Search results for: thermal storage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5356

Search results for: thermal storage

3286 Study of Rayleigh-Bénard-Brinkman Convection Using LTNE Model and Coupled, Real Ginzburg-Landau Equations

Authors: P. G. Siddheshwar, R. K. Vanishree, C. Kanchana

Abstract:

A local nonlinear stability analysis using a eight-mode expansion is performed in arriving at the coupled amplitude equations for Rayleigh-Bénard-Brinkman convection (RBBC) in the presence of LTNE effects. Streamlines and isotherms are obtained in the two-dimensional unsteady finite-amplitude convection regime. The parameters’ influence on heat transport is found to be more pronounced at small time than at long times. Results of the Rayleigh-Bénard convection is obtained as a particular case of the present study. Additional modes are shown not to significantly influence the heat transport thus leading us to infer that five minimal modes are sufficient to make a study of RBBC. The present problem that uses rolls as a pattern of manifestation of instability is a needed first step in the direction of making a very general non-local study of two-dimensional unsteady convection. The results may be useful in determining the preferred range of parameters’ values while making rheometric measurements in fluids to ascertain fluid properties such as viscosity. The results of LTE are obtained as a limiting case of the results of LTNE obtained in the paper.

Keywords: coupled Ginzburg–Landau model, local thermal non-equilibrium (LTNE), local thermal equilibrium (LTE), Rayleigh–Bénard-Brinkman convection

Procedia PDF Downloads 237
3285 Refinement of Thermal and Mechanical Properties of Poly (Lactic Acid)/Poly (Ethylene-Co-Glycidyle Methacrylate)/ Hexagonal Boron Nitride Blend-Composites through Electron-Beam Irradiation

Authors: Ashish Kumar, T. Venkatappa Rao, Subhendu Ray Chowdhury, S. V. S. Ramana Reddy

Abstract:

The main objective of this work is to determine the influence of electron beam irradiation on thermal and mechanical properties of Poly (lactic acid) (PLA)/Poly (ethylene-co-glycidyle methacrylate) (PEGM)/Hexagonal boron nitride (HBN) blend-composites. To reduce the brittleness and improve the toughness of PLA, the PLA/PEGM blend is prepared by using twin-screw Micro compounder. However, the heat deflection temperature (HDT) and other tensile properties were reduced. The HBN has been incorporated into the PLA/PEGM blend as part per hundred i.e. 5 phr and 10phr to improve the HDT. The prepared specimens of blend and blend-composites were irradiated to high energy (4.5 MeV) electron beam (E-beam) at different radiation doses to introduce the cross linking among the polymer chains and uniform dispersion of HBN particles in the PLA/PEGM/HBN blend-composites. The further improvement in the notched impact strength and HDT have been achieved in the case of PLA/PEGM/HBN blend-composites. The irradiated PLA/PEGM/HBN 5phr blend composite shows high notched impact strength and HDT as compared to other unirradiated and E-beam irradiated blend and blend-composites. The improvements in the yield strength and tensile modulus have also been noticed in the case of E-beam irradiated PLA/PEGM/HBN blend-composites as compared to unirradiated blend-composites.

Keywords: blend-composite, e-beam, HDT, PEGM, PLA

Procedia PDF Downloads 187
3284 A Review of Paleo-Depositional Environment and Thermal Alteration Index of Carboniferous, Permian, and Triassic of A1-9 Well, NW Libya

Authors: M. A. Alrabib, Y. Sherif, A. K. Mohamed, E. A. Elfandi, E. I. Fandi

Abstract:

This paper introduces a paleo-environmental and hydrocarbon show in this well was identified in the interval of Dembaba formation to the Hassaona Formation was poor to very poor oil show. And from palaeo-environmental analysis there is neither particularly good reservoir nor source rock have been developed in the area. Recent palaeo-environment work undertakes that the sedimentary succession in this area comprises the Upper Paleozoic rock of the Carboniferous and Permian and the Mesozoic (Triassic) sedimentary sequences. No early Paleozoic rocks have been found in this area, these rocks were eroding during the Late Carboniferous and Early Permian time. During Latest Permian and earliest Triassic time evidence for major marine transgression has occurred. From depths 5930-5940 feet, to 10800-10810 feet, the TAI of the Al Guidr, the Bir Al Jaja Al Uotia, Hebilia and the top varies between 3+ to 4-(mature-dry gas). This interval corporate the rest part of the Dembaba Formation. From depth 10800- 10810 feet, until total sediment depth (11944 feet Log) which corporate the rest of the Dembaba and underlying equivalents of the Assedjefar and M Rar Formations and the underlying Indeterminate unit (Hassouna Formation) the TAI varies between 4 and 5 (dry gas-black and deformed).

Keywords: paleoenvironmental, thermal alteration index, north western Libya, hydrocarbon

Procedia PDF Downloads 469
3283 Virtual Prototyping of LED Chip Scale Packaging Using Computational Fluid Dynamic and Finite Element Method

Authors: R. C. Law, Shirley Kang, T. Y. Hin, M. Z. Abdullah

Abstract:

LED technology has been evolving aggressively in recent years from incandescent bulb during older days to as small as chip scale package. It will continue to stay bright in future. As such, there is tremendous pressure to stay competitive in the market by optimizing products to next level of performance and reliability with the shortest time to market. This changes the conventional way of product design and development to virtual prototyping by means of Computer Aided Engineering (CAE). It comprises of the deployment of Finite Element Method (FEM) and Computational Fluid Dynamic (CFD). FEM accelerates the investigation for early detection of failures such as crack, improve the thermal performance of system and enhance solder joint reliability. CFD helps to simulate the flow pattern of molding material as a function of different temperature, molding parameters settings to evaluate failures like voids and displacement. This paper will briefly discuss the procedures and applications of FEM in thermal stress, solder joint reliability and CFD of compression molding in LED CSP. Integration of virtual prototyping in product development had greatly reduced the time to market. Many successful achievements with minimized number of evaluation iterations required in the scope of material, process setting, and package architecture variant have been materialized with this approach.

Keywords: LED, chip scale packaging (CSP), computational fluid dynamic (CFD), virtual prototyping

Procedia PDF Downloads 287
3282 High Performance Lithium Ion Capacitors from Biomass Waste-Derived Activated Carbon

Authors: Makhan Maharjan, Mani Ulaganathan, Vanchiappan Aravindan, Srinivasan Madhavi, Jing-Yuan Wang, Tuti Mariana Lim

Abstract:

The ever-increasing energy demand has made research to develop high performance energy storage systems that are able to fulfill energy needs. Supercapacitors have potential applications as portable energy storage devices. In recent years, there have been huge research interests to enhance the performances of supercapacitors via exploiting novel promising carbon precursors, tailoring textural properties of carbons, exploiting various electrolytes and device types. In this work, we employed orange peel (waste material) as the starting material and synthesized activated carbon by pyrolysis of KOH impregnated orange peel char at 800 °C in argon atmosphere. The resultant orange peel-derived activated carbon (OP-AC) exhibited BET surface area of 1,901 m² g-1, which is the highest surface area so far reported for the orange peel. The pore size distribution (PSD) curve exhibits the pores centered at 11.26 Å pore width, suggesting dominant microporosity. The high surface area OP-AC accommodates more ions in the electrodes and its well-developed porous structure facilitates fast diffusion of ions which subsequently enhance electrochemical performance. The OP-AC was studied as positive electrode in combination with different negative electrode materials, such as pre-lithiated graphite (LiC6) and Li4Ti5O12 for making hybrid capacitors. The lithium ion capacitor (LIC) fabricated using OP-AC with pre-lithiated graphite delivered high energy density of ~106 Wh kg–1. The energy density for OP-AC||Li4Ti5O12 capacitor was ~35 Wh kg⁻¹. For comparison purpose, configuration of OP-AC||OP-AC capacitors were studied in both aqueous (1M H2SO4) and organic (1M LiPF6 in EC-DMC) electrolytes, which delivered the energy density of 8.0 Wh kg⁻¹ and 16.3 Wh kg⁻¹, respectively. The cycling retentions obtained at current density of 1 A g⁻¹ were ~85.8, ~87.0 ~82.2 and ~58.8% after 2500 cycles for OP-AC||OP-AC (aqueous), OP-AC||OP-AC (organic), OP-AC||Li4Ti5O12 and OP-AC||LiC6 configurations, respectively. In addition, characterization studies were performed by elemental and proximate composition, thermogravimetry analysis, field emission-scanning electron microscopy, Raman spectra, X-ray diffraction (XRD) pattern, Fourier transform-infrared, X-ray photoelectron spectroscopy (XPS) and N2 sorption isotherms. The morphological features from FE-SEM exhibited well-developed porous structures. Two typical broad peaks observed in the XRD framework of the synthesized carbon implies amorphous graphitic structure. The ratio of 0.86 for ID/IG in Raman spectra infers high degree of graphitization in the sample. The band spectra of C 1s in XPS display the well resolved peaks related to carbon atoms in various chemical environments. The presence of functional groups is also corroborated from the FTIR spectroscopy. Characterization studies revealed the synthesized carbon to be promising electrode material towards the application for energy storage devices. Overall, the intriguing properties of OP-AC make it a new alternative promising electrode material for the development of high energy lithium ion capacitors from abundant, low-cost, renewable biomass waste. The authors gratefully acknowledge Agency for Science, Technology and Research (A*STAR)/ Singapore International Graduate Award (SINGA) and Nanyang Technological University (NTU), Singapore for funding support.

Keywords: energy storage, lithium-ion capacitors, orange peels, porous activated carbon

Procedia PDF Downloads 229
3281 Kinetic Studies on CO₂ Gasification of Low and High Ash Indian Coals in Context of Underground Coal Gasification

Authors: Geeta Kumari, Prabu Vairakannu

Abstract:

Underground coal gasification (UCG) technology is an efficient and an economic in-situ clean coal technology, which converts unmineable coals into calorific valuable gases. This technology avoids ash disposal, coal mining, and storage problems. CO₂ gas can be a potential gasifying medium for UCG. CO₂ is a greenhouse gas and, the liberation of this gas to the atmosphere from thermal power plant industries leads to global warming. Hence, the capture and reutilization of CO₂ gas are crucial for clean energy production. However, the reactivity of high ash Indian coals with CO₂ needs to be assessed. In the present study, two varieties of Indian coals (low ash and high ash) are used for thermogravimetric analyses (TGA). Two low ash north east Indian coals (LAC) and a typical high ash Indian coal (HAC) are procured from the coal mines of India. Low ash coal with 9% ash (LAC-1) and 4% ash (LAC-2) and high ash coal (HAC) with 42% ash are used for the study. TGA studies are carried out to evaluate the activation energy for pyrolysis and gasification of coal under N₂ and CO₂ atmosphere. Coats and Redfern method is used to estimate the activation energy of coal under different temperature regimes. Volumetric model is assumed for the estimation of the activation energy. The activation energy estimated under different temperature range. The inherent properties of coals play a major role in their reactivity. The results show that the activation energy decreases with the decrease in the inherent percentage of coal ash due to the ash layer hindrance. A reverse trend was observed with volatile matter. High volatile matter of coal leads to the estimation of low activation energy. It was observed that the activation energy under CO₂ atmosphere at 400-600°C is less as compared to N₂ inert atmosphere. At this temperature range, it is estimated that 15-23% reduction in the activation energy under CO₂ atmosphere. This shows the reactivity of CO₂ gas with higher hydrocarbons of the coal volatile matters. The reactivity of CO₂ with the volatile matter of coal might occur through dry reforming reaction in which CO₂ reacts with higher hydrocarbon, aromatics of the tar content. The observed trend of Ea in the temperature range of 150-200˚C and 400-600˚C is HAC > LAC-1 >LAC-2 in both N₂ and CO₂ atmosphere. At the temperature range of 850-1000˚C, higher activation energy is estimated when compared to those values in the temperature range of 400-600°C. Above 800°C, char gasification through Boudouard reaction progressed under CO₂ atmosphere. It was observed that 8-20 kJ/mol of activation energy is increased during char gasification above 800°C compared to volatile matter pyrolysis between the temperature ranges of 400-600°C. The overall activation energy of the coals in the temperature range of 30-1000˚C is higher in N₂ atmosphere than CO₂ atmosphere. It can be concluded that higher hydrocarbons such as tar effectively undergoes cracking and reforming reactions in presence of CO₂. Thus, CO₂ gas is beneficial for the production of high calorific value syngas using high ash Indian coals.

Keywords: clean coal technology, CO₂ gasification, activation energy, underground coal gasification

Procedia PDF Downloads 171
3280 Shrinkage Evaluation in a Stepped Wax Pattern – a Simulation Approach

Authors: Alok S Chauhan, Sridhar S., Pradyumna R.

Abstract:

In the process of precision investment casting of turbine hollow blade/vane components, a part of the dimensional deviations observed in the castings can be attributed to the wax pattern. In the process of injection moulding of wax to produce patterns, heated wax shrinks in size during cooling in the die, leading to a reduction in the dimensions of the pattern. Also, flow and thermal induced residual stresses result in shrinkage & warpage of the component after removal from the die, further adding to the deviations. Injection moulding parameters such as wax temperature, flow rate, packing pressure, etc. affect the flow and thermal behavior of the component and hence are directly responsible for the dimensional deviations. There is a need to precisely determine and control these deviations in order to achieve stringent dimensional accuracies imposed on these castings by aerospace standards. Simulation based approaches provide a platform to predict these dimensional deviations without resorting to elaborate experimentation. In the present paper, Moldex3D simulation package has been utilized to analyze the effect of variations in injection temperature, packing pressure and cooling time on the shrinkage behavior of a stepped pattern. Two types of waxes with different rheological properties have been included in the study to gauge the effect of change in wax on the dimensional deviations. A full factorial design of experiments has been configured with these parameters and results of analysis of variance have been presented.

Keywords: wax patterns, investment casting, pattern die/mould, wax injection, Moldex3D simulation

Procedia PDF Downloads 373
3279 Thermodynamic Phase Equilibria and Formation Kinetics of Cyclopentane, Cyclopentanone and Cyclopentanol Hydrates in the Presence of Gaseous Guest Molecules including Methane and Carbon Dioxide

Authors: Sujin Hong, Seokyoon Moon, Heejoong Kim, Yunseok Lee, Youngjune Park

Abstract:

Gas hydrate is an inclusion compound in which a low-molecular-weight gas or organic molecule is trapped inside a three-dimensional lattice structure created by water-molecule via intermolecular hydrogen bonding. It is generally formed at low temperature and high pressure, and exists as crystal structures of cubic systems − structure I, structure II, and hexagonal system − structure H. Many efforts have been made to apply them to various energy and environmental fields such as gas transportation and storage, CO₂ capture and separation, and desalination of seawater. Particularly, studies on the behavior of gas hydrates by new organic materials for CO₂ storage and various applications are underway. In this study, thermodynamic and spectroscopic analyses of the gas hydrate system were performed focusing on cyclopentanol, an organic molecule that forms gas hydrate at relatively low pressure. The thermodynamic equilibria of CH₄ and CO₂ hydrate systems including cyclopentanol were measured and spectroscopic analyses of XRD and Raman were performed. The differences in thermodynamic systems and formation kinetics of CO₂ added cyclopentane, cyclopentanol and cyclopentanone hydrate systems were compared. From the thermodynamic point of view, cyclopentanol was found to be a hydrate promotor. Spectroscopic analyses showed that cyclopentanol formed a hydrate crystal structure of cubic structure II in the presence of CH₄ and CO₂. It was found that the differences in the functional groups among the organic guest molecules significantly affected the rate of hydrate formation and the total amounts of CO₂ stored in the hydrate systems. The total amount of CO₂ stored in the cyclopentanone hydrate was found to be twice that of the amount of CO₂ stored in the cyclopentane and the cyclopentanol hydrates. The findings are expected to open up new opportunity to develop the gas hydrate based wastewater desalination technology.

Keywords: gas hydrate, CO₂, separation, desalination, formation kinetics, thermodynamic equilibria

Procedia PDF Downloads 269
3278 Thermo-Mechanical Properties of PBI Fiber Reinforced HDPE Composites: Effect of Fiber Length and Composition

Authors: Shan Faiz, Arfat Anis, Saeed M. Al-Zarani

Abstract:

High density polyethylene (HDPE) and poly benzimidazole fiber (PBI) composites were prepared by melt blending in a twin screw extruder (TSE). The thermo-mechanical properties of PBI fiber reinforced HDPE composite samples (1%, 4% and 8% fiber content) of fiber lengths 3 mm and 6 mm were investigated using differential scanning calorimeter (DSC), universal testing machine (UTM), rheometer and scanning electron microscopy (SEM). The effect of fiber content and fiber lengths on the thermo-mechanical properties of the HDPE-PBI composites was studied. The DSC analysis showed decrease in crystallinity of HDPE-PBI composites with the increase of fiber loading. Maximum decrease observed was 12% at 8% fiber length. The thermal stability was found to increase with the addition of fiber. T50% was notably increased to 40oC for both grades of HDPE using 8% of fiber content. The mechanical properties were not much affected by the increase in fiber content. The optimum value of tensile strength was achieved using 4% fiber content and slight increase of 9% in tensile strength was observed. No noticeable change was observed in flexural strength. In rheology study, the complex viscosities of HDPE-PBI composites were higher than the HDPE matrix and substantially increased with even minimum increase of PBI fiber loading i.e. 1%. We found that the addition of the PBI fiber resulted in a modest improvement in the thermal stability and mechanical properties of the prepared composites.

Keywords: PBI fiber, high density polyethylene, composites, melt blending

Procedia PDF Downloads 365
3277 Direct Measurement of Pressure and Temperature Variations During High-Speed Friction Experiments

Authors: Simon Guerin-Marthe, Marie Violay

Abstract:

Thermal Pressurization (TP) has been proposed as a key mechanism involved in the weakening of faults during dynamic ruptures. Theoretical and numerical studies clearly show how frictional heating can lead to an increase in pore fluid pressure due to the rapid slip along faults occurring during earthquakes. In addition, recent laboratory studies have evidenced local pore pressure or local temperature variation during rotary shear tests, which are consistent with TP theoretical and numerical models. The aim of this study is to complement previous ones by measuring both local pore pressure and local temperature variations in the vicinity of a water-saturated calcite gouge layer subjected to a controlled slip velocity in direct double shear configuration. Laboratory investigation of TP process is crucial in order to understand the conditions at which it is likely to become a dominant mechanism controlling dynamic friction. It is also important in order to understand the timing and magnitude of temperature and pore pressure variations, to help understanding when it is negligible, and how it competes with other rather strengthening-mechanisms such as dilatancy, which can occur during rock failure. Here we present unique direct measurements of temperature and pressure variations during high-speed friction experiments under various load point velocities and show the timing of these variations relatively to the slip event.

Keywords: thermal pressurization, double-shear test, high-speed friction, dilatancy

Procedia PDF Downloads 63
3276 Waste Burial to the Pressure Deficit Areas in the Eastern Siberia

Authors: L. Abukova, O. Abramova, A. Goreva, Y. Yakovlev

Abstract:

Important executive decisions on oil and gas production stimulation in Eastern Siberia have been recently taken. There are unique and large fields of oil, gas, and gas-condensate in Eastern Siberia. The Talakan, Koyumbinskoye, Yurubcheno-Tahomskoye, Kovykta, Chayadinskoye fields are supposed to be developed first. It will result in an abrupt increase in environmental load on the nature of Eastern Siberia. In Eastern Siberia, the introduction of ecological imperatives in hydrocarbon production is still realistic. Underground water movement is the one of the most important factors of the ecosystems condition management. Oil and gas production is associated with the forced displacement of huge water masses, mixing waters of different composition, and origin that determines the extent of anthropogenic impact on water drive systems and their protective reaction. An extensive hydrogeological system of the depression type is identified in the pre-salt deposits here. Pressure relieve here is steady up to the basement. The decrease of the hydrodynamic potential towards the basement with such a gradient resulted in reformation of the fields in process of historical (geological) development of the Nepsko-Botuobinskaya anteclise. The depression hydrodynamic systems are characterized by extremely high isolation and can only exist under such closed conditions. A steady nature of water movement due to a strictly negative gradient of reservoir pressure makes it quite possible to use environmentally-harmful liquid substances instead of water. Disposal of the most hazardous wastes is the most expedient in the deposits of the crystalline basement in certain structures distant from oil and gas fields. The time period for storage of environmentally-harmful liquid substances may be calculated by means of the geological time scales ensuring their complete prevention from releasing into environment or air even during strong earthquakes. Disposal of wastes of chemical and nuclear industries is a matter of special consideration. The existing methods of storage and disposal of wastes are very expensive. The methods applied at the moment for storage of nuclear wastes at the depth of several meters, even in the most durable containers, constitute a potential danger. The enormous size of the depression system of the Nepsko-Botuobinskaya anteclise makes it possible to easily identify such objects at the depth below 1500 m where nuclear wastes will be stored indefinitely without any environmental impact. Thus, the water drive system of the Nepsko-Botuobinskaya anteclise is the ideal object for large-volume injection of environmentally harmful liquid substances even if there are large oil and gas accumulations in the subsurface. Specific geological and hydrodynamic conditions of the system allow the production of hydrocarbons from the subsurface simultaneously with the disposal of industrial wastes of oil and gas, mining, chemical, and nuclear industries without any environmental impact.

Keywords: Eastern Siberia, formation pressure, underground water, waste burial

Procedia PDF Downloads 259
3275 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto-hydrodynamic boundary layer flow of a nano fluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nano thermal layer formed around the nanoparticle and Brownian motion of nano particles etc., appropriate models are used for the effective thermal and physical properties of nano fluids. To model the rotation of nano particles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: nanofluids, wedge shaped wick, heat pipe, numerical modeling, particle swarm optimization, nanofluid applications, Heat transfer

Procedia PDF Downloads 390
3274 The Effect of High-Pressure Processing on the Inactivation of Saccharomyces cerevisiae in Different Concentration of Manuka Honey and Its Relation with ° Brix

Authors: Noor Akhmazillah Fauzi, Mohammed Mehdi Farid, Filipa V. Silva

Abstract:

The aim of this paper is to investigate if different concentration of Manuka honey (as a model food) has a major influence on the inactivation of Saccharomyces cerevisiae (as the testing microorganism) after subjecting it to HPP. Honey samples with different sugar concentrations (20, 30, 40, 50, 60 and 70 °Brix) were prepared aseptically using sterilized distilled water. No dilution of honey was made for the 80 °Brix sample. For the 0 °Brix sample (control), sterilized distilled water was used. Thermal treatment at 55 °C for 10 min (conventionally applied in honey pasteurisation in industry) was carried out for comparison purpose. S. cerevisiae cell numbers in honey samples were established before and after each HPP and thermal treatment. The number of surviving cells was determined after a proper dilution of the untreated and treated samples by the viable plate count method. S. cerevisiae cells, in different honey concentrations (0 to 80 °Brix), subjected to 600 MPa (at ambient temperature) showed an increasing resistance to inactivation with °Brix. A significant correlation (p < 0.05) between cell reduction and °Brix was found. Cell reduction in high pressure-treated samples varied linearly with °Brix (R2 > 0.9), confirming that the baroprotective effect of the food is due to sugar content. This study has practical implications in establishing efficient process design for commercial manufacturing of high sugar food products and on the potential use of HPP for such products.

Keywords: high pressure processing, honey, Saccharomyces cerevisiae, °Brix

Procedia PDF Downloads 353
3273 Toxicity of Bisphenol-A: Effects on Health and Regulations

Authors: Tuğba Özdal, Neşe Şahin Yeşilçubuk

Abstract:

Bisphenol-A (BPA) is one of the highest volume chemicals produced worldwide in the plastic industry. This compound is mostly used in producing polycarbonate plastics that are often used for food and beverage storage, and BPA is also a component of epoxy resins that are used to line food and beverage containers. Studies performed in this area indicated that BPA could be extracted from such products while they are in contact with food. Therefore, BPA exposure is presumed. In this paper, the chemical structure of BPA, factors affecting BPA migration to food and beverages, effects on health, and recent regulations will be reviewed.

Keywords: BPA, health, regulations, toxicity

Procedia PDF Downloads 340
3272 Blockchain Solutions for IoT Challenges: Overview

Authors: Amir Ali Fatoorchi

Abstract:

Regardless of the advantage of LoT devices, they have limitations like storage, compute, and security problems. In recent years, a lot of Blockchain-based research in IoT published and presented. In this paper, we present the Security issues of LoT. IoT has three levels of security issues: Low-level, Intermediate-level, and High-level. We survey and compare blockchain-based solutions for high-level security issues and show how the underlying technology of bitcoin and Ethereum could solve IoT problems.

Keywords: Blockchain, security, data security, IoT

Procedia PDF Downloads 210
3271 Analysis of Two-Phase Flow Instabilities in Conventional Channel of Nuclear Power Reactor

Authors: M. Abdur Rashid Sarkar, Riffat Mahmud

Abstract:

Boiling heat transfer plays a crucial role in cooling nuclear reactor for safe electricity generation. A two phase flow is susceptible to thermal-hydrodynamic instabilities, which may cause flow oscillations of constant amplitude or diverging amplitude. These oscillations may induce boiling crisis, disturb control systems, or cause mechanical damage. Based on their mechanisms, various types of instabilities can be classified for a nuclear reactor. From a practical engineering point of view one of the major design difficulties in dealing with multiphase flow is that the mass, momentum, and energy transfer rates and processes may be quite sensitive to the geometric configuration of the heat transfer surface. Moreover, the flow within each phase or component will clearly depend on that geometric configuration. The complexity of this two-way coupling presents a major challenge in the study of multiphase flows and there is much that remains to be done. Yet, the parametric effects on flow instability such as the effect of aspect ratio, pressure drop, channel length, its orientation inlet subcooling and surface roughness etc. have been analyzed. Another frequently occurring instability, known as the Kelvin–Helmholtz instability has been briefly reviewed. Various analytical techniques for predicting parametric effect on the instability are analyzed in terms of their applicability and accuracy.

Keywords: two phase flows, boiling crisis, thermal-hydrodynamic instabilities, water cooled nuclear reactors, kelvin–helmholtz instability

Procedia PDF Downloads 397
3270 Tailoring and Characterization of Lithium Manganese Ferrite- Polypyrrole Nanocomposite (LixMnxFe₂O₄-PPY) to Evaluate Their Performance as an Energy Storage Device

Authors: Muhammad Waheed Mushtaq, Shahid bashir, Atta Ur Rehman

Abstract:

In the past decade, the growing demand for capital and the increased utilization of supercapacitors reflect advancements in energy-producing systems and energy storage devices. Metal oxides and ferrites have emerged as promising candidates for supercapacitors and batteries. In our current study, we synthesized Lithium manganese nanoferrite, denoted as LixMnxFe₂O₄, using the hydrothermal technique. Subsequently, we treated it with sodium dodecyl benzene sulphonate (SDBS) surfactant to create nanocomposites of Lithium manganese nano ferrite (LMFe) with poly pyrrole (LixMnxFe₂O₄-PPY). We employed Powder X-ray diffraction (XRD) to confirm the crystalline nature and spinel phase structure of LMFe nanoparticles, which exhibited a single-phase crystal structure, indicating sample purity. To assess the surface topography, morphology, and grain size of both synthesized LixMnxFe₂O₄ and LixMnxFe₂O₄-PPY, we used atomic force microscopy and scanning electron microscopy (SEM). The average particle size of pure ferrite was found to be 54 nm, while that of its nanocomposite was 71 nm. Energy dispersive X-ray (EDX) analysis confirmed the presence of all required elements, including Li, Mn, Fe, and O, in the appropriate proportions. Saturation magnetization (32.69 emu), remanence (Mr), and coercive force (Hc) were measured using a Vibrating Sample Magnetometer (VSM). To assess the electrochemical performance of the material, we conducted Cyclic Voltammetry (CV) measurements for both pure LMFe and LMFe-PPY. The CV results for LMFe-PPY demonstrated that specific capacitance decreased with increasing scan rate while the area of the current-voltage loop increased. These findings are promising for the development of supercapacitors and lithium-ion batteries (LIBs).

Keywords: lithium manganese ferrite, poly pyrrole, nanocomposites, cyclic voltammetry, cathode

Procedia PDF Downloads 71
3269 Effect of Gamma Radiation, Age of Paddy, Rice Variety and Packaging Materials on the Surface Free Fatty Acid Content of Brown Rice

Authors: Zenaida M. De Guzman, Davison T. Baldos, Gilberto T. Diano, Jeff Darren G. Valdez, Levelyn Mitos Tolentino, Gina B. Abrera, Ma. Lucia Cobar, Cristina Gragasin

Abstract:

One of the factors affecting the quality of brown rice is the free fatty acid produced from surface lipids. It is the purpose of the study to determine the effect of gamma radiation, packaging materials and age and variety of paddy on the surface free fatty acid content using two different brown rice variety, namely, RC-160 and SL-7, packed in two different packaging materials, namely, regular polyethylene bag and Super bag irradiated at 0.5 and 1.0 kGy. Brown rice was produced from 2-week old (Lot 1) and two months old paddy (Lot 2) and irradiated at the Co-60 Multipurpose Irradiation Facility, PNRI. The surface Free Fatty Acid (FFA) content was obtained following the AOCS Official Method (1982) with some modifications. The experiment was laid out using Split-Plot Randomized Control Block Design. Analysis of variance (ANOVA) showed that the effects of variety, age of paddy and interactions of both were both significant. The surface FFA of SL-7 variety was found to be significantly higher than the RC-160 variety for all radiation doses. Likewise, Lot 2 was observed to have higher surface FFA than Lot 1 regardless of packaging material and radiation dose. It was observed that the surface FFA of both varieties packed in both packaging materials increased significantly up to the 2nd or 3rd month of storage and remains the same until the 5th month. On the other hand, radiation dose did not significantly affect the surface free fatty acid content for all storage/sampling time while the packaging material significantly interacts with the type of variety and radiation dose. Gamma radiation was proven to have no significant effect on the surface free fatty acid at 0.5 and 1.0 kGy and further analyses are needed to determine the action of gamma radiation to the activity of enzyme (lipase-induced and microbial) responsible for the production of other lipolytic products and the effect of gamma radiation on the integrity of the packaging materials.

Keywords: brown rice, free fatty acid, gamma radiation, polyethylene bag

Procedia PDF Downloads 389
3268 Assessment of Commercial Antimicrobials Incorporated into Gelatin Coatings and Applied to Conventional Heat-Shrinking Material for the Prevention of Blown Pack Spoilage in Vacuum Packaged Beef Cuts

Authors: Andrey A. Tyuftin, Rachael Reid, Paula Bourke, Patrick J. Cullen, Seamus Fanning, Paul Whyte, Declan Bolton , Joe P. Kerry

Abstract:

One of the primary spoilage issues associated with vacuum-packed beef products is blown pack spoilage (BPS) caused by the psychrophilic spore-forming strain of Clostridium spp. Spores derived from this organism can be activated after heat-shrinking (eg. 90°C for 3 seconds). To date, research into the control of Clostridium spp in beef packaging is limited. Active packaging in the form of antimicrobially-active coatings may be one approach to its control. Antimicrobial compounds may be incorporated into packaging films or coated onto the internal surfaces of packaging films using a carrier matrix. Three naturally-sourced, commercially-available antimicrobials, namely; Auranta FV (AFV) (bitter oranges extract) from Envirotech Innovative Products Ltd, Ireland; Inbac-MDA (IMDA) from Chemital LLC, Spain, mixture of different organic acids and sodium octanoate (SO) from Sigma-Aldrich, UK, were added into gelatin solutions at 2 concentrations: 2.5 and 3.5 times their minimum inhibition concentration (MIC) against Clostridium estertheticum (DSMZ 8809). These gelatin solutions were coated onto the internal polyethylene layer of cold plasma treated, heat-shrinkable laminates conventionally used for meat packaging applications. Atmospheric plasma was used in order to enhance adhesion between packaging films and gelatin coatings. Pouches were formed from these coated packaging materials, and beef cuts which had been inoculated with C. estertheticum were vacuum packaged. Inoculated beef was vacuum packaged without employing active films and this treatment served as the control. All pouches were heat-sealed and then heat-shrunk at 90°C for 3 seconds and incubated at 2°C for 100 days. During this storage period, packs were monitored for the indicators of blown pack spoilage as follows; gas bubbles in drip, loss of vacuum (onset of BPS), blown, the presence of sufficient gas inside the packs to produce pack distension and tightly stretched, “overblown” packs/ packs leaking. Following storage and assessment of indicator date, it was concluded that AFV- and SO-containing packaging inhibited the growth of C. estertheticum, significantly delaying the blown pack spoilage of beef primals. IMDA did not inhibit the growth of C. estertheticum. This may be attributed to differences in release rates and possible reactions with gelatin. Overall, active films were successfully produced following plasma surface treatment, and experimental data demonstrated clearly that the use of antimicrobially-active films could significantly prolong the storage stability of beef primals through the effective control of BPS.

Keywords: active packaging, blown pack spoilage, Clostridium, antimicrobials, edible coatings, food packaging, gelatin films, meat science

Procedia PDF Downloads 265
3267 Investigation on the Physical Conditions of Façade Systems of Campus Buildings by Infrared Thermography Tests

Authors: N. Türkmenoğlu Bayraktar, E. Kishalı

Abstract:

Campus buildings are educational facilities where various amount of energy consumption for lighting, heating, cooling and ventilation occurs. Some of the new universities in Turkey, where this investigation takes place, still continue their educational activities in existing buildings primarily designed for different architectural programs and converted to campus buildings via changes of function, space organizations and structural interventions but most of the time without consideration of appropriate micro climatic conditions. Reducing energy consumption in these structures not only contributes to the national economy but also mitigates the negative effects on environment. Furthermore, optimum thermal comfort conditions should be provided during the refurbishment of existing campus structures and their building envelope. Considering this issue, the first step is to investigate the climatic performance of building elements regarding refurbishment process. In the context of the study Kocaeli University, Faculty of Design and Architecture building constructed in 1980s in Anıtpark campus located in the central part of Kocaeli, Turkey was investigated. Climatic factors influencing thermal conditions; the deteriorations on building envelope; temperature distribution; heat losses from façade elements observed by thermography were presented in order to improve strategies for retrofit process for the building envelope. Within the scope of the survey, refurbishment strategies towards providing optimum climatic comfort conditions, increasing energy efficiency of building envelope were proposed.

Keywords: building envelope, IRT, refurbishment, non-destructive test

Procedia PDF Downloads 384
3266 Colour Formation and Maillard Reactions in Spray-Dried Milk Powders

Authors: Zelin Zhou, Timothy Langrish

Abstract:

Spray drying is the final stage of milk powder production. Traditionally, the quality of spray-dried milk powders has mainly been assessed using their physical properties, such as their moisture contents, while chemical changes occurring during the spray drying process have often been ignored. With growing concerns about food quality, it is necessary to establish a better understanding of heat-induced degradation due to the spray-drying process of skim milk. In this study, the extent of thermal degradation for skim milk in a pilot-scale spray dryer has been investigated using different inlet gas temperatures. The extent of heat-induced damage has been measured by the formation of advanced Maillard reaction products and the loss of soluble proteins at pH 4.6 as assessed by a fluorometric method. A significant increase in the extent of thermal degradation has been found when the inlet gas temperature increased from 170°C to 190°C, suggesting protein unfolding may play an important role in the kinetics of heat-induced degradation for milk in spray dryers. Colour changes of the spray-dried skim milk powders have also been analysed using a standard lighting box. Colourimetric analysis results were expressed in CIELAB colour space with the use of the E index (E) and the Chroma (C) for measuring the difference between colours and the intensity of the colours. A strong linear correlation between the colour intensity of the spray-dried skim milk powders and the formation of advanced Maillard reaction products has been observed.

Keywords: colour formation, Maillard reactions, spray drying, skim milk powder

Procedia PDF Downloads 185
3265 KTiPO4F: The Negative Electrode Material for Potassium Batteries

Authors: Vahid Ramezankhani, Keith J. Stevenson, Stanislav. S. Fedotov

Abstract:

Lithium-ion batteries (LIBs) play a pivotal role in achieving the key objective “zero-carbon emission” as countries agreed to reach a 1.5ᵒC global warming target according to the Paris agreement. Nowadays, due to the tremendous mobile and stationary consumption of small/large-format LIBs, the demand and consequently the price for such energy storage devices have been raised. The aforementioned challenges originate from the shrinkage of the major applied critical materials in these batteries, such as cobalt (Co), nickel (Ni), Lithium (Li), graphite (G), and manganese (Mn). Therefore, it is imperative to consider alternative elements to address issues corresponding to the limitation of resources around the globe. Potassium (K) is considered an effective alternative to Li since K is a more abundant element, has a higher operating potential, a faster diffusion rate, and the lowest stokes radius in comparison to the closest neighbors in the periodic table (Li and Na). Among all reported materials for metal-ion batteries, some of them possess the general formula AMXO4L [A = Li, Na, K; M = Fe, Ti, V; X = P, S, Si; L= O, F, OH] is of potential to be applied both as anode and cathode and enable researchers to investigate them in the full symmetric battery format. KTiPO4F (KTP structural material) has been previously reported by our group as a promising cathode with decent electronic properties. Herein, we report a synthesis, crystal structure characterization, morphology, as well as K-ion storage properties of KTiPO4F. Our investigation reveals that KTiPO4F delivers discharge capacity > 150 mAh/g at 26.6 mA/g (C/5 current rate) in the potential window of 0.001-3 V. Surprisingly, the cycling performance of C-KTiPO4F//K cell is stable for 1000 cycles at 130 mA/g (C current rate), presenting capacity > 130 mAh/g. More interestingly, we achieved to assemble full symmetric batteries where carbon-coated KTiPO4F serves as both negative and positive electrodes, delivering >70 mAh/g in the potential range of 0.001-4.2V.

Keywords: anode material, potassium battery, chemical characterization, electrochemical properties

Procedia PDF Downloads 220
3264 Synthesis and Properties of Photocured Surface Modified Polyaniline Hybrid Composites

Authors: Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman

Abstract:

Organic–inorganic hybrids have become an effective source of advanced materials because they combine the advantages of both the organic moiety such as flexibility, low dielectric constant, and processability, and inorganic moiety as rigidity, strength, durability, and thermal stability. By incorporating cross-linkable side chains, the hybrid materials can be made photosensitive and UV curable, which offers many advantages including low processing temperature, low equipment cost and compatibility. In this study, uv-curable organic-inorganic hybrid material, which was contained surface modified polyaniline particles (PANI), was prepared. PANI surface photografted with hydroxy ethyl methacrylate (HEMA) to produce hydroxyl groups. Hydroxyl functionalized PANI/HEMA was acrylated using isocyanato ethyl methacrylate (IEM) in order to improve the dispersion and interfacial interaction in composites. UV-curable formulation was prepared by mixing the surface modified PANI, polyethylene glycol diacrylate (PEGDA), trimethylolpropane triacrylate (TMPTA), hydrolized 3- methacryloxypropyltrimethoxysilane (hyd. MEMO) and photoinitiator. Chemical structure of nano-hybrid material was characterized by FTIR. FTIR spectra showed that the photografting of PANI was prepared successfully. Thermal properties of the nano-hybrid material were determined by thermogravimetric analysis (TGA). The morphology of the nano-hybrid material was performed by scanning electron microscopy (SEM).

Keywords: polyaniline, photograft, sol-gel, uv-curable polymer

Procedia PDF Downloads 302
3263 Application of Satellite Remote Sensing in Support of Water Exploration in the Arab Region

Authors: Eman Ghoneim

Abstract:

The Arabian deserts include some of the driest areas on Earth. Yet, its landforms reserved a record of past wet climates. During humid phases, the desert was green and contained permanent rivers, inland deltas and lakes. Some of their water would have seeped and replenished the groundwater aquifers. When the wet periods came to an end, several thousand years ago, the entire region transformed into an extended band of desert and its original fluvial surface was totally covered by windblown sand. In this work, radar and thermal infrared images were used to reveal numerous hidden surface/subsurface features. Radar long wavelength has the unique ability to penetrate surface dry sands and uncover buried subsurface terrain. Thermal infrared also proven to be capable of spotting cooler moist areas particularly in hot dry surfaces. Integrating Radarsat images and GIS revealed several previously unknown paleoriver and lake basins in the region. One of these systems, known as the Kufrah, is the largest yet identified river basin in the Eastern Sahara. This river basin, which straddles the border between Egypt and Libya, flowed north parallel to the adjacent Nile River with an extensive drainage area of 235,500 km2 and massive valley width of 30 km in some parts. This river was most probably served as a spillway for an overflow from Megalake Chad to the Mediterranean Sea and, thus, may have acted as a natural water corridor used by human ancestors to migrate northward across the Sahara. The Gilf-Kebir is another large paleoriver system located just east of Kufrah and emanates from the Gilf Plateau in Egypt. Both river systems terminate with vast inland deltas at the southern margin of the Great Sand Sea. The trends of their distributary channels indicate that both rivers drained to a topographic depression that was periodically occupied by a massive lake. During dry climates, the lake dried up and roofed by sand deposits, which is today forming the Great Sand Sea. The enormity of the lake basin provides explanation as to why continuous extraction of groundwater in this area is possible. A similar lake basin, delimited by former shorelines, was detected by radar space data just across the border of Sudan. This lake, called the Northern Darfur Megalake, has a massive size of 30,750 km2. These former lakes and rivers could potentially hold vast reservoirs of groundwater, oil and natural gas at depth. Similar to radar data, thermal infrared images were proven to be useful in detecting potential locations of subsurface water accumulation in desert regions. Analysis of both Aster and daily MODIS thermal channels reveal several subsurface cool moist patches in the sandy desert of the Arabian Peninsula. Analysis indicated that such evaporative cooling anomalies were resulted from the subsurface transmission of the Monsoonal rainfall from the mountains to the adjacent plain. Drilling a number of wells in several locations proved the presence of productive water aquifers confirming the validity of the used data and the adopted approaches for water exploration in dry regions.

Keywords: radarsat, SRTM, MODIS, thermal infrared, near-surface water, ancient rivers, desert, Sahara, Arabian peninsula

Procedia PDF Downloads 247
3262 Effect of Rapid Thermal Annealing on the Optical Properties of InAs Quantum Dots Grown on (100) and (311)B GaAs Substrates by Molecular Beam Epitaxy

Authors: Amjad Almunyif, Amra Alhassni, Sultan Alhassan, Maryam Al Huwayz, Saud Alotaibi, Abdulaziz Almalki, Mohamed Henini

Abstract:

The effect of rapid thermal annealing (RTA) on the optical properties of InAs quantum dots (QDs) grown at an As overpressure of 2x 10⁻⁶ Torr by molecular beam epitaxy (MBE) on (100) and (311)B GaAs substrates was investigated using photoluminescence (PL) technique. PL results showed that for the as-grown samples, the QDs grown on the high index plane (311)B have lower PL intensity and lower full width at half maximum (FWHM) than those grown on the conventional (100) plane. The latter demonstrates that the (311)B QDs have better size uniformity than (100) QDs. Compared with as-grown samples, a blue-shift was observed for all samples with increasing annealing temperature from 600°C to 700°C. For (100) samples, a narrowing of the FWHM was observed with increasing annealing temperature from 600°C to 700°C. However, in (311)B samples, the FWHM showed a different behaviour; it slightly increased when the samples were annealed at 600°C and then decreased when the annealing temperature increased to 700°C. As expected, the PL peak intensity for all samples increased when the laser excitation power increased. The PL peak energy temperature dependence showed a strong redshift when the temperature was increased from 10 K to 120 K. The PL peak energy exhibited an abnormal S-shape behaviour as a function of temperature for all samples. Most samples exhibited a significant enhancement in their activation energies when annealed at 600°C and 700°C, suggesting that annealing annihilated defects created during sample growth.

Keywords: RTA, QDs, InAs, MBE

Procedia PDF Downloads 176
3261 New Insights Into Gluten-Free Bread Staling Treatment

Authors: Sayed Mostafa, Siham Mostafa Mohamed Faheid, Ibrahim Rizk Sayed Ahmed, Yasser Fehry Mohamed Kishk, Gamal Hassan Ragab

Abstract:

Gluten-free foods are still the only treatment for gluten-allergic patients. Consequently, this study is concerned with improving the quality attributes of gluten-free bread using different concentrations (0, 20, 40, 60 and 80ppm) of all maltogenic α-amylase (MA) and xylanase (XY) compared with wheat flour Balady bread and untreated gluten-free Balady bread (GFBB). Pasting properties, falling number, water activity, alkaline water retention capacity (AWRC) and sensory properties (fresh bread, after 24h, after 48h and after 72h) of gluten-free bread were evaluated. Additionally, the effect of merging different concentrations of maltogenic α-amylase and xylanase on stalling behavior (AWRC) and sensory properties of gluten-free Balady bread was investigated. The addition of MA led to a gradually decreased peak viscosity, breakdown, setback and pasting temperature of GFBB with the increasing level of MA. Maltogenic α-amylase and xylanase addition led to a reduction in the FN values compared to the untreated gluten-free sample, noting that the MA-treated samples showed a significant decrease compared to the XY-treated and untreated samples. Wheat flour Balady bread significantly showed a higher value of AWRC compared to untreated gluten-free Balady bread at different storage periods (zero time, after 24h, after 48h and after 72h). MA-treated samples showed higher water binding capacity and water activity (aw)in comparison with XY-treated samples, with significance during all storage periods. Concerning the overall acceptability during the third day, the highest score (4.6) was observed by the GFBB sample containing 40ppm MA, followed by 4.3, which was investigated by the GFBB sample containing 80ppm XY with no significance between them and with significance compared to the other samples.

Keywords: celiac disease, gluten-free products, anti-stalling agents, maltogenic α-amylase, xylanase

Procedia PDF Downloads 85
3260 Comparative Analysis of Hybrid and Non-hybrid Cooled 185 KW High-Speed Permanent Magnet Synchronous Machine for Air Suspension Blower

Authors: Usman Abubakar, Xiaoyuan Wang, Sayyed Haleem Shah, Sadiq Ur Rahman, Rabiu Saleh Zakariyya

Abstract:

High-speed Permanent magnet synchronous machine (HSPMSM) uses in different industrial applications like blowers, compressors as a result of its superb performance. Nevertheless, the over-temperature rise of both winding and PM is one of their substantial problem for a high-power HSPMSM, which affects its lifespan and performance. According to the literature, HSPMSM with a Hybrid cooling configuration has a much lower temperature rise than non-hybrid cooling. This paper presents the design 185kW, 26K rpm with two different cooling configurations, i.e., hybrid cooling configuration (forced air and housing spiral water jacket) and non-hybrid (forced air cooling assisted with winding’s potting material and sleeve’s material) to enhance the heat dissipation of winding and PM respectively. Firstly, the machine’s electromagnetic design is conducted by the finite element method to accurately account for machine losses. Then machine’s cooling configurations are introduced, and their effectiveness is validated by lumped parameter thermal network (LPTN). Investigation shows that using potting, sleeve materials to assist non-hybrid cooling configuration makes the machine’s winding and PM temperature closer to hybrid cooling configuration. Therefore, the machine with non-hybrid cooling is prototyped and tested due to its simplicity, lower energy consumption and can still maintain the lifespan and performance of the HSPMSM.

Keywords: airflow network, axial ventilation, high-speed PMSM, thermal network

Procedia PDF Downloads 231
3259 Solar Energy Applications in Seawater Distillation

Authors: Yousef Abdulaziz Almolhem

Abstract:

Geographically, the most Arabic countries locate in areas confined to arid or semiarid regions. For this reason, most of our countries have adopted the seawater desalination as a strategy to overcome this problem. For example, the water supply of AUE, Kuwait, and Saudi Arabia is almost 100% from the seawater desalination plants. Many areas in Saudia Arabia and other countries in the world suffer from lack of fresh water which hinders the development of these areas, despite the availability of saline water and high solar radiation intensity. Furthermore, most developing countries do not have sufficient meteorological data to evaluate if the solar radiation is enough to meet the solar desalination. A mathematical model was developed to simulate and predict the thermal behavior of the solar still which used direct solar energy for distillation of seawater. Measurement data were measured in the Environment and Natural Resources Department, Faculty of Agricultural and Food sciences, King Faisal University, Saudi Arabia, in order to evaluate the present model. The simulation results obtained from this model were compared with the measured data. The main results of this research showed that there are slight differences between the measured and predicted values of the elements studied, which is resultant from the change of some factors considered constants in the model such as the sky clearance, wind velocity and the salt concentration in the water in the basin of the solar still. It can be concluded that the present model can be used to estimate the average total solar radiation and the thermal behavior of the solar still in any area with consideration to the geographical location.

Keywords: mathematical model, sea water, distillation, solar radiation

Procedia PDF Downloads 283
3258 Processing and Economic Analysis of Rain Tree (Samanea saman) Pods for Village Level Hydrous Bioethanol Production

Authors: Dharell B. Siano, Wendy C. Mateo, Victorino T. Taylan, Francisco D. Cuaresma

Abstract:

Biofuel is one of the renewable energy sources adapted by the Philippine government in order to lessen the dependency on foreign fuel and to reduce carbon dioxide emissions. Rain tree pods were seen to be a promising source of bioethanol since it contains significant amount of fermentable sugars. The study was conducted to establish the complete procedure in processing rain tree pods for village level hydrous bioethanol production. Production processes were done for village level hydrous bioethanol production from collection, drying, storage, shredding, dilution, extraction, fermentation, and distillation. The feedstock was sundried, and moisture content was determined at a range of 20% to 26% prior to storage. Dilution ratio was 1:1.25 (1 kg of pods = 1.25 L of water) and after extraction process yielded a sugar concentration of 22 0Bx to 24 0Bx. The dilution period was three hours. After three hours of diluting the samples, the juice was extracted using extractor with a capacity of 64.10 L/hour. 150 L of rain tree pods juice was extracted and subjected to fermentation process using a village level anaerobic bioreactor. Fermentation with yeast (Saccharomyces cerevisiae) can fasten up the process, thus producing more ethanol at a shorter period of time; however, without yeast fermentation, it also produces ethanol at lower volume with slower fermentation process. Distillation of 150 L of fermented broth was done for six hours at 85 °C to 95 °C temperature (feedstock) and 74 °C to 95 °C temperature of the column head (vapor state of ethanol). The highest volume of ethanol recovered was established at with yeast fermentation at five-day duration with a value of 14.89 L and lowest actual ethanol content was found at without yeast fermentation at three-day duration having a value of 11.63 L. In general, the results suggested that rain tree pods had a very good potential as feedstock for bioethanol production. Fermentation of rain tree pods juice can be done with yeast and without yeast.

Keywords: fermentation, hydrous bioethanol, fermentation, rain tree pods, village level

Procedia PDF Downloads 295
3257 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Authors: Susanta Kumar Gachhayat, S. K. Dash

Abstract:

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Keywords: economic load dispatch, ELD, biogeography-based optimization, BBO, ramp rate biogeography-based optimization, RRBBO, valve-point loading, VPL

Procedia PDF Downloads 379