Search results for: single unit heavy vehicle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9095

Search results for: single unit heavy vehicle

7025 Reading in Multiple Arabic's: Effects of Diglossia and Orthography

Authors: Aula Khatteb Abu-Liel

Abstract:

The study investigated the effects of diglossia and orthography on reading in Arabic, manipulating reading in Spoken Arabic (SA), using Arabizi, in which it is written using Latin letters on computers/phones, and the two forms of the conventional written form Modern Standard Arabic (MSA): vowelled (shallow) and unvowelled (deep). 77 skilled readers in 8th grade performed oral reading of single words and narrative and expository texts, and silent reading comprehension of both genres of text. Oral reading and comprehension revealed different patterns. Single words and texts were read faster and more accurately in unvoweled MSA, slowest and least accurately in vowelled MSA, and in-between in Arabizi. Comprehension was highest for vowelled MSA. Narrative texts were better than expository texts in Arabizi with the opposite pattern in MSA. The results suggest that frequency of the type of texts and the way in which phonology is encoded affect skilled reading.

Keywords: Arabic, Arabize, computer mediated communication, diglossia, modern standard Arabic

Procedia PDF Downloads 138
7024 Stock Market Development and the Growth of Nigerian Economy

Authors: Godwin Chigozie Okpara, Eugene Iheanacho

Abstract:

This paper examined the dynamic behavior of stock market development and the growth of Nigerian economy. The variables; market capitalization ratio, turnover ratio and liquidity proxies by the ratio of market capitalization to gross domestic product were sourced and computed from the Nigerian stock exchange fact books and the CBN statistical bulletin of the Central Bank of Nigeria. The variables were tested and found stationary and cointregrated using the augumented Dickey Fuller unit root test and the Johnson cointegration test respectively. The dynamic behavior of the stock market development model was verified using the error correction model. The result shows that about 0.4l percent of the short run deviation is corrected every year and also reveals that market capitalization ratio and market liquidity are positive and significant function of economic growth. In other words market capitalization ratio and liquidity positively and significantly impact economic growth. Market development variables such as turnover ratio and market restriction can exert positive but insignificant impact on the growth of the economy suggesting that securities transaction relative to the size of the securities market are not high enough to significantly engender economic growth in Nigeria. In the light of this, the researchers recommend that the regulatory body as well as the government, should provide a conducive environment capable of encouraging the growth and development of the stock market. This if well articulated will enhance the market turnover and the growth of the economy.

Keywords: market capitalization ratio, turnover ratio, liquidity, unit root test, cointegration

Procedia PDF Downloads 323
7023 Mapping Thermal Properties Using Resistivity, Lithology and Thermal Conductivity Measurements

Authors: Riccardo Pasquali, Keith Harlin, Mark Muller

Abstract:

The ShallowTherm project is focussed on developing and applying a methodology for extrapolating relatively sparsely sampled thermal conductivity measurements across Ireland using mapped Litho-Electrical (LE) units. The primary data used consist of electrical resistivities derived from the Geological Survey Ireland Tellus airborne electromagnetic dataset, GIS-based maps of Irish geology, and rock thermal conductivities derived from both the current Irish Ground Thermal Properties (IGTP) database and a new programme of sampling and laboratory measurement. The workflow has been developed across three case-study areas that sample a range of different calcareous, arenaceous, argillaceous, and volcanic lithologies. Statistical analysis of resistivity data from individual geological formations has been assessed and integrated with detailed lithological descriptions to define distinct LE units. Thermal conductivity measurements from core and hand samples have been acquired for every geological formation within each study area. The variability and consistency of thermal conductivity measurements within each LE unit is examined with the aim of defining a characteristic thermal conductivity (or range of thermal conductivities) for each LE unit. Mapping of LE units, coupled with characteristic thermal conductivities, provides a method of defining thermal conductivity properties at a regional scale and facilitating the design of ground source heat pump closed-loop collectors.

Keywords: thermal conductivity, ground source heat pumps, resistivity, heat exchange, shallow geothermal, Ireland

Procedia PDF Downloads 164
7022 Radiochemical Purity of 68Ga-BCA-Peptides: Separation of All 68Ga Species with a Single iTLC Strip

Authors: Anton A. Larenkov, Alesya Ya Maruk

Abstract:

In the present study, highly effective iTLC single strip method for the determination of radiochemical purity (RCP) of 68Ga-BCA-peptides was developed (with no double-developing, changing of eluents or other additional manipulation). In this method iTLC-SG strips and commonly used eluent TFAaq. (3-5 % (v/v)) are used. The method allows determining each of the key radiochemical forms of 68Ga (colloidal, bound, ionic) separately with the peaks separation being no less than 4 σ. Rf = 0.0-0.1 for 68Ga-colloid; Rf = 0.5-0.6 for 68Ga-BCA-peptides; Rf = 0.9-1.0 for ionic 68Ga. The method is simple and fast: For developing length of 75 mm only 4-6 min is required (versus 18-20 min for pharmacopoeial method). The method has been tested on various compounds (including 68Ga-DOTA-TOC, 68Ga-DOTA-TATE, 68Ga-NODAGA-RGD2 etc.). The cross-validation work for every specific form of 68Ga showed good correlation between method developed and control (pharmacopoeial) methods. The method can become convenient and much more informative replacement for pharmacopoeial methods, including HPLC.

Keywords: DOTA-TATE, 68Ga, quality control, radiochemical purity, radiopharmaceuticals, TLC

Procedia PDF Downloads 277
7021 A Single Country Comparative Contextual Description Study of the Executive Authorities in Austria

Authors: Meryl Abigail Lucasan

Abstract:

The purpose of this research paper is to present a Single Country Comparative Contextual Description Study of the Executive Authorities in Austria, focusing with the Federal President, Cabinet members (Federal Chancellor, the Vice-Chancellor and the other Federal Ministers) and the State Government. In this paper, the roles and powers of the executive authorities of Austria will be enumerated and explained; and the behavior of the executive authorities of Austria will be described in detail. In addition, the researcher will provide a survey that was answered by an Austrian citizen through electronic mail to gain more concrete information about the current political condition in Austria. Based on research, Austria has a remarkable political stability. This paper will develop a conceptual framework or a sample paradigm to represent the political system in Austria, focusing on its states and Executive Authorities in achieving political stability.

Keywords: Austrian politics, executive branch of the government, federal government, political stability

Procedia PDF Downloads 247
7020 Physicochemical Characterization of Asphalt Ridge Froth Bitumen

Authors: Nader Nciri, Suil Song, Namho Kim, Namjun Cho

Abstract:

Properties and compositions of bitumen and bitumen-derived liquids have significant influences on the selection of recovery, upgrading and refining processes. Optimal process conditions can often be directly related to these properties. The end uses of bitumen and bitumen products are thus related to their compositions. Because it is not possible to conduct a complete analysis of the molecular structure of bitumen, characterization must be made in other terms. The present paper focuses on physico-chemical analysis of two different types of bitumens. These bitumen samples were chosen based on: the original crude oil (sand oil and crude petroleum), and mode of process. The aim of this study is to determine both the manufacturing effect on chemical species and the chemical organization as a function of the type of bitumen sample. In order to obtain information on bitumen chemistry, elemental analysis (C, H, N, S, and O), heavy metal (Ni, V) concentrations, IATROSCAN chromatography (thin layer chromatography-flame ionization detection), FTIR spectroscopy, and 1H NMR spectroscopy have all been used. The characterization includes information about the major compound types (saturates, aromatics, resins and asphaltenes) which can be compared with similar data for other bitumens, more importantly, can be correlated with data from petroleum samples for which refining characteristics are known. Examination of Asphalt Ridge froth bitumen showed that it differed significantly from representative petroleum pitches, principally in their nonhydrocarbon content, heavy metal content and aromatic compounds. When possible, properties and composition were related to recovery and refining processes. This information is important because of the effects that composition has on recovery and processing reactions.

Keywords: froth bitumen, oil sand, asphalt ridge, petroleum pitch, thin layer chromatography-flame ionization detection, infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy

Procedia PDF Downloads 410
7019 Hypersonic Propulsion Requirements for Sustained Hypersonic Flight for Air Transportation

Authors: James Rate, Apostolos Pesiridis

Abstract:

In this paper, the propulsion requirements required to achieve sustained hypersonic flight for commercial air transportation are evaluated. In addition, a design methodology is developed and used to determine the propulsive capabilities of both ramjet and scramjet engines. Twelve configurations are proposed for hypersonic flight using varying combinations of turbojet, turbofan, ramjet and scramjet engines. The optimal configuration was determined based on how well each of the configurations met the projected requirements for hypersonic commercial transport. The configurations were separated into four sub-configurations each comprising of three unique derivations. The first sub-configuration comprised four afterburning turbojets and either one or two ramjets idealised for Mach 5 cruise. The number of ramjets required was dependent on the thrust required to accelerate the vehicle from a speed where the turbojets cut out to Mach 5 cruise. The second comprised four afterburning turbojets and either one or two scramjets, similar to the first configuration. The third used four turbojets, one scramjet and one ramjet to aid acceleration from Mach 3 to Mach 5. The fourth configuration was the same as the third, but instead of turbojets, it implemented turbofan engines for the preliminary acceleration of the vehicle. From calculations which determined the fuel consumption at incremental Mach numbers this paper found that the ideal solution would require four turbojet engines and two Scramjet engines. The ideal mission profile was determined as being an 8000km sortie based on an averaging of popular long haul flights with strong business ties, which included Los Angeles to Tokyo, London to New York and Dubai to Beijing. This paper deemed that these routes would benefit from hypersonic transport links based on the previously mentioned factors. This paper has found that this configuration would be sufficient for the 8000km flight to be completed in approximately two and a half hours and would consume less fuel than Concord in doing so. However, this propulsion configuration still result in a greater fuel cost than a conventional passenger. In this regard, this investigation contributes towards the specification of the engine requirements throughout a mission profile for a hypersonic passenger vehicle. A number of assumptions have had to be made for this theoretical approach but the authors believe that this investigation lays the groundwork for appropriate framing of the propulsion requirements for sustained hypersonic flight for commercial air transportation. Despite this, it does serve as a crucial step in the development of the propulsion systems required for hypersonic commercial air transportation. This paper provides a methodology and a focus for the development of the propulsion systems that would be required for sustained hypersonic flight for commercial air transportation.

Keywords: hypersonic, ramjet, propulsion, Scramjet, Turbojet, turbofan

Procedia PDF Downloads 304
7018 A High Step-Up DC-DC Converter for Renewable Energy System Applications

Authors: Sopida Vacharasukpo, Sudarat Khwan-On

Abstract:

This paper proposes a high step-up DC-DC converter topology for renewable energy system applications. The proposed converter employs only a single power switch instead of using several switches. Compared to the conventional DC-DC step-up converters the higher voltage gain with small output ripples can be achieved by using the proposed high step-up DC-DC converter topology. It can step up the low input voltage (20-50Vdc) generated from the photovoltaic modules to the high output voltage level approximately 600Vdc in order to supply the three-phase inverter fed the three-phase motor drive. In this paper, the operating principle of the proposed converter topology and its control strategy under the continuous conduction mode (CCM) are described. Finally, simulation results are shown to demonstrate the effectiveness of the proposed high step-up DC-DC converter with its control strategy to increase the voltage step-up conversion ratio.

Keywords: DC-DC converter, high step-up ratio, renewable energy, single switch

Procedia PDF Downloads 1174
7017 Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia

Authors: Abdulraaof H. Alqaili, Hamad A. Alsoliman

Abstract:

Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.

Keywords: mechanistic-empirical pavement design guide (MEPDG), traffic characteristics, materials properties, climate, Riyadh

Procedia PDF Downloads 216
7016 Simulation of Stretching and Fragmenting DNA by Microfluidic for Optimizing Microfluidic Devices

Authors: Shuyi Wu, Chuang Li, Quanshui Zheng, Luping Xu

Abstract:

Stretching and snipping DNA molecule by microfluidic has important application value in gene analysis by lab on a chip. Movement, deformation and fragmenting of DNA in microfluidic are typical fluid-solid coupling problems. An efficient and common simulation system for researching the movement, deformation and fragmenting of DNA by microfluidic has not been well developed. In our study, Brownian dynamics-finite element method (BD-FEM) is used to simulate the dynamic process of stretching and fragmenting DNA by contraction flow. The shape and parameters of micro-channels are changed to optimize the stretching and fragmenting properties of DNA. Our results indicate that strain rate, resulting from contraction microchannel, is the main control parameter for stretching and fragmenting DNA. There is good consistency between the simulation data and previous experimental result about the single DNA molecule behavior and averaged fragmenting properties in this study. BD-FEM method is an efficient calculating tool to research stretching and fragmenting behavior of single DNA molecule and optimize microfluidic devices for manipulating, stretching and fragmenting DNA.

Keywords: fragmenting, DNA, microfluidic, optimize.

Procedia PDF Downloads 311
7015 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor

Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir

Abstract:

This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.

Keywords: centrifugal compressor, contra-rotating, interaction rotor, vacuum

Procedia PDF Downloads 121
7014 Functional Performance of Unpaved Roads Reinforced with Treated Coir Geotextiles

Authors: Priya Jaswal, Vivek, S. K. Sinha

Abstract:

One of the most important and complicated factors influencing the functional performance of unpaved roads is traffic loading. The complexity of traffic loading is caused by the variable magnitude and frequency of load, which causes unpaved roads to fail prematurely. Unpaved roads are low-volume roads, and as peri-urbanization increases, unpaved roads act as a means to boost the rural economy. This has also increased traffic on unpaved roads, intensifying the issue of settlement, rutting, and fatigue failure. This is a major concern for unpaved roads built on poor subgrade soil, as excessive rutting caused by heavy loads can cause driver discomfort, vehicle damage, and an increase in maintenance costs. Some researchers discovered that when a consistent static load is exerted as opposed to a rapidly changing load, the rate of deformation of unpaved roads increases. Previously, some of the most common methods for overcoming the problem of rutting and fatigue failure included chemical stabilisation, fibre reinforcement, and so on. However, due to their high cost, engineers' attention has shifted to geotextiles which are used as reinforcement in unpaved roads. Geotextiles perform the function of filtration, lateral confinement of base material, vertical restraint of subgrade soil, and the tension membrane effect. The use of geotextiles in unpaved roads increases the strength of unpaved roads and is an economically viable method because it reduces the required aggregate thickness, which would need less earthwork, and is thus recommended for unpaved road applications. The majority of geotextiles used previously were polymeric, but with a growing awareness of sustainable development to preserve the environment, researchers' focus has shifted to natural fibres. Coir is one such natural fibre that possesses the advantage of having a higher tensile strength than other bast fibres, being eco-friendly, low in cost, and biodegradable. However, various researchers have discovered that the surface of coir fibre is covered with various impurities, voids, and cracks, which act as a plane of weakness and limit the potential application of coir geotextiles. To overcome this limitation, chemical surface modification of coir geotextiles is widely accepted by researchers because it improves the mechanical properties of coir geotextiles. The current paper reviews the effect of using treated coir geotextiles as reinforcement on the load-deformation behaviour of a two-layered unpaved road model.

Keywords: coir, geotextile, treated, unpaved

Procedia PDF Downloads 82
7013 Solution Approaches for Some Scheduling Problems with Learning Effect and Job Dependent Delivery Times

Authors: M. Duran Toksari, Berrin Ucarkus

Abstract:

In this paper, we propose two algorithms to optimally solve makespan and total completion time scheduling problems with learning effect and job dependent delivery times in a single machine environment. The delivery time is the extra time to eliminate adverse effect between the main processing and delivery to the customer. In this paper, we introduce the job dependent delivery times for some single machine scheduling problems with position dependent learning effect, which are makespan are total completion. The results with respect to two algorithms proposed for solving of the each problem are compared with LINGO solutions for 50-jobs, 100-jobs and 150-jobs problems. The proposed algorithms can find the same results in shorter time.

Keywords: delivery Times, learning effect, makespan, scheduling, total completion time

Procedia PDF Downloads 459
7012 Solving Crimes through DNA Methylation Analysis

Authors: Ajay Kumar Rana

Abstract:

Predicting human behaviour, discerning monozygotic twins or left over remnant tissues/fluids of a single human source remains a big challenge in forensic science. Recent advances in the field of DNA methylations which are broadly chemical hallmarks in response to environmental factors can certainly help to identify and discriminate various single-source DNA samples collected from the crime scenes. In this review, cytosine methylation of DNA has been methodologically discussed with its broad applications in many challenging forensic issues like body fluid identification, race/ethnicity identification, monozygotic twins dilemma, addiction or behavioural prediction, age prediction, or even authenticity of the human DNA. With the advent of next-generation sequencing techniques, blooming of DNA methylation datasets and together with standard molecular protocols, the prospect of investigating and solving the above issues and extracting the exact nature of the truth for reconstructing the crime scene events would be undoubtedly helpful in defending and solving the critical crime cases.

Keywords: DNA methylation, differentially methylated regions, human identification, forensics

Procedia PDF Downloads 305
7011 Fibroblast Compatibility of Core-Shell Coaxially Electrospun Hybrid Poly(ε-Caprolactone)/Chitosan Scaffolds

Authors: Hilal Turkoglu Sasmazel, Ozan Ozkan, Seda Surucu

Abstract:

Tissue engineering is the field of treating defects caused by injuries, trauma or acute/chronic diseases by using artificial scaffolds that mimic the extracellular matrix (ECM), the natural biological support for the tissues and cells within the body. The main aspects of a successful artificial scaffold are (i) large surface area in order to provide multiple anchorage points for cells to attach, (ii) suitable porosity in order to achieve 3 dimensional growth of the cells within the scaffold as well as proper transport of nutrition, biosignals and waste and (iii) physical, chemical and biological compatibility of the material in order to obtain viability throughout the healing process. By hybrid scaffolds where two or more different materials were combined with advanced fabrication techniques into complex structures, it is possible to combine the advantages of individual materials into one single structure while eliminating the disadvantages of each. Adding this to the complex structure provided by advanced fabrication techniques enables obtaining the desired aspects of a successful artificial tissue scaffold. In this study, fibroblast compatibility of poly(ε-caprolactone) (PCL)/chitosan core-shell electrospun hybrid scaffolds with proper mechanical, chemical and physical properties successfully developed in our previous study was investigated. Standard 7-day cell culture was carried out with L929 fibroblast cell line. The viability of the cells cultured with the scaffolds was monitored with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay for every 48 h starting with 24 h after the initial seeding. In this assay, blank commercial tissue culture polystyrene (TCPS) Petri dishes, single electrospun PCL and single electrospun chitosan mats were used as control in order to compare and contrast the performance of the hybrid scaffolds. The adhesion, proliferation, spread and growth of the cells on/within the scaffolds were observed visually on the 3rd and the 7th days of the culture period with confocal laser scanning microscopy (CSLM) and scanning electron microscopy (SEM). The viability assay showed that the hybrid scaffolds caused no toxicity for fibroblast cells and provided a steady increase in cell viability, effectively doubling the cell density for every 48 h for the course of 7 days, as compared to TCPS, single electrospun PCL or chitosan mats. The cell viability on the hybrid scaffold was ~2 fold better compared to TCPS because of its 3D ECM-like structure compared to 2D flat surface of commercially cell compatible TCPS, and the performance was ~2 fold and ~10 fold better compared to single PCL and single chitosan mats, respectively, even though both fabricated similarly with electrospinning as non-woven fibrous structures, because single PCL and chitosan mats were either too hydrophobic or too hydrophilic to maintain cell attachment points. The viability results were verified with visual images obtained with CSLM and SEM, in which cells found to achieve characteristic spindle-like fibroblast shape and spread on the surface as well within the pores successfully at high densities.

Keywords: chitosan, core-shell, fibroblast, electrospinning, PCL

Procedia PDF Downloads 164
7010 Design and Implementation Wireless System by Using Microcontrollers.Application for Drive Acquisition System with Multiple Sensors

Authors: H. Fekhar

Abstract:

Design and implementation acquisition system using radio frequency (RF) ASK module and micro controllers PIC is proposed in this work. The paper includes hardware and software design. The design tools are divided into two units , namely the sender MCU and receiver.The system was designed to measure temperatures of two furnaces and pressure pneumatic process. The wireless transmitter unit use the 433.95 MHz band directly interfaced to micro controller PIC18F4620. The sender unit consists of temperatures-pressure sensors , conditioning circuits , keypad GLCD display and RF module.Signal conditioner converts the output of the sensors into an electric quantity suitable for operation of the display and recording system.The measurements circuits are connected directly to 10 bits multiplexed A/D converter.The graphic liquid crystal display (GLCD) is used . The receiver (RF) module connected to a second microcontroller ,receive the signal via RF receiver , decode the Address/data and reproduces the original data . The strategy adopted for establishing communication between the sender MCU and receiver uses the specific protocol “Header, Address and data”.The communication protocol dealing with transmission and reception have been successfully implemented . Some experimental results are provided to demonstrate the effectiveness of the proposed wireless system. This embedded system track temperatures – pressure signal reasonably well with a small error.

Keywords: microcontrollers, sensors, graphic liquid cristal display, protocol, temperature, pressure

Procedia PDF Downloads 449
7009 A Method for Solid-Liquid Separation of Cs+ from Radioactive Waste by Using Ionic Liquids and Extractants

Authors: J. W. Choi, S. Y. Cho, H. J. Lee, W. Z. Oh, S. J. Choi

Abstract:

Ionic liquids (ILs), which is alternative to conventional organic solvent, were used for extraction of Cs ions. ILs, as useful environment friendly green solvents, have been recently applied as replacement for traditional volatile organic compounds (VOCs) in liquid/liquid extraction of heavy metal ions as well as organic and inorganic species and pollutants. Thus, Ionic liquids were used for extraction of Cs ions from the liquid radioactive waste. In most cases, Cs ions present in radioactive wastes in very low concentration, approximately less than 1ppm. Therefore, unlike established extraction system the required amount of ILs as extractant is comparatively very small. This extraction method involves cation exchange mechanism in which Cs ion transfers to the organic phase and binds to one crown ether by chelation in exchange of single ILs cation, IL_cation+, transfer to the aqueous phase. In this extraction system showed solid-liquid separation in which the Ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonly)imide (C2mimTf2N) and the crown ether Dicyclohexano-18-crown-6 (DCH18C6) both were used here in very little amount as solvent and as extractant, respectively. 30 mM of CsNO3 was used as simulated waste solution cesium ions. Generally, in liquid-liquid extraction, the molar ratio of CE:Cs+:ILs was 1:5~10:>100, while our applied molar ratio of CE:Cs+:ILs was 1:2:1~10. The quantity of CE and Cs ions were fixed to 0.6 and 1.2 mmol, respectively. The phenomenon of precipitation showed two kinds of separation: solid-liquid separation in the ratio of 1:2:1 and 1:2:2; solid-liquid-liquid separation (3 phase) in the ratio of 1:2:5 and 1:2:10. In the last system, 3 phases were precipitate-ionic liquids-aqueous. The precipitate was verified to consist of Cs+, DCH18C6, Tf2N- based on the cation exchange mechanism. We analyzed precipitate using scanning electron microscopy with X-ray microanalysis (SEM-EDS), an elemental analyser, Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). The experimental results showed an easy extraction method and confirmed the composition of solid precipitate. We also obtained information that complex formation ratio of Cs+ to DCH18C6 is 0.88:1 regardless of C2mimTf2N quantities.

Keywords: extraction, precipitation, solid-liquid seperation, ionic liquid, precipitate

Procedia PDF Downloads 404
7008 Numerical Analysis of Catalytic Combustion in a Tabular Reactor with Methane and Air Mixtures over Platinum Catalyst

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

The presence of a catalyst inside an engine enables complete combustion at lower temperatures which promote desired chemical reactions. The objective of this work is to design and simulate a catalytic combustor by using CHEMKIN with detailed gas and surface chemistries. The simplified approach with single catalyst channel using plug flow reactor (PFR) can be used to predict reasonably well with the effect of various operating parameters such as the inlet temperature, velocity and fuel/air ratios. The numerical results are validated by comparing the surface chemistries in single channel catalytic combustor. The catalytic combustor operates at much lower temperature than the conventional combustor since lean-fuel mixture is used where the complete methane conversion is achieved. The coupling between gas and surface reactions in the catalyst bed is studied by investigating the commencement of flame ignition with respect to the surface site species.

Keywords: catalytic combustion, honeycomb monolith, plug flow reactor, surface reactions

Procedia PDF Downloads 213
7007 Spin-Dipole Excitations Produced On-Demand in the Fermi Sea

Authors: Mykhailo Moskalets, Pablo Burset, Benjamin Roussel, Christian Flindt

Abstract:

The single-particle injection from the Andreev level and how such injection is simulated using a voltage pulse are discussed. Recently, high-speed quantum-coherent electron sources injecting one- to few-particle excitations into the Fermi sea have been experimentally realized. The main obstacle to using these excitations as flying qubits for quantum-information processing purposes is decoherence due to the long-range Coulomb interaction. An obvious way to get around this difficulty is to employ electrically neutral excitations. Here it is discussed how such excitations can be generated on-demand using the same injection principles as in existing electron sources. Namely, with the help of a voltage pulse of a certain shape applied to the Fermi sea or using a driven quantum dot with superconducting correlations. The advantage of the latter approach is the possibility of varying the electron-hole content in the excitation and the possibility of creating a charge-neutral but spin-dipole excitation.

Keywords: Andreev level, on-demand, single-electron, spin-dipole

Procedia PDF Downloads 73
7006 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data

Authors: LuoJiaoyang, Yu Hongyang

Abstract:

In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.

Keywords: multimodal, three modalities, RGB-D, identity verification

Procedia PDF Downloads 58
7005 The Temperature Effects on the Microstructure and Profile in Laser Cladding

Authors: P. C. Chiu, Jehnming Lin

Abstract:

In this study, a 50-W CO2 laser was used for the clad of 304L powders on the stainless steel substrate with a temperature sensor and image monitoring system. The laser power and cladding speed and focal position were modified to achieve the requirement of the workpiece flatness and mechanical properties. The numerical calculation is based on ANSYS to analyze the temperature change of the moving heat source at different surface positions when coating the workpiece, and the effect of the process parameters on the bath size was discussed. The temperature of stainless steel powder in the nozzle outlet reacting with the laser was simulated as a process parameter. In the experiment, the difference of the thermal conductivity in three-dimensional space is compared with single-layer cladding and multi-layer cladding. The heat dissipation pattern of the single-layer cladding is the steel plate and the multi-layer coating is the workpiece itself. The relationship between the multi-clad temperature and the profile was analyzed by the temperature signal from an IR pyrometer.

Keywords: laser cladding, temperature, profile, microstructure

Procedia PDF Downloads 213
7004 A Study of the Growth of Single-Phase Mg0.5Zn0.5O Films for UV LED

Authors: Hong Seung Kim, Chang Hoi Kim, Lili Yue

Abstract:

Single-phase, high band gap energy Zn0.5Mg0.5O films were grown under oxygen pressure, using pulse laser deposition with a Zn0.5Mg0.5O target. Structural characterization studies revealed that the crystal structures of the ZnX-1MgXO films could be controlled via changes in the oxygen pressure. TEM analysis showed that the thickness of the deposited Zn1-xMgxO thin films was 50–75 nm. As the oxygen pressure increased, we found that one axis of the crystals did not show a very significant increase in the crystallization compared with that observed at low oxygen pressure. The X-ray diffraction peak intensity for the hexagonal-ZnMgO (002) plane increased relative to that for the cubic-ZnMgO (111) plane. The corresponding c-axis of the h-ZnMgO lattice constant increased from 5.141 to 5.148 Å, and the a-axis of the c-ZnMgO lattice constant decreased from 4.255 to 4.250 Å. EDX analysis showed that the Mg content in the mixed-phase ZnMgO films decreased significantly, from 54.25 to 46.96 at.%. As the oxygen pressure was increased from 100 to 150 mTorr, the absorption edge red-shifted from 3.96 to 3.81 eV; however, a film grown at the highest oxygen pressure tested here (200 mTorr).

Keywords: MgO, UV LED, ZnMgO, ZnO

Procedia PDF Downloads 393
7003 In situ Immobilization of Mercury in a Contaminated Calcareous Soil Using Water Treatment Residual Nanoparticles

Authors: Elsayed A. Elkhatib, Ahmed M. Mahdy, Mohamed L. Moharem, Mohamed O. Mesalem

Abstract:

Mercury (Hg) is one of the most toxic and bio-accumulative heavy metal in the environment. However, cheap and effective in situ remediation technology is lacking. In this study, the effects of water treatment residuals nanoparticles (nWTR) on mobility, fractionation and speciation of mercury in an arid zone soil from Egypt were evaluated. Water treatment residual nanoparticles with high surface area (129 m 2 g-1) were prepared using Fritsch planetary mono mill. Scanning and transmission electron microscopy revealed that the nanoparticles of WTR nanoparticles are spherical in shape, and single particle sizes are in the range of 45 to 96 nm. The x-ray diffraction (XRD) results ascertained that amorphous iron, aluminum (hydr)oxides and silicon oxide dominating all nWTR, with no apparent crystalline iron–Al (hydr)oxides. Addition of nWTR, greatly increased the Hg sorption capacities of studied soils and greatly reduced the cumulative Hg released from the soils. Application of nWTR at 0.10 and 0.30 % rates reduced the released Hg from the soil by 50 and 85 % respectively. The power function and first order kinetics models well described the desorption process from soils and nWTR amended soils as evidenced by high coefficient of determination (R2) and low SE values. Application of nWTR greatly increased the association of Hg with the residual fraction. Meanwhile, application of nWTR at a rate of 0.3% greatly increased the association of Hg with the residual fraction (>93%) and significantly increased the most stable Hg species (Hg(OH)2 amor) which in turn enhanced Hg immobilization in the studied soils. Fourier transmission infrared spectroscopy analysis indicated the involvement of nWTR in the retention of Hg (II) through OH groups which suggest inner-sphere adsorption of Hg ions to surface functional groups on nWTR. These results demonstrated the feasibility of using a low-cost nWTR as best management practice to immobilize excess Hg in contaminated soils.

Keywords: release kinetics, Fourier transmission infrared spectroscopy, Hg fractionation, Hg species

Procedia PDF Downloads 219
7002 Some Inequalities Related with Starlike Log-Harmonic Mappings

Authors: Melike Aydoğan, Dürdane Öztürk

Abstract:

Let H(D) be the linear space of all analytic functions defined on the open unit disc. A log-harmonic mappings is a solution of the nonlinear elliptic partial differential equation where w(z) ∈ H(D) is second dilatation such that |w(z)| < 1 for all z ∈ D. The aim of this paper is to define some inequalities of starlike logharmonic functions of order α(0 ≤ α ≤ 1).

Keywords: starlike log-harmonic functions, univalent functions, distortion theorem

Procedia PDF Downloads 509
7001 Brown Macroalgae L. hyperborea as Natural Cation Exchanger and Electron Donor for the Treatment of a Zinc and Hexavalent Chromium Containing Galvanization Wastewater

Authors: Luciana P. Mazur, Tatiana A. Pozdniakova, Rui A. R. Boaventura, Vitor J. P. Vilar

Abstract:

The electroplating industry requires a lot of process water, which generates a large volume of wastewater loaded with heavy metals. Two different wastewaters were collected in a company’s wastewater treatment plant, one after the use of zinc in the metal plating process and the other after the use of chromium. The main characteristics of the Zn(II) and Cr(VI) wastewaters are: pH = 6.7/5.9; chemical oxygen demand = 55/<5 mg/L; sodium, potassium, magnesium and calcium ions concentrations of 326/28, 4/28, 11/7 and 46/37 mg/L, respectively; zinc(II) = 11 mg/L and Cr(VI) = 39 mg/L. Batch studies showed that L. hyperborea can be established as a natural cation exchanger for heavy metals uptake mainly due to the presence of negatively charged functional groups in the surface of the biomass. Beyond that, L. hyperborea can be used as a natural electron donor for hexavalent chromium reduction to trivalent chromium at acidic medium through the oxidation of the biomass, and Cr(III) can be further bound to the negatively charged functional groups. The uptake capacity of Cr(III) by the oxidized biomass after Cr(VI) reduction was higher than by the algae in its original form. This can be attributed to the oxidation of the biomass during Cr(VI) reduction, turning other active sites available for Cr(III) binding. The brown macroalgae Laminaria hyperborea was packed in a fixed-bed column in order to evaluate the feasibility of the system for the continuous treatment of the two galvanization wastewaters. The column, with an internal diameter of 4.8 cm, was packed with 59 g of algae up to a bed height of 27 cm. The operation strategy adopted for the treatment of the two wastewaters consisted in: i) treatment of the Zn(II) wastewater in the first sorption cycle; ii) desorption of pre-loaded Zn(II) using an 1.0 M HCl solution; iii) treatment of the Cr(VI) wastewater, taking advantage of the acidic conditions of the column after the desorption cycle, for the reduction of the Cr(VI) to Cr(III), in the presence of the electrons resulting from the biomass oxidation. This cycle ends when all the oxidizing groups are used.

Keywords: biosorption, brown marine macroalgae, zinc, chromium

Procedia PDF Downloads 310
7000 Evaluating the Latest Advances in Dry Powder Inhaler Technology

Authors: Leila Asadollahi

Abstract:

Dry powder inhalers (DPIs) have come a long way since their creation, starting with the Spinhaler Fisons in 1967. For optimal performance, it is important to consider the interplay between formulation, device, and patient. DPIs have shown great potential in treating systemic disorders, as evidenced by their success in clinical practices. Ongoing clinical trials and market availability of DPI products for systemic disease treatment are also examined. Furthermore, the current COVID-19 pandemic has sparked increased interest in dry powder inhalation as a potential avenue for vaccines and antiviral drugs, prompting further exploration of its applications. To achieve optimal treatment outcomes for respiratory diseases, a thorough understanding of the various types of DPIs currently available is crucial. These include single-dose, multiple-unit dose, and multi-dose DPIs. This informative article delves into the administration of drugs via inhalation, examining its diverse routes of administration. Additionally, it illuminates the exciting advancements in inhalation delivery systems and investigates the latest therapeutic approaches for the treatment of respiratory ailments. Additionally, the article discusses the historical development of DPIs and the need for improved designs to enhance efficacy and patient adherence. The potential of DPIs in treating systemic diseases is also examined. Overall, this review provides valuable insights into the advancements, challenges, and future prospects of inhalation drug delivery systems, highlighting the potential they hold for respiratory and systemic disorders. The review aims to provide valuable insights into the advancements, challenges, and future prospects of inhalation drug delivery systems, highlighting the potential they hold for respiratory and systemic disorders.

Keywords: dry powder inhalers (DPIs), respiratory diseases, systemic disorders, pulmonary drug delivery

Procedia PDF Downloads 59
6999 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks

Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin

Abstract:

Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.

Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network

Procedia PDF Downloads 120
6998 Skin-to-Skin Contact Simulation: Improving Health Outcomes for Medically Fragile Newborns in the Neonatal Intensive Care Unit

Authors: Gabriella Zarlenga, Martha L. Hall

Abstract:

Introduction: Premature infants are at risk for neurodevelopmental deficits and hospital readmissions, which can increase the financial burden on the health care system and families. Kangaroo care (skin-to-skin contact) is a practice that can improve preterm infant health outcomes. Preterm infants can acquire adequate body temperature, heartbeat, and breathing regulation through lying directly on the mother’s abdomen and in between her breasts. Due to some infant’s condition, kangaroo care is not a feasible intervention. The purpose of this proof-of-concept research project is to create a device which simulates skin-to-skin contact for pre-term infants not eligible for kangaroo care, with the aim of promoting baby’s health outcomes, reducing the incidence of serious neonatal and early childhood illnesses, and/or improving cognitive, social and emotional aspects of development. Methods: The study design is a proof-of-concept based on a three-phase approach; (1) observational study and data analysis of the standard of care for 2 groups of pre-term infants, (2) design and concept development of a novel device for pre-term infants not currently eligible for standard kangaroo care, and (3) prototyping, laboratory testing, and evaluation of the novel device in comparison to current assessment parameters of kangaroo care. A single center study will be conducted in an area hospital offering Level III neonatal intensive care. Eligible participants include newborns born premature (28-30 weeks of age) admitted to the NICU. The study design includes 2 groups: a control group receiving standard kangaroo care and an experimental group not eligible for kangaroo care. Based on behavioral analysis of observational video data collected in the NICU, the device will be created to simulate mother’s body using electrical components in a thermoplastic polymer housing covered in silicone. It will be designed with a microprocessor that controls simulated respiration, heartbeat, and body temperature of the 'simulated caregiver' by using a pneumatic lung, vibration sensors (heartbeat), pressure sensors (weight/position), and resistive film to measure temperature. A slight contour of the simulator surface may be integrated to help position the infant correctly. Control and monitoring of the skin-to-skin contact simulator would be performed locally by an integrated touchscreen. The unit would have built-in Wi-Fi connectivity as well as an optional Bluetooth connection in which the respiration and heart rate could be synced with a parent or caregiver. A camera would be integrated, allowing a video stream of the infant in the simulator to be streamed to a monitoring location. Findings: Expected outcomes are stabilization of respiratory and cardiac rates, thermoregulation of those infants not eligible for skin to skin contact with their mothers, and real time mother Bluetooth to the device to mimic the experience in the womb. Results of this study will benefit clinical practice by creating a new standard of care for premature neonates in the NICU that are deprived of skin to skin contact due to various health restrictions.

Keywords: kangaroo care, wearable technology, pre-term infants, medical design

Procedia PDF Downloads 148
6997 Chemical Speciation and Bioavailability of Some Essential Metal Ions In Different Fish Organs at Lake Chamo, Ethiopia

Authors: Adane Gebresilassie Hailemariam, Belete Yilma Hirpaye

Abstract:

The enhanced concentrations of heavy metals, especially in sediments, may indicate human-induced perturbations rather than natural enrichment through geological weathering. Heavy metals are non-biodegradable, persist in the environment, and are concentrated up to the food chain, leading to enhanced levels in the liver and muscle tissues of fishes, aquatic bryophytes, and aquatic biota. Marine organisms, in general fish in particular, accumulate metals to concentrations many times higher than present in water or sediment as they can take up metals in their organs and concentrate at different levels. Thus, metals acquired through the food chain due to pollution are potential chemical hazards, threatening consumers. The Nile tilapia (oreochromic niloticus), catfish (clarius garpinus), and water samples were collected from five sampling sites, namely, inlet-1, inlet-2, center, outlet-1 and outlet-2 of Lake Chamo. The concentration of major and trace metals Na, K, Mg, Ca, Cr, Co, Ni, Mn and Cu in the two fish muscles, gill and liver, was determined using an atomic absorption spectrometer (AAS) and flame photometer (FP). Metal concentrations in the water have also been evaluated within the two consecutive seasons, winter (dry) and spring (wet). The results revealed that the concentration of those metals in Tilapia’s (O. niloticus) muscle, gill, and liver were Na 44.5, 35.1, 28, Mg 2.8, 8.41, 4.61, K 43, 32, 30, Ca 1.5, 6.0, 5.5, Cr 0.91, 1.2, 3.5, Co 3.0, 2.89, 2.62, Ni 0.94, 1.99, 2.2, Mn 1.23, 1.51, 1.6 and Cu 1.1, 1.99, 3.5 mg kg-1 respectively and in catfish’s muscle, gill and liver Na 25, 39, 41.5, Mg 4.8, 2.87, 6, K 29, 38, 40, Ca 2.5, 8.10, 3.0, Cr 0.65, 3.5, 5.0, Co 2.62, 1.86, 1.73, Ni 1.10, 2.3, 3.1, Mn 1.54, 1.57, 1.59 and Cu 1.01, 1.10, 3.70 mg kg-1 respectively. The highest accumulation of Na and K were observed for tilapia muscle and catfish gill, Mg and Ca got higher in tilapia gill and catfish liver, while Co is higher in muscle of the two fish. The Cr, Ni, Mn and Cu levels were higher in the livers of the two fish species. In conculusion, metal toxicity through food chain is the current dangerous issue for human and othe animals. This needs deep focus to promot the health of living animals. The Details of the work are going to be discussed at the conference.

Keywords: bioaccumulation, catfish, essential metals, nile tilapia

Procedia PDF Downloads 62
6996 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers

Procedia PDF Downloads 244