacy and numeracy. The result indicated the students were more than 4 times more likely to achieve the national key performance index for both literacy and numeracy when student progress was monitored. In conclusion, ‘monitoring student progress’ had a positive influence on students’ achievement for literacy and numeracy, hence making it a possible course of action for school heads. However, more comprehensive studies are needed to ascertain its consistency within the context of Malaysia.

Keywords: efficacy, instructional, literacy, numeracy

Procedia PDF Downloads 246
5361 A Comparative Study of Substituted Li Ferrites Sintered by the Conventional and Microwave Sintering Technique

Authors: Ibetombi Soibam

Abstract:

Li-Zn-Ni ferrite having the compositional formula Li0.4-0.5xZn0.2NixFe2.4-0.5xO4 where x = 0.02 ≤ x ≤0.1 in steps of 0.02 was fabricated by the citrate precursor method. In this method, metal nitrates and citric acid was used to prepare the gel which exhibit self-propagating combustion behavior giving the required ferrite sample. The ferrite sample was given a pre-firing at 650°C in a programmable conventional furnace for 3 hours with a heating rate of 5°C/min. A series of the sample was finally given conventional sintering (CS) at 1040°C after the pre-firing process. Another series was given microwave sintering (MS) at 1040°C in a programmable microwave furnace which uses a single magnetron operating at 2.45 GHz frequency. X- ray diffraction pattern confirmed the spinel phase structure for both the series. The theoretical and experimental density was calculated. It was observed that densification increases with the increase in Ni concentration in both the series. However, samples sintered by microwave technique was found to be denser. The microstructure of the two series of the sample was examined using scanning electron microscopy (SEM). Dielectric properties have been investigated as a function of frequency and composition for both series of samples sintered by CS and MS technique. The variation of dielectric constant with frequency show dispersion for both the series. It was explained in terms of Koop’s two layer model. From the analysis of dielectric measurement, it was observed that the value of room temperature dielectric constant decreases with the increase in Ni concentration for both the series. The microwave sintered samples show a lower dielectric constant making microwave sintering suitable for high-frequency applications. The possible mechanisms contributing to all the above behavior is being discussed.

Keywords: citrate precursor, dielectric constant, ferrites, microwave sintering

Procedia PDF Downloads 389
5360 Generation of Renewable Energy Through Photovoltaic Panels, Albania Photovoltaic Capacity

Authors: Dylber Qema

Abstract:

Driven by recent developments in technology and the growing concern about the sustainability and environmental impact of conventional fuel use, the possibility of producing clean and sustainable energy in significant quantities from renewable energy sources has sparked interest all over the world. Solar energy is one of the sources for the generation of electricity, with no emissions or environmental pollution. The electricity produced by photovoltaics can supply a home or business and can even be sold or exchanged with the grid operator. A very positive effect of using photovoltaic modules is that they do not produce greenhouse gases and do not produce chemical waste, unlike all other forms of energy production. Photovoltaics are becoming one of the largest investments in the field of renewable generating units. Improving the reliability of the electric power system is one of the most important impacts of the installation of photovoltaics (PV). Renewable energy sources are so large that they can meet the energy demands of the whole world, thus enabling sustainable supply as well as reducing local and global atmospheric emissions. Albania is rated by experts as one of the most favorable countries in Europe for the production of electricity from solar panels. But the country currently produces about 1% of its energy from the sun, while the rest of the needs are met by hydropower plants and imports. Albania has very good characteristics in terms of solar radiation (about 1300–1400 kW/m2). Solar energy has great potential and is a permanent source of energy with greater economic efficiency. Photovoltaic energy is also seen as an alternative, as long periods of drought in Albania have produced crises and high costs for securing energy in the foreign market.

Keywords: capacity, ministry of tourism and environment, obstacles, photovoltaic energy, sustainable

Procedia PDF Downloads 42
5359 Control and Automation of Fluid at Micro/Nano Scale for Bio-Analysis Applications

Authors: Reza Hadjiaghaie Vafaie, Sevda Givtaj

Abstract:

Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.

Keywords: microfluidic, nano/micro actuator, AC electrothermal, Reynolds number, micropump, micromixer, microfabrication, mass transfer, biomedical applications

Procedia PDF Downloads 65
5358 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization

Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi

Abstract:

Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.

Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm

Procedia PDF Downloads 63
5357 Design of a CO₂-Reduced 3D Concrete Mixture Using Circular (Clay-Based) Building Materials

Authors: N. Z. van Hierden, Q. Yu, F. Gauvin

Abstract:

Cement manufacturing is, because of its production process, among the highest contributors to CO₂ emissions worldwide. As cement is one of the major components in 3D printed concrete, achieving sustainability and carbon neutrality can be particularly challenging. To improve the sustainability of 3D printed materials, different CO₂-reducing strategies can be used, each one with a distinct level of impact and complexity. In this work, we focus on the development of these sustainable mixtures and finding alternatives. Promising alternatives for cement and clinker replacement include the use of recycled building materials, amongst which (calcined) bricks and roof tiles. To study the potential of recycled clay-based building materials, the application of calcinated clay itself is studied as well. Compared to cement, the calcination temperature of clay-based materials is significantly lower, resulting in reduced CO₂ output. Reusing these materials is therefore a promising solution for utilizing waste streams while simultaneously reducing the cement content in 3D concrete mixtures. In addition, waste streams can be locally sourced, thereby reducing the emitted CO₂ during transportation. In this research, various alternative binders are examined, such as calcined clay blends (LC3) from recycled tiles and bricks, or locally obtained clay resources. Using various experiments, a high potential for mix designs including these resources has been shown with respect to material strength, while sustaining decent printability and buildability. Therefore, the defined strategies are promising and can lead to a more sustainable, low-CO₂ mixture suitable for 3D printing while using accessible materials.

Keywords: cement replacement, 3DPC, circular building materials, calcined clay, CO₂ reduction

Procedia PDF Downloads 70
5356 Leave or Remain Silent: A Study of Parents’ Views on Social-Emotional Learning in Chinese Schools

Authors: Pei Wang

Abstract:

The concept of social-emotional learning (SEL) is becoming increasingly popular in both research and practical applications worldwide. However, there is a lack of empirical studies and implementation of SEL in China, particularly from the perspective of parents. This qualitative study examined how Chinese parents perceived SEL, how their views on SEL were shaped, and how these views affected their decisions regarding their children’s education programs. Using the Collaborative for Academic Social and Emotional Learning Interactive Wheel framework and Bronfenbrenner's bioecological theory, the study conducted interviews with eight parents whose children attended public, international, and private schools in China. All collected data were conducted a thematic analysis involving three coding phases. The findings revealed that interviewees perceived SEL as significant to children’s development but held diverse understandings and perspectives on SEL at school depending on the amount and the quality of SEL resources available in their children’s schools. Additionally, parents’ attitudes towards the exam-oriented education system and Chinese culture influenced their views on SEL in school. Nevertheless, their socioeconomic status (SES) was the most significant factor in their perspectives on SEL, which significantly impacted their choices in their children's educational programs. High-SES families had more options to pursue SEL resources by sending their children to international schools or Western countries, while lower middle-class SES families had limited SEL resources in public schools. This highlighted educational inequality in China and emphasized the need for greater attention and investment in SEL programs in Chinese public schools.

Keywords: Chinese, inequality, parent, school, social-emotional learning

Procedia PDF Downloads 51
5355 Effect of Different Levels of Distillery Yeast Sludge on Immune Level, Egg Quality and Performance of Layers as a Substitute for Soybean Meal

Authors: Rana Bilal, Faiz-Ul-Hassan, Moazzam Jameel

Abstract:

There is a dire need to replace high-cost protein with more economical protein to overcome animal protein shortage in developing nations especially countries like Pakistan. In conjunction with these efforts, the current study was planned to evaluate the effects of various dried distillery yeast sludge (DYS) levels on the immune level, egg quality, and performance of layers by replacing soybean meal. The study was designed with two hundred layers of Hy-Line variety. Distillery yeast sludge was dried and ground for 2 mm mesh size and after this proximate and mineral analysis was determined. Five isocaloric and isonitrogeneous feeds were given containing C (control), 5, 10, 15, 20% distillery yeast sludge by replacing soybean meal. The trial was performed in the completely randomized design with five treatments, 4 replicates and 10 hen per replicate. Results demonstrated that feed intake, egg production, feed conversion ratio decreased (P < 0.05) with the increased dietary DYS. However, statistically significant decrease (P < 0.05) was found in hens having DYS20 diet than control. Layers on Diets C, DYS5 and DYS10 exerted a higher immune level than DYS15 and DYS20 diets. Egg weight, eggshell weight, eggshell thickness, egg albumen height as well as haugh unit score were affected significantly by the increased level of DYS. In general, results of this study demonstrated that inclusion of DYS up to 10% showed no adverse effects on health and performance of layers.

Keywords: egg quality, immunity, layers, performance

Procedia PDF Downloads 211
5354 Creating an Impact through Environmental Law and Policy with a Focus on Environmental Science Restoration with Social Impacts

Authors: Lauren Beth Birney

Abstract:

BOP-CCERS is a consortium of scientists, K-16 New York City students, faculty, academicians, teachers, stakeholders, STEM Industry professionals, CBO’s, NPO’s, citizen scientists, and local businesses working in partnership to restore New York Harbor’s oyster populations while at the same time providing clean water in New York Harbor. BOP-CCERS gives students an opportunity to learn hands-on about environmental stewardship as well as environmental law and policy by giving students real responsibility. The purpose of this REU will allow for the BOP CCERS Project to further broaden its parameters into the focus of environmental law and policy where further change can be affected. Creating opportunities for undergraduates to work collaboratively with graduate students in law and policy and envision themselves in STEM careers in the field of law continues to be of importance in this project. More importantly, creating opportunities for underrepresented students to pursue careers in STEM Education has been a goal of the project over the last ten years. By raising the level of student interest in community-based citizen science integrated into environmental law and policy, a more diversified workforce will be fostered through the momentum of this dynamic program. The continuing climate crisis facing our planet calls for 21st-century skill development that includes learning and innovation skills derived from critical thinking, which will help REU students address the issues of climate change facing our planet. The demand for a climate-friendly workforce will continue to be met through this community-based citizen science effort. Environmental laws and policies play a crucial role in protecting humans, animals, resources, and habitats. Without these laws, there would be no regulations concerning pollution or contamination of our waterways. Environmental law serves as a mechanism to protect the land, air, water, and soil of our planet. To protect the environment, it is crucial that future policymakers and legal experts both understand and value the importance of environmental protection. The Environmental Law and Policy REU provides students with the opportunity to learn, through hands-on work, the skills, and knowledge needed to help foster a legal workforce centered around environmental protection while participating alongside the BOP CCERS researchers in order to gain research experience. Broadening this area to law and policy will further increase these opportunities and permit students to ultimately affect and influence larger-scale change on a global level while further diversifying the STEM workforce. Students’ findings will be shared at the annual STEM Institute at Pace University in August 2022. Basic research methodologies include qualitative and quantitative analysis performed by the research team. Early findings indicate that providing students with an opportunity to experience, explore and participate in environmental science programs such as these enhances their interests in pursuing STEM careers in Law and Policy, with the focus being on providing opportunities for underserved, marginalized, and underrepresented populations.

Keywords: environmental restoration science, citizen science, environmental law and policy, STEM education

Procedia PDF Downloads 90
5353 Knowledge and Preventive Practice of Occupational Health Hazards among Nurses Working in Various Hospitals in Kathmandu

Authors: Sabita Karki

Abstract:

Occupational health hazards are recognized as global problems for health care workers, it is quiet high in developing countries. It is increasing day by day due to change in science and technology. This study aimed to assess the knowledge and practice of occupational health hazards among the nurses. A descriptive, cross sectional study was carried out among 339 nurses working in three different teaching hospitals of the Kathmandu from February 28, 2016 to March 28, 2016. A self-administered questionnaire was used to collect the data. The study findings revealed that out of 339 samples of all 80.5% were below 30 years; 51.6% were married; 57.5% were graduates and above; 91.4% respondents were working as staff nurse; 56.9% were working in general ward; 56.9% have work experience of 1 to 5 years; 79.1% respondents were immunized against HBV; only 8.6% have received training/ in-service education related to OHH and 35.4% respondents have experienced health hazards. The mean knowledge score was 26.7 (SD=7.3). The level of knowledge of occupational health hazards among the nurses was 68.1% (adequate knowledge). The knowledge was statistically significant with education OR = 0.288, CI: 0.17-0.46 and p value 0.00 and immunization against HBV OR= 1.762, CI: 0.97-0.17 and p value 0.05. The mean practice score was 7.6 (SD= 3.1). The level of practice on prevention of OHH was 74.6% (poor practice). The practice was statistically significant with age having OR=0.47, CI: 0.26-0.83 and p value 0.01; designation OR= 0.32, CI: 0.14-0.70 and p value 0.004; working department OR=0.61, CI: 0.36-1.02 and p value 0.05; work experience OR=0.562, CI: 0.33-0.94 and p value 0.02; previous in-service education/ training OR=2.25; CI: 1.02-4.92 and p value 0.04. There was no association between knowledge and practice on prevention of occupational health hazards which is not statistically significant. Overall, nurses working in various teaching hospitals of Kathmandu had adequate knowledge and poor practice of occupational health hazards. Training and in-service education and availability of adequate personal protective equipments for nurses are needed to encourage them adhere to practice.

Keywords: occupational health hazard, nurses, knowledge, preventive practice

Procedia PDF Downloads 332
5352 Finite Element Analysis of Cold Formed Steel Screwed Connections

Authors: Jikhil Joseph, S. R. Satish Kumar

Abstract:

Steel Structures are commonly used for rapid erections and multistory constructions due to its inherent advantages. However, the high accuracy required in detailing and heavier sections, make it difficult to erect in place and transport. Cold Formed steel which are specially made by reducing carbon and other alloys are used nowadays to make thin-walled structures. Various types of connections are being reported as well as practiced for the thin-walled members such as bolting, riveting, welding and other mechanical connections. Commonly self-drilling screw connections are used for cold-formed purlin sheeting connection. In this paper an attempt is made to develop a moment resting frame which can be rapidly and remotely constructed with thin walled sections and self-drilling screws. Semi-rigid Moment connections are developed with Rectangular thin-walled tubes and the screws. The Finite Element Analysis programme ABAQUS is used for modelling the screwed connections. The various modelling procedures for simulating the connection behavior such as tie-constraint model, oriented spring model and solid interaction modelling are compared and are critically reviewed. From the experimental validations the solid-interaction modelling identified to be the most accurate one and are used for predicting the connection behaviors. From the finite element analysis, hysteresis curves and the modes of failure were identified. Parametric studies were done on the connection model to optimize the connection configurations to get desired connection characteristics.

Keywords: buckling, cold formed steel, finite element analysis, screwed connections

Procedia PDF Downloads 172
5351 Characterization of Brewery Wastewater Composition

Authors: Abimbola M. Enitan, Josiah Adeyemo, Sheena Kumari, Feroz M. Swalaha, Faizal Bux

Abstract:

With the competing demand on water resources and water reuse, discharge of industrial effluents into the aquatic environment has become an important issue. Much attention has been placed on the impact of industrial wastewater on water bodies worldwide due to the accumulation of organic and inorganic matter in the receiving water bodies. The scope of the present work is to assess the physic-chemical composition of the wastewater produced from one of the brewery industry in South Africa. This is to estimate the environmental impact of its discharge into the receiving water bodies or the municipal treatment plant. The parameters monitored for the quantitative analysis of brewery wastewater include biological oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, volatile suspended solids, ammonia, total oxidized nitrogen, nitrate, nitrite, phosphorus, and alkalinity content. In average, the COD concentration of the brewery effluent was 5340.97 mg/l with average pH values of 4.0 to 6.7. The BOD and the solids content of the wastewater from the brewery industry were high. This means that the effluent is very rich in organic content and its discharge into the water bodies or the municipal treatment plant could cause environmental pollution or damage the treatment plant. In addition, there were variations in the wastewater composition throughout the monitoring period. This might be as a result of different activities that take place during the production process, as well as the effects of the peak period of beer production on the water usage.

Keywords: Brewery wastewater, environmental pollution, industrial effluents, physic-chemical composition

Procedia PDF Downloads 437
5350 Study on the Changes in Material Strength According to Changes in Forming Methods in Hot-Stamping Process

Authors: Yong-Jun Jeon, Hyung-Pil Park, Min-Jae Song, Baeg-Soon Cha

Abstract:

Following the recent trend of having increased demand in producing lighter-weight car bodies for improvement of automobile safety and gas mileage, there is a forming method that makes use of hot-stamping technique, which satisfies all conditions mentioned above. Hot-stamping is a forming technique with advantages of excellent formability, good dimensional precision and others since it is a process in which steel plates are heated up to temperatures of at least approximately 900°C after which forming is conducted in die at room temperature followed by rapid cooling. In addition, it has characteristics of allowing for improvement in material strength through achievement of quenching effect by having simultaneous forming and rapid cooling of material of high temperatures. However, there is insufficient information on the changes in material strength according to changes in material temperature with regards to material heating method and forming process in hot-stamping. Accordingly, this study aims to design and press die for T-type product of the scale models of the center pillar and to understand the changes in material strength in relation to changes in forming methods of hot-stamping process. Thus in order to understand the changes in material strength due to quenching effect among the hot-stamping process, material strength and material forming precision were to be studied while varying the forming and forming method when forming. For test methods, material strength was observed by using boron steel that has boron additives, which was heated up to 950°C, after which it was transferred to a die and was cooled down to material temperature of 400°C followed by air cooling process. During the forming and cooling process here, experiment was conducted with forming parameters of 2 holding rates and 3 flange heating rates wherein changing appearance in material strength according to changes forming method were observed by verifying forming strength and forming precision for each of the conditions.

Keywords: hot-stamping, formability, quenching, forming, press die, forming methods

Procedia PDF Downloads 447