Search results for: papyri images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2407

Search results for: papyri images

337 Role of Tele-health in Expansion of Medical Care

Authors: Garima Singh, Kunal Malhotra

Abstract:

Objective: The expansion of telehealth has been instrumental in increasing access to medical services, especially for underserved and rural communities. In 2020, 14 million patients received virtual care through telemedicine and the global telemedicine market is expected to reach up to $185 million by 2023. It provides a platform and allows a patient to receive primary care as well as specialized care using technology and the comfort of their homes. Telemedicine was particularly useful during COVID-pandemic and the number of telehealth visits increased by 5000% during that time. It continues to serve as a significant resource for patients seeking care and to bridge the gap between the disease and the treatment. Method: As per APA (American Psychiatric Association), Telemedicine is the process of providing health care from a distance through technology. It is a subset of telemedicine, and can involve providing a range of services, including evaluations, therapy, patient education and medication management. It can involve direct interaction between a physician and the patient. It also encompasses supporting primary care providers with specialist consultation and expertise. It can also involve recording medical information (images, videos, etc.) and sending this to a distant site for later review. Results: In our organization, we are using telepsychiatry and serving 25 counties and approximately 1.4 million people. We provide multiple services, including inpatient, outpatient, crisis intervention, Rehab facility, autism services, case management, community treatment and multiple other modalities. With project ECHO (Extension for Community Healthcare Outcomes) it has been used to advise and assist primary care providers in treating mental health. It empowers primary care providers to treat patients in their own community by sharing knowledge. Conclusion: Telemedicine has shown to be a great medium in meeting patients’ needs and accessible mental health. It has been shown to improve access to care in both urban and rural settings by bringing care to a patient and reducing barriers like transportation, financial stress and resources. Telemedicine is also helping with reducing ER visits, integrating primary care and improving the continuity of care and follow-up. There has been substantial evidence and research about its effectiveness and its usage.

Keywords: telehealth, telemedicine, access to care, medical technology

Procedia PDF Downloads 103
336 The Evolution and Driving Forces Analysis of Urban Spatial Pattern in Tibet Based on Archetype Theory

Authors: Qiuyu Chen, Bin Long, Junxi Yang

Abstract:

Located in the southwest of the "roof of the world", Tibet is the origin center of Tibetan Culture.Lhasa, Shigatse and Gyantse are three famous historical and cultural cities in Tibet. They have always been prominent political, economic and cultural cities, and have accumulated the unique aesthetic orientation and value consciousness of Tibet's urban construction. "Archetype" usually refers to the theoretical origin of things, which is the collective unconscious precipitation. The archetype theory fundamentally explores the dialectical relationship between image expression, original form and behavior mode. By abstracting and describing typical phenomena or imagery of the archetype object can observe the essence of objects, explore ways in which object phenomena arise. Applying archetype theory to the field of urban planning helps to gain insight, evaluation, and restructuring of the complex and ever-changing internal structural units of cities. According to existing field investigations, it has been found that Dzong, Temple, Linka and traditional residential systems are important structural units that constitute the urban space of Lhasa, Shigatse and Gyantse. This article applies the thinking method of archetype theory, starting from the imagery expression of urban spatial pattern, using technologies such as ArcGIS, Depthmap, and Computer Vision to descriptively identify the spatial representation and plane relationship of three cities through remote sensing images and historical maps. Based on historical records, the spatial characteristics of cities in different historical periods are interpreted in a hierarchical manner, attempting to clarify the origin of the formation and evolution of urban pattern imagery from the perspectives of geopolitical environment, social structure, religious theory, etc, and expose the growth laws and key driving forces of cities. The research results can provide technical and material support for important behaviors such as urban restoration, spatial intervention, and promoting transformation in the region.

Keywords: archetype theory, urban spatial imagery, original form and pattern, behavioral driving force, Tibet

Procedia PDF Downloads 67
335 Hybrid Strategies of Crisis Intervention for Sexualized Violence Using Digital Media

Authors: Katharina Kargel, Frederic Vobbe

Abstract:

Sexualized violence against children and adolescents using digital media poses particular challenges for practitioners with a focus on crisis intervention (social work, psychotherapy, law enforcement). The technical delimitation of violence increases the burden on those affected and increases the complexity of interdisciplinary cooperation. Urgently needed recommendations for practical action do not yet exist in Germany. Funded by the Federal Ministry of Education and Research, these recommendations for action are being developed in the HUMAN project together with science and practice. The presentation introduces the participatory approach of the HUMAN project. We discuss the application-oriented, casuistic approach of the project and present its results using the example of concrete case-based recommendations for Action. The participants will be presented with concrete prototypical case studies from the project, which will be used to illustrate quality criteria for crisis intervention in cases of sexualized violence using digital media. On the basis of case analyses, focus group interviews and interviews with victims of violence, we present the six central challenges of sexualized violence with the use of digital media, namely: • Diffusion (Ambiguities regarding the extent and significance of violence) , • Transcendence (Space and time independence of the dynamics of violence, omnipresence), • omnipresent anxiety (considering diffusion and transcendence), • being haunted (repeated confrontation with digital memories of violence or the perpetrator), • disparity (conflicts of interpretative power between those affected and the social environment) • simultaneity (of all other factors). We point out generalizable principles with which these challenges can be dealt with professionally. Dealing professionally with sexualized violence using digital media requires a stronger networking of professional actors. A clear distinction must be made between their own mission and the mission of the network partners. Those affected by violence must be shown options for crisis intervention in the context of the aid networks. The different competencies and the professional mission of the offers of help are to be made transparent. The necessity of technical possibilities for deleting abuse images beyond criminal prosecution will be discussed. Those affected are stabilized by multimodal strategies such as a combination of rational emotive therapy, legal support and technical assistance.

Keywords: sexualized violence, intervention, digital media, children and youth

Procedia PDF Downloads 237
334 Assessment of Seeding and Weeding Field Robot Performance

Authors: Victor Bloch, Eerikki Kaila, Reetta Palva

Abstract:

Field robots are an important tool for enhancing efficiency and decreasing the climatic impact of food production. There exists a number of commercial field robots; however, since this technology is still new, the robot advantages and limitations, as well as methods for optimal using of robots, are still unclear. In this study, the performance of a commercial field robot for seeding and weeding was assessed. A research 2-ha sugar beet field with 0.5m row width was used for testing, which included robotic sowing of sugar beet and weeding five times during the first two months of the growing. About three and five percent of the field were used as untreated and chemically weeded control areas, respectively. The plant detection was based on the exact plant location without image processing. The robot was equipped with six seeding and weeding tools, including passive between-rows harrow hoes and active hoes cutting inside rows between the plants, and it moved with a maximal speed of 0.9 km/h. The robot's performance was assessed by image processing. The field images were collected by an action camera with a height of 2 m and a resolution 27M pixels installed on the robot and by a drone with a 16M pixel camera flying at 4 m height. To detect plants and weeds, the YOLO model was trained with transfer learning from two available datasets. A preliminary analysis of the entire field showed that in the areas treated by the robot, the weed average density varied across the field from 6.8 to 9.1 weeds/m² (compared with 0.8 in the chemically treated area and 24.3 in the untreated area), the weed average density inside rows was 2.0-2.9 weeds / m (compared with 0 on the chemically treated area), and the emergence rate was 90-95%. The information about the robot's performance has high importance for the application of robotics for field tasks. With the help of the developed method, the performance can be assessed several times during the growth according to the robotic weeding frequency. When it’s used by farmers, they can know the field condition and efficiency of the robotic treatment all over the field. Farmers and researchers could develop optimal strategies for using the robot, such as seeding and weeding timing, robot settings, and plant and field parameters and geometry. The robot producers can have quantitative information from an actual working environment and improve the robots accordingly.

Keywords: agricultural robot, field robot, plant detection, robot performance

Procedia PDF Downloads 87
333 Counting Fishes in Aquaculture Ponds: Application of Imaging Sonars

Authors: Juan C. Gutierrez-Estrada, Inmaculada Pulido-Calvo, Ignacio De La Rosa, Antonio Peregrin, Fernando Gomez-Bravo, Samuel Lopez-Dominguez, Alejandro Garrocho-Cruz, Jairo Castro-Gutierrez

Abstract:

The semi-intensive aquaculture in traditional earth ponds is the main rearing system in Southern Spain. These fish rearing systems are approximately two thirds of aquatic production in this area which has made a significant contribution to the regional economy in recent years. In this type of rearing system, a crucial aspect is the correct quantification and control of the fish abundance in the ponds because the fish farmer knows how many fishes he puts in the ponds but doesn’t know how many fishes will harvest at the end of the rear period. This is a consequence of the mortality induced by different causes as pathogen agents as parasites, viruses and bacteria and other factors as predation of fish-eating birds and poaching. Track the fish abundance in these installations is very difficult because usually the ponds take up a large area of land and the management of the water flow is not automatized. Therefore, there is a very high degree of uncertainty on the abundance fishes which strongly hinders the management and planning of the sales. A novel and non-invasive procedure to count fishes in the ponds is by the means of imaging sonars, particularly fixed systems and/or linked to aquatic vehicles as Remotely Operated Vehicles (ROVs). In this work, a method based on census stations procedures is proposed to evaluate the fish abundance estimation accuracy using images obtained of multibeam sonars. The results indicate that it is possible to obtain a realistic approach about the number of fishes, sizes and therefore the biomass contained in the ponds. This research is included in the framework of the KTTSeaDrones Project (‘Conocimiento y transferencia de tecnología sobre vehículos aéreos y acuáticos para el desarrollo transfronterizo de ciencias marinas y pesqueras 0622-KTTSEADRONES-5-E’) financed by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-Portugal Programme (POCTEP) 2014-2020.

Keywords: census station procedure, fish biomass, semi-intensive aquaculture, multibeam sonars

Procedia PDF Downloads 230
332 Spatio-Temporal Analysis of Land Use Land Cover Change Using Remote Sensing and Multispectral Satellite Imagery of Islamabad Pakistan

Authors: Basit Aftab, Feng Zhongke

Abstract:

The land use/land cover change (LULCC) is a significant indicator sensitive to an area's environmental changes. As a rapidly developing capital city near the Himalayas Mountains, the city area of Islamabad, Pakistan, has expanded dramatically over the past 20 years. In order to precisely measure the impact of urbanization on the forest and agricultural lands, the Spatio-temporal analysis of LULCC was utilized, which helped us to know the impacts of urbanization, especially on ecosystem processes, biological cycles, and biodiversity. The Islamabad region's Multispectral Satellite Images (MSI) for 2000, 2010, and 2020 were employed as the remote sensing data source. Local documents of city planning, forest inventory and archives in the agriculture management departments were included to verify the image-derived result. The results showed that from 2000 to 2020, the built-up area increased to 48.3% (505.02 Km2). Meanwhile, the forest, agricultural, and barre land decreased to 28.9% (305.64 Km2), 10.04% (104.87 Km2), and 11.61% (121.30 Km2). The overall percentage change in land area between 2000 – 2020 was recorded maximum for the built-up (227.04%). Results revealed that the increase in the built-up area decreased forestland, barren, and agricultural lands (-0.36, -1.00 & -0.34). The association of built-up with respective years was positively linear (R2 = 0.96), whereas forestland, agricultural, and barren lands association with years were recorded as negatively linear (R2 = -0.29, R2 = -0.02, and R2 = -0.96). Large-scale deforestation leads to multiple negative impacts on the local environment, e.g., water degradation and climate change. It would finally affect the environment of the greater Himalayan region in some way. We further analyzed the driving forces of urbanization. It was determined by economic expansion, climate change, and population growth. We hope our study could be utilized to develop efforts to mitigate the consequences of deforestation and agricultural land damage, reducing greenhouse gas emissions while preserving the area's biodiversity.

Keywords: urbanization, Himalaya mountains, landuse landcover change (LULCC), remote sensing., multi-spectral satellite imagery

Procedia PDF Downloads 48
331 Climate Changes Impact on Artificial Wetlands

Authors: Carla Idely Palencia-Aguilar

Abstract:

Artificial wetlands play an important role at Guasca Municipality in Colombia, not only because they are used for the agroindustry, but also because more than 45 species were found, some of which are endemic and migratory birds. Remote sensing was used to determine the changes in the area occupied by water of artificial wetlands by means of Aster and Modis images for different time periods. Evapotranspiration was also determined by three methods: Surface Energy Balance System-Su (SEBS) algorithm, Surface Energy Balance- Bastiaanssen (SEBAL) algorithm, and Potential Evapotranspiration- FAO. Empirical equations were also developed to determine the relationship between Normalized Difference Vegetation Index (NDVI) versus net radiation, ambient temperature and rain with an obtained R2 of 0.83. Groundwater level fluctuations on a daily basis were studied as well. Data from a piezometer placed next to the wetland were fitted with rain changes (with two weather stations located at the proximities of the wetlands) by means of multiple regression and time series analysis, the R2 from the calculated and measured values resulted was higher than 0.98. Information from nearby weather stations provided information for ordinary kriging as well as the results for the Digital Elevation Model (DEM) developed by using PCI software. Standard models (exponential, spherical, circular, gaussian, linear) to describe spatial variation were tested. Ordinary Cokriging between height and rain variables were also tested, to determine if the accuracy of the interpolation would increase. The results showed no significant differences giving the fact that the mean result of the spherical function for the rain samples after ordinary kriging was 58.06 and a standard deviation of 18.06. The cokriging using for the variable rain, a spherical function; for height variable, the power function and for the cross variable (rain and height), the spherical function had a mean of 57.58 and a standard deviation of 18.36. Threatens of eutrophication were also studied, given the unconsciousness of neighbours and government deficiency. Water quality was determined over the years; different parameters were studied to determine the chemical characteristics of water. In addition, 600 pesticides were studied by gas and liquid chromatography. Results showed that coliforms, nitrogen, phosphorous and prochloraz were the most significant contaminants.

Keywords: DEM, evapotranspiration, geostatistics, NDVI

Procedia PDF Downloads 121
330 Atmospheres, Ghosts and Shells to Reform our Memorial Cultures

Authors: Tomas Macsotay

Abstract:

If monument removal and monument effacement may call to mind a Nietzschean proposal for vitalist disregard of conventional morality, it remains the case that it is often only by a willingness to go “beyond good and evil” in inherited monument politics that truthful, be it unexpected aspects of our co-existence with monuments can finally start to rise into fuller consciousness. A series of urgent questions press themselves in the panorama created by the affirmative idea that we can, as a community, make crucial decisions with regard to monumental preservation or discontinuation. Memorials are not the core concern for decolonial and racial dignity movements like Black Lives Matter (BLM), which have repeatedly shown they regard these actions as a welcome, albeit complementary, part of a reckoning with a past of racial violence and injustice, slavery, and colonial subaltern existence. As such, the iconoclastic issue of “rights and prohibitions of images” only tangentially touches on a cultural movement that seems rather question dominant ideas of history, pertinence, and the long life of the class, gender, and racial conflict through ossified memorial cultures. In the recent monument insurrection, we face a rare case of a new negotiation of rights of existence for this particular tract of material culture. This engenders a debate on how and why we accord rights to objects in public dominion ― indeed, how such rights impinge upon the rights of subjects who inhabit the public sphere. Incidentally, the possibility of taking away from monuments such imagined or adjoined rights has made it possible to tease open a sphere of emotionality that could not be expressed in patrimonial thinking: the reality of atmospheres as settings, often dependent on pseudo-objects and half-conscious situations, that situate individuals involuntarily in a pathic aesthetics. In this way, the unique moment we now witness ― full of the possibility of going “beyond good and evil” of monument preservation ― starts to look more like a moment of involuntary awaking: an awakening to the encrypted gaze of the monument and the enigma that the same monument or memorial site can carry day-to-day habits of life for some bystanders, while racialized and disenfranchised communities experience discomfort and erosion of subjective life in the same sites.

Keywords: monument, memorial, atmosphere, racial justice, decolonialism

Procedia PDF Downloads 82
329 Immersed in Design: Using an Immersive Teaching Space to Visualize Design Solutions

Authors: Lisa Chandler, Alistair Ward

Abstract:

A significant component of design pedagogy is the need to foster design thinking in various contexts and to support students in understanding links between educational exercises and their potential application in professional design practice. It is also important that educators provide opportunities for students to engage with new technologies and encourage them to imagine applying their design skills for a range of outcomes. Problem solving is central to design so it is also essential that students understand that there can be multiple solutions to a design brief, and are supported in undertaking creative experimentation to generate imaginative outcomes. This paper presents a case study examining some innovative approaches to addressing these elements of design pedagogy. It investigates the effectiveness of the Immerse Lab, a three wall projection room at the University of the Sunshine Coast, Australia, as a learning context for design practice, for generating ideas and for supporting learning involving the comparative display of design outcomes. The project required first year design students to create a simple graphic design derived from an ordinary object and to incorporate specific design criteria. Utilizing custom-designed software, the students’ solutions were projected together onto the Immerse walls to create a large-scale, immersive grid of images, which was used to compare and contrast various responses to the same problem. The software also enabled individual student designs to be transformed, multiplied and enlarged in multiple ways and prompted discussions around the applicability of the designs in real world contexts. Teams of students interacted with their projected designs, brainstorming imaginative applications for their outcomes. Analysis of 77 anonymous student surveys revealed that the majority of students found: learning in the Immerse Lab to be beneficial; comparative review more effective than in standard tutorial rooms; that the activity generated new ideas; it encouraged students to think differently about their designs; it inspired students to develop their existing designs or create new ones. The project demonstrates that curricula involving immersive spaces can be effective in supporting engaging and relevant design pedagogy and might be utilized in other disciplinary areas.

Keywords: design pedagogy, immersive education, technology-enhanced learning, visualization

Procedia PDF Downloads 259
328 Alphabet Recognition Using Pixel Probability Distribution

Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay

Abstract:

Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.

Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix

Procedia PDF Downloads 390
327 Classification of Digital Chest Radiographs Using Image Processing Techniques to Aid in Diagnosis of Pulmonary Tuberculosis

Authors: A. J. S. P. Nileema, S. Kulatunga , S. H. Palihawadana

Abstract:

Computer aided detection (CAD) system was developed for the diagnosis of pulmonary tuberculosis using digital chest X-rays with MATLAB image processing techniques using a statistical approach. The study comprised of 200 digital chest radiographs collected from the National Hospital for Respiratory Diseases - Welisara, Sri Lanka. Pre-processing was done to remove identification details. Lung fields were segmented and then divided into four quadrants; right upper quadrant, left upper quadrant, right lower quadrant, and left lower quadrant using the image processing techniques in MATLAB. Contrast, correlation, homogeneity, energy, entropy, and maximum probability texture features were extracted using the gray level co-occurrence matrix method. Descriptive statistics and normal distribution analysis were performed using SPSS. Depending on the radiologists’ interpretation, chest radiographs were classified manually into PTB - positive (PTBP) and PTB - negative (PTBN) classes. Features with standard normal distribution were analyzed using an independent sample T-test for PTBP and PTBN chest radiographs. Among the six features tested, contrast, correlation, energy, entropy, and maximum probability features showed a statistically significant difference between the two classes at 95% confidence interval; therefore, could be used in the classification of chest radiograph for PTB diagnosis. With the resulting value ranges of the five texture features with normal distribution, a classification algorithm was then defined to recognize and classify the quadrant images; if the texture feature values of the quadrant image being tested falls within the defined region, it will be identified as a PTBP – abnormal quadrant and will be labeled as ‘Abnormal’ in red color with its border being highlighted in red color whereas if the texture feature values of the quadrant image being tested falls outside of the defined value range, it will be identified as PTBN–normal and labeled as ‘Normal’ in blue color but there will be no changes to the image outline. The developed classification algorithm has shown a high sensitivity of 92% which makes it an efficient CAD system and with a modest specificity of 70%.

Keywords: chest radiographs, computer aided detection, image processing, pulmonary tuberculosis

Procedia PDF Downloads 127
326 Intersections and Cultural Landscape Interpretation, in the Case of Ancient Messene in the Peloponnese

Authors: E. Maistrou, P. Themelis, D. Kosmopoulos, K. Boulougoura, A. M. Konidi, K. Moretti

Abstract:

InterArch is an ongoing research project that is running since September 2020 and aims to propose a digital application for the enhancement of the cultural landscape, which emphasizes the contribution of physical space and time in digital data organization. The research case study refers to Ancient Messene in the Peloponnese, one of the most important archaeological sites in Greece. The project integrates an interactive approach to the natural environment, aiming at a manifold sensory experience. It combines the physical space of the archaeological site with the digital space of archaeological and cultural data while, at the same time, it embraces storytelling processes by engaging an interdisciplinary approach that familiarizes the user to multiple semantic interpretations. The research project is co‐financed by the European Union and Greek national funds, through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH - CREATE – INNOVATE (project code: Τ2ΕΔΚ-01659). It involves mutual collaboration between academic and cultural institutions and the contribution of an IT applications development company. New technologies and the integration of digital data enable the implementation of non‐linear narratives related to the representational characteristics of the art of collage. Various images (photographs, drawings, etc.) and sounds (narrations, music, soundscapes, audio signs, etc.) could be presented according to our proposal through new semiotics of augmented and virtual reality technologies applied in touch screens and smartphones. Despite the fragmentation of tangible or intangible references, material landscape formations, including archaeological remains, constitute the common ground that can inspire cultural narratives in a process that unfolds personal perceptions and collective imaginaries. It is in this context that cultural landscape may be considered an indication of space and historical continuity. It is in this context that history could emerge, according to our proposal, not solely as a previous inscription but also as an actual happening. As a rhythm of occurrences suggesting mnemonic references and, moreover, evolving history projected on the contemporary ongoing cultural landscape.

Keywords: cultural heritage, digital data, landscape, archaeological sites, visitors’ itineraries

Procedia PDF Downloads 80
325 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components

Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura

Abstract:

This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.

Keywords: brain-computer interface, electroencephalography, finger motion decoding, independent component analysis, pseudo real-time motion decoding

Procedia PDF Downloads 138
324 Dynamic Change of Floods Disaster Monitoring for River Central Bar by Remote Sensing Time-Series Images

Authors: Zuoji Huang, Jinyan Sun, Chunlin Wang, Haiming Qian, Nan Xu

Abstract:

The spatial extent and area of central river bars can always vary due to the impact of water level, sediment supply and human activities. In 2016, a catastrophic flood disaster caused by sustained and heavy rainfall happened in the middle and lower Yangtze River. The flood led to the most serious economic and social loss since 1954, and strongly affected the central river bar. It is essential to continuously monitor the dynamics change of central bars because it can avoid frequent field measurements in central bars before and after the flood disaster and is helpful for flood warning. This paper focused on the dynamic change of central bars of Phoenix bar and Changsha bar in the Yangtze River in 2016. In this study, GF-1 (GaoFen-1) WFV(wide field view) data was employed owing to its high temporal frequency and high spatial resolution. A simple NDWI (Normalized Difference Water Index) method was utilized for river central bar mapping. Human-checking was then performed to ensure the mapping quality. The relationship between the area of central bars and the measured water level was estimated using four mathematical models. Furthermore, a risk assessment index was proposed to map the spatial pattern of inundation risk of central bars. The results indicate a good ability of the GF-1 WFV imagery with a 16-m spatial resolution to characterize the seasonal variation of central river bars and to capture the impact of a flood disaster on the area of central bars. This paper observed a significant negative but nonlinear relationship between the water level and the area of central bars, and found that the cubic function fits best among four models (R² = 0.9839, P < 0.000001, RMSE = 0.4395). The maximum of the inundated area of central bars appeared during the rainy season on July 8, 2016, and the minimum occurred during the dry season on December 28, 2016, which are consistent with the water level measured by the hydrological station. The results derived from GF-1 data could provide a useful reference for decision-making of real-time disaster early warning and post-disaster reconstruction.

Keywords: central bars, dynamic change, water level, the Yangtze river

Procedia PDF Downloads 242
323 Assessing the Theoretical Suitability of Sentinel-2 and Worldview-3 Data for Hydrocarbon Mapping of Spill Events, Using Hydrocarbon Spectral Slope Model

Authors: K. Tunde Olagunju, C. Scott Allen, Freek Van Der Meer

Abstract:

Identification of hydrocarbon oil in remote sensing images is often the first step in monitoring oil during spill events. Most remote sensing methods adopt techniques for hydrocarbon identification to achieve detection in order to model an appropriate cleanup program. Identification on optical sensors does not only allow for detection but also for characterization and quantification. Until recently, in optical remote sensing, quantification and characterization are only potentially possible using high-resolution laboratory and airborne imaging spectrometers (hyperspectral data). Unlike multispectral, hyperspectral data are not freely available, as this data category is mainly obtained via airborne survey at present. In this research, two (2) operational high-resolution multispectral satellites (WorldView-3 and Sentinel-2) are theoretically assessed for their suitability for hydrocarbon characterization, using the hydrocarbon spectral slope model (HYSS). This method utilized the two most persistent hydrocarbon diagnostic/absorption features at 1.73 µm and 2.30 µm for hydrocarbon mapping on multispectral data. In this research, spectra measurement of seven (7) different hydrocarbon oils (crude and refined oil) taken on ten (10) different substrates with the use of laboratory ASD Fieldspec were convolved to Sentinel-2 and WorldView-3 resolution, using their full width half maximum (FWHM) parameter. The resulting hydrocarbon slope values obtained from the studied samples enable clear qualitative discrimination of most hydrocarbons, despite the presence of different background substrates, particularly on WorldView-3. Due to close conformity of central wavelengths and narrow bandwidths to key hydrocarbon bands used in HYSS, the statistical significance for qualitative analysis on WorldView-3 sensors for all studied hydrocarbon oil returned with 95% confidence level (P-value ˂ 0.01), except for Diesel. Using multifactor analysis of variance (MANOVA), the discriminating power of HYSS is statistically significant for most hydrocarbon-substrate combinations on Sentinel-2 and WorldView-3 FWHM, revealing the potential of these two operational multispectral sensors as rapid response tools for hydrocarbon mapping. One notable exception is highly transmissive hydrocarbons on Sentinel-2 data due to the non-conformity of spectral bands with key hydrocarbon absorptions and the relatively coarse bandwidth (> 100 nm).

Keywords: hydrocarbon, oil spill, remote sensing, hyperspectral, multispectral, hydrocarbon-substrate combination, Sentinel-2, WorldView-3

Procedia PDF Downloads 216
322 Silver-Curcumin Nanoparticle Eradicate Enterococcus faecalis in Human ex vivo Dentine Model

Authors: M. Gowri, E. K. Girija, V. Ganesh

Abstract:

Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate E. faecalis. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against E. faecalis. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on E. faecalis was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against E. faecalis. silver-curcumin nanoparticle exerted time kill effect. Further, SEM images of E. faecalis showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of E. faecalis and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Further, silver-curcumin nanoparticle was found to be hemocompatible, not cytotoxic to normal mammalian NIH 3T3 cells and non-mutagenic. Conclusion: The results of this study can pave the way for developing new antibacterial agents with well deciphered mechanisms of action and can be a promising antibacterial agent or medicament against root canal infection.

Keywords: ex vivo dentine model, inhibition of biofilm formation, root canal infection, silver-curcumin nanoparticle

Procedia PDF Downloads 189
321 A Four-Step Ortho-Rectification Procedure for Geo-Referencing Video Streams from a Low-Cost UAV

Authors: B. O. Olawale, C. R. Chatwin, R. C. D. Young, P. M. Birch, F. O. Faithpraise, A. O. Olukiran

Abstract:

Ortho-rectification is the process of geometrically correcting an aerial image such that the scale is uniform. The ortho-image formed from the process is corrected for lens distortion, topographic relief, and camera tilt. This can be used to measure true distances, because it is an accurate representation of the Earth’s surface. Ortho-rectification and geo-referencing are essential to pin point the exact location of targets in video imagery acquired at the UAV platform. This can only be achieved by comparing such video imagery with an existing digital map. However, it is only when the image is ortho-rectified with the same co-ordinate system as an existing map that such a comparison is possible. The video image sequences from the UAV platform must be geo-registered, that is, each video frame must carry the necessary camera information before performing the ortho-rectification process. Each rectified image frame can then be mosaicked together to form a seamless image map covering the selected area. This can then be used for comparison with an existing map for geo-referencing. In this paper, we present a four-step ortho-rectification procedure for real-time geo-referencing of video data from a low-cost UAV equipped with multi-sensor system. The basic procedures for the real-time ortho-rectification are: (1) Decompilation of video stream into individual frames; (2) Finding of interior camera orientation parameters; (3) Finding the relative exterior orientation parameters for each video frames with respect to each other; (4) Finding the absolute exterior orientation parameters, using self-calibration adjustment with the aid of a mathematical model. Each ortho-rectified video frame is then mosaicked together to produce a 2-D planimetric mapping, which can be compared with a well referenced existing digital map for the purpose of georeferencing and aerial surveillance. A test field located in Abuja, Nigeria was used for testing our method. Fifteen minutes video and telemetry data were collected using the UAV and the data collected were processed using the four-step ortho-rectification procedure. The results demonstrated that the geometric measurement of the control field from ortho-images are more reliable than those from original perspective photographs when used to pin point the exact location of targets on the video imagery acquired by the UAV. The 2-D planimetric accuracy when compared with the 6 control points measured by a GPS receiver is between 3 to 5 meters.

Keywords: geo-referencing, ortho-rectification, video frame, self-calibration

Procedia PDF Downloads 478
320 Marine Ecosystem Mapping of Taman Laut Labuan: The First Habitat Mapping Effort to Support Marine Parks Management in Malaysia

Authors: K. Ismail, A. Ali, R. C. Hasan, I. Khalil, Z. Bachok, N. M. Said, A. M. Muslim, M. S. Che Din, W. S. Chong

Abstract:

The marine ecosystem in Malaysia holds invaluable potential in terms of economics, food security, pharmaceuticals components and protection from natural hazards. Although exploration of oil and gas industry and fisheries are active within Malaysian waters, knowledge of the seascape and ecological functioning of benthic habitats is still extremely poor in the marine parks around Malaysia due to the lack of detailed seafloor information. Consequently, it is difficult to manage marine resources effectively, protect ecologically important areas and set legislation to safeguard the marine parks. The limited baseline data hinders scientific linkage to support effective marine spatial management in Malaysia. This became the main driver behind the first seabed mapping effort at the national level. Taman Laut Labuan (TLL) is located to the west coast of Sabah and to the east of South China Sea. The total area of TLL is approximately 158.15 km2, comprises of three islands namely Pulau Kuraman, Rusukan Besar and Rusukan Kecil and is characterised by shallow fringing reef with few submerged shallow reef. The unfamiliar rocky shorelines limit the survey of multibeam echosounder to area with depth more than 10 m. Whereas, singlebeam and side scan sonar systems were used to acquire the data for area with depth less than 10 m. By integrating data from multibeam bathymetry and backscatter with singlebeam bathymetry and side sonar images, we produce a substrate map and coral coverage map for the TLL using i) marine landscape mapping technique and ii) RSOBIA ArcGIS toolbar (developed by T. Le Bas). We take the initiative to explore the ability of aerial drone and satellite image (WorldView-3) to derive the depths and substrate type within the intertidal and subtidal zone where it is not accessible via acoustic mapping. Although the coverage was limited, the outcome showed a promising technique to be incorporated towards establishing a guideline to facilitate a standard practice for efficient marine spatial management in Malaysia.

Keywords: habitat mapping, marine spatial management, South China Sea, National seabed mapping

Procedia PDF Downloads 225
319 Women Learning in Creative Project Based Learning of Engineering Education

Authors: Jui Hsuan Hung, Jeng Yi Tzeng

Abstract:

Engineering education in the higher education is always male dominated. Therefore, women learning in this environment is an important research topic for feminists, gender researchers and engineering education researchers, especially in the era of gender mainstreaming. The research topics are from the dialectical discussion of feminism and science development history, gender issues of science education, to the subject choice of female students. These researches enrich the field of gender study in engineering education but lack of describing the detailed images of women in engineering education, including their learning, obstacles, needs or feelings. Otherwise, in order to keep up with the industrial trends of emphasizing group collaboration, engineering education turns from traditional lecture to creative group inquiry pedagogy in recent years. Creative project based learning is one of the creative group inquiry pedagogy which the engineering education in higher education adopts often, and it is seen as a gender-inclusive pedagogy in engineering education. Therefore, in order to understand the real situation of women learning in engineering education, this study took place in a course (Introduction to Engineering) offered by the school of engineering of a university in Taiwan. This course is designed for freshman students to establish basic understanding engineering from four departments (Chemical Engineering, Power Mechanical Engineering, Materials Science, Industrial Engineering and Engineering Management). One section of this course is to build a Hydraulic Robot designed by the Department of Power Mechanical Engineering. 321 students in the school of engineering took this course and all had the reflection questionnaire. These students are divided into groups of 5 members to work on this project. The videos of process of discussion of five volunteered groups with different gender composition are analyzed, and six women of these five groups are interviewed. We are still on the process of coding and analyzing videos and the qualitative data, but several tentative findings have already emerged. (1) The activity models of groups of both genders are gender segregation, and not like women; men never be the ‘assistants’. (2) The culture of the group is developed by the major gender, but men always dominate the process of practice in all kinds of gender composition groups. (3) Project based learning is supposed to be a gender-inclusive learning model in creative engineering education, but communication obstacles between men and women make it less women friendly. (4) Gender identity, not professional identity, is adopted by these women while they interact with men in their groups. (5) Gender composition and project-based learning pedagogy are not the key factors for women learning in engineering education, but the gender conscience awareness is.

Keywords: engineering education, gender education, creative project based learning, women learning

Procedia PDF Downloads 316
318 Geomatic Techniques to Filter Vegetation from Point Clouds

Authors: M. Amparo Núñez-Andrés, Felipe Buill, Albert Prades

Abstract:

More and more frequently, geomatics techniques such as terrestrial laser scanning or digital photogrammetry, either terrestrial or from drones, are being used to obtain digital terrain models (DTM) used for the monitoring of geological phenomena that cause natural disasters, such as landslides, rockfalls, debris-flow. One of the main multitemporal analyses developed from these models is the quantification of volume changes in the slopes and hillsides, either caused by erosion, fall, or land movement in the source area or sedimentation in the deposition zone. To carry out this task, it is necessary to filter the point clouds of all those elements that do not belong to the slopes. Among these elements, vegetation stands out as it is the one we find with the greatest presence and its constant change, both seasonal and daily, as it is affected by factors such as wind. One of the best-known indexes to detect vegetation on the image is the NVDI (Normalized Difference Vegetation Index), which is obtained from the combination of the infrared and red channels. Therefore it is necessary to have a multispectral camera. These cameras are generally of lower resolution than conventional RGB cameras, while their cost is much higher. Therefore we have to look for alternative indices based on RGB. In this communication, we present the results obtained in Georisk project (PID2019‐103974RB‐I00/MCIN/AEI/10.13039/501100011033) by using the GLI (Green Leaf Index) and ExG (Excessive Greenness), as well as the change to the Hue-Saturation-Value (HSV) color space being the H coordinate the one that gives us the most information for vegetation filtering. These filters are applied both to the images, creating binary masks to be used when applying the SfM algorithms, and to the point cloud obtained directly by the photogrammetric process without any previous filter or the one obtained by TLS (Terrestrial Laser Scanning). In this last case, we have also tried to work with a Riegl VZ400i sensor that allows the reception, as in the aerial LiDAR, of several returns of the signal. Information to be used for the classification on the point cloud. After applying all the techniques in different locations, the results show that the color-based filters allow correct filtering in those areas where the presence of shadows is not excessive and there is a contrast between the color of the slope lithology and the vegetation. As we have advanced in the case of using the HSV color space, it is the H coordinate that responds best for this filtering. Finally, the use of the various returns of the TLS signal allows filtering with some limitations.

Keywords: RGB index, TLS, photogrammetry, multispectral camera, point cloud

Procedia PDF Downloads 156
317 Application of Compressed Sensing and Different Sampling Trajectories for Data Reduction of Small Animal Magnetic Resonance Image

Authors: Matheus Madureira Matos, Alexandre Rodrigues Farias

Abstract:

Magnetic Resonance Imaging (MRI) is a vital imaging technique used in both clinical and pre-clinical areas to obtain detailed anatomical and functional information. However, MRI scans can be expensive, time-consuming, and often require the use of anesthetics to keep animals still during the imaging process. Anesthetics are commonly administered to animals undergoing MRI scans to ensure they remain still during the imaging process. However, prolonged or repeated exposure to anesthetics can have adverse effects on animals, including physiological alterations and potential toxicity. Minimizing the duration and frequency of anesthesia is, therefore, crucial for the well-being of research animals. In recent years, various sampling trajectories have been investigated to reduce the number of MRI measurements leading to shorter scanning time and minimizing the duration of animal exposure to the effects of anesthetics. Compressed sensing (CS) and sampling trajectories, such as cartesian, spiral, and radial, have emerged as powerful tools to reduce MRI data while preserving diagnostic quality. This work aims to apply CS and cartesian, spiral, and radial sampling trajectories for the reconstruction of MRI of the abdomen of mice sub-sampled at levels below that defined by the Nyquist theorem. The methodology of this work consists of using a fully sampled reference MRI of a female model C57B1/6 mouse acquired experimentally in a 4.7 Tesla MRI scanner for small animals using Spin Echo pulse sequences. The image is down-sampled by cartesian, radial, and spiral sampling paths and then reconstructed by CS. The quality of the reconstructed images is objectively assessed by three quality assessment techniques RMSE (Root mean square error), PSNR (Peak to Signal Noise Ratio), and SSIM (Structural similarity index measure). The utilization of optimized sampling trajectories and CS technique has demonstrated the potential for a significant reduction of up to 70% of image data acquisition. This result translates into shorter scan times, minimizing the duration and frequency of anesthesia administration and reducing the potential risks associated with it.

Keywords: compressed sensing, magnetic resonance, sampling trajectories, small animals

Procedia PDF Downloads 75
316 Reviving Sustainable Architecture in Non-Wester Culture

Authors: Khaled Asfour

Abstract:

Going for LEED certification is the latest concern in Egyptian practice that only materialized during the last 4 years. Egyptian Consultant Group (ECG) together with Credit Agricole had the vision to design a headquarters (Cairo) that delivers a serious sustainable design. The bank is a strong advocator of “green banking” and supports renewable energy and energy saving projects. Their HQ in Cairo has passed all the hurdles to become the first platinum LEED certificate holder in Egypt. With this design Egyptian practice has finally re-engaged in a serious way with its long-standing traditions in sustainable architecture. Perhaps the closest to our memory is the medieval houses of Cairo. Few centuries later these qualities disappeared with the advent of Modern Movement that focused more on standard modernist image making than real localized quality of living environments. The first person to note this disappearance was Hassan Fathy half a century ago. Despite international applaud for his efforts he had no effect on prevailing local practice that continued senselessly adopting recycled modernist templates. The Egyptian society was not ready to accept any reference to historic architecture. Disciples of Hassan Fathy, few decades later sought, of tackling the lack of interest in green architecture in a different way. Mohamed Awad introduced in his design sustainable ideals inspired from traditional architecture rather than recycling directly historic forms and images. Despite success, this approach did not go far enough to influence the prevailing practice. Since year 2000 Egyptian economy was ebbing and flowing dramatically. This staggering fluctuation coupled by energy crisis has disillusioned architects and clients on the issue of modern image making. No more shining architecture under the sun with high running cost of fossil fuel. They sought of adopting contemporary green measures that offer pleasant living while saving on energy. A revival is on its way but is very slow and timid. The paper will present this problem of reviving sustainable architecture. How this process can be accelerated in order to give stronger impact on current practice will be addressed through the works of Mario Cucinella and Norman Foster.

Keywords: LEED certification, Hasan Fathy, Medieval architecture, Mario Cucinella, Norman Foster

Procedia PDF Downloads 491
315 Generative Pre-Trained Transformers (GPT-3) and Their Impact on Higher Education

Authors: Sheelagh Heugh, Michael Upton, Kriya Kalidas, Stephen Breen

Abstract:

This article aims to create awareness of the opportunities and issues the artificial intelligence (AI) tool GPT-3 (Generative Pre-trained Transformer-3) brings to higher education. Technological disruptors have featured in higher education (HE) since Konrad Klaus developed the first functional programmable automatic digital computer. The flurry of technological advances, such as personal computers, smartphones, the world wide web, search engines, and artificial intelligence (AI), have regularly caused disruption and discourse across the educational landscape around harnessing the change for the good. Accepting AI influences are inevitable; we took mixed methods through participatory action research and evaluation approach. Joining HE communities, reviewing the literature, and conducting our own research around Chat GPT-3, we reviewed our institutional approach to changing our current practices and developing policy linked to assessments and the use of Chat GPT-3. We review the impact of GPT-3, a high-powered natural language processing (NLP) system first seen in 2020 on HE. Historically HE has flexed and adapted with each technological advancement, and the latest debates for educationalists are focusing on the issues around this version of AI which creates natural human language text from prompts and other forms that can generate code and images. This paper explores how Chat GPT-3 affects the current educational landscape: we debate current views around plagiarism, research misconduct, and the credibility of assessment and determine the tool's value in developing skills for the workplace and enhancing critical analysis skills. These questions led us to review our institutional policy and explore the effects on our current assessments and the development of new assessments. Conclusions: After exploring the pros and cons of Chat GTP-3, it is evident that this form of AI cannot be un-invented. Technology needs to be harnessed for positive outcomes in higher education. We have observed that materials developed through AI and potential effects on our development of future assessments and teaching methods. Materials developed through Chat GPT-3 can still aid student learning but lead to redeveloping our institutional policy around plagiarism and academic integrity.

Keywords: artificial intelligence, Chat GPT-3, intellectual property, plagiarism, research misconduct

Procedia PDF Downloads 89
314 A Multi-Role Oriented Collaboration Platform for Distributed Disaster Reduction in China

Authors: Linyao Qiu, Zhiqiang Du

Abstract:

As the rapid development of urbanization, economic developments, and steady population growth in China, the widespread devastation, economic damages, and loss of human lives caused by numerous forms of natural disasters are becoming increasingly serious every year. Disaster management requires available and effective cooperation of different roles and organizations in whole process including mitigation, preparedness, response and recovery. Due to the imbalance of regional development in China, the disaster management capabilities of national and provincial disaster reduction centers are uneven. When an undeveloped area suffers from disaster, neither local reduction department could get first-hand information like high-resolution remote sensing images from satellites and aircrafts independently, nor sharing mechanism is provided for the department to access to data resources deployed in other place directly. Most existing disaster management systems operate in a typical passive data-centric mode and work for single department, where resources cannot be fully shared. The impediment blocks local department and group from quick emergency response and decision-making. In this paper, we introduce a collaborative platform for distributed disaster reduction. To address the issues of imbalance of sharing data sources and technology in the process of disaster reduction, we propose a multi-role oriented collaboration business mechanism, which is capable of scheduling and allocating for optimum utilization of multiple resources, to link various roles for collaborative reduction business in different place. The platform fully considers the difference of equipment conditions in different provinces and provide several service modes to satisfy technology need in disaster reduction. An integrated collaboration system based on focusing services mechanism is designed and implemented for resource scheduling, functional integration, data processing, task management, collaborative mapping, and visualization. Actual applications illustrate that the platform can well support data sharing and business collaboration between national and provincial department. It could significantly improve the capability of disaster reduction in China.

Keywords: business collaboration, data sharing, distributed disaster reduction, focusing service

Procedia PDF Downloads 295
313 Men’s Attendance in Labour and Birth Room: A Choice and Coercion in Childbirth

Authors: A/Prof Marjan Khajehei

Abstract:

In the last century, the role of fathers in the birth has changed exponentially. Before the 1970s, the principal view was that birth was a female business and not a man’s place. Changing cultural and professional attitudes around the emotional bond between a man and a woman, family structure and the more proactive involved role of men in the family have encouraged fathers’ attendance at birth. There is evidence that fathers’ support can make birthing less traumatic for some women and can make couples closer. This has made some clinicians to believe the fathers should be more involved throughout the birth process. Some clinicians even go further and ask the fathers to watch the medical procedures, such as inserting vaginal speculum, forceps or vacuum, episiotomy and stitches. Although birth can unfold like a beautiful picture captured by birth photographers, with fathers massaging women’s backs by candle light and the miraculous moment of birth, it can be overshadowed by less attractive images of cervical mucous, emptying bowels and the invasive medical procedures. What happens in the birth room and the fathers’ reaction to the graphic experience of birthing can be unpredictable. Despite the fact that most men are absolutely thrilled to be in the delivery room, for some men, a very intimate body part can become completely desexualised, and they can experience psychological and sexual scarring. They see someone they cherish dramatically sliced open and can then associate their partners with a disturbing scene, and it can dramatically affect their relationships. While most women want the expectant fathers by their side for this life-changing event, not all of them may be happy for their partners to watch the perineum to be cut or stitched or when large blades of forceps are inserted inside the vagina. Anecdotal reports have shown that consent is not sought from the labouring women as to whether they want their partners to watch these procedures. The majority of research1, 2, 3 focuses on men’s and women’s retrospective attitudes towards their birth experience. However, the effect of witnessing invasive procedures during childbirth on a man's attraction to his partner, while she is most vulnerable, and also an increased risk of post-traumatic stress disorder in fathers have not been widely investigated. There is a lack of sufficient research investigating whether women need to be asked for their consent before inviting their partners to closely watch medical procedures during childbirth. Future research is required to provide a basis for better awareness and involve the consumers to understanding the men’s and women’s experience and their expectations for labour and birth.

Keywords: birth, childbirth, father, labour, men, women

Procedia PDF Downloads 127
312 Efficient Reuse of Exome Sequencing Data for Copy Number Variation Callings

Authors: Chen Wang, Jared Evans, Yan Asmann

Abstract:

With the quick evolvement of next-generation sequencing techniques, whole-exome or exome-panel data have become a cost-effective way for detection of small exonic mutations, but there has been a growing desire to accurately detect copy number variations (CNVs) as well. In order to address this research and clinical needs, we developed a sequencing coverage pattern-based method not only for copy number detections, data integrity checks, CNV calling, and visualization reports. The developed methodologies include complete automation to increase usability, genome content-coverage bias correction, CNV segmentation, data quality reports, and publication quality images. Automatic identification and removal of poor quality outlier samples were made automatically. Multiple experimental batches were routinely detected and further reduced for a clean subset of samples before analysis. Algorithm improvements were also made to improve somatic CNV detection as well as germline CNV detection in trio family. Additionally, a set of utilities was included to facilitate users for producing CNV plots in focused genes of interest. We demonstrate the somatic CNV enhancements by accurately detecting CNVs in whole exome-wide data from the cancer genome atlas cancer samples and a lymphoma case study with paired tumor and normal samples. We also showed our efficient reuses of existing exome sequencing data, for improved germline CNV calling in a family of the trio from the phase-III study of 1000 Genome to detect CNVs with various modes of inheritance. The performance of the developed method is evaluated by comparing CNV calling results with results from other orthogonal copy number platforms. Through our case studies, reuses of exome sequencing data for calling CNVs have several noticeable functionalities, including a better quality control for exome sequencing data, improved joint analysis with single nucleotide variant calls, and novel genomic discovery of under-utilized existing whole exome and custom exome panel data.

Keywords: bioinformatics, computational genetics, copy number variations, data reuse, exome sequencing, next generation sequencing

Procedia PDF Downloads 257
311 Detection and Classification Strabismus Using Convolutional Neural Network and Spatial Image Processing

Authors: Anoop T. R., Otman Basir, Robert F. Hess, Eileen E. Birch, Brooke A. Koritala, Reed M. Jost, Becky Luu, David Stager, Ben Thompson

Abstract:

Strabismus refers to a misalignment of the eyes. Early detection and treatment of strabismus in childhood can prevent the development of permanent vision loss due to abnormal development of visual brain areas. We developed a two-stage method for strabismus detection and classification based on photographs of the face. The first stage detects the presence or absence of strabismus, and the second stage classifies the type of strabismus. The first stage comprises face detection using Haar cascade, facial landmark estimation, face alignment, aligned face landmark detection, segmentation of the eye region, and detection of strabismus using VGG 16 convolution neural networks. Face alignment transforms the face to a canonical pose to ensure consistency in subsequent analysis. Using facial landmarks, the eye region is segmented from the aligned face and fed into a VGG 16 CNN model, which has been trained to classify strabismus. The CNN determines whether strabismus is present and classifies the type of strabismus (exotropia, esotropia, and vertical deviation). If stage 1 detects strabismus, the eye region image is fed into stage 2, which starts with the estimation of pupil center coordinates using mask R-CNN deep neural networks. Then, the distance between the pupil coordinates and eye landmarks is calculated along with the angle that the pupil coordinates make with the horizontal and vertical axis. The distance and angle information is used to characterize the degree and direction of the strabismic eye misalignment. This model was tested on 100 clinically labeled images of children with (n = 50) and without (n = 50) strabismus. The True Positive Rate (TPR) and False Positive Rate (FPR) of the first stage were 94% and 6% respectively. The classification stage has produced a TPR of 94.73%, 94.44%, and 100% for esotropia, exotropia, and vertical deviations, respectively. This method also had an FPR of 5.26%, 5.55%, and 0% for esotropia, exotropia, and vertical deviation, respectively. The addition of one more feature related to the location of corneal light reflections may reduce the FPR, which was primarily due to children with pseudo-strabismus (the appearance of strabismus due to a wide nasal bridge or skin folds on the nasal side of the eyes).

Keywords: strabismus, deep neural networks, face detection, facial landmarks, face alignment, segmentation, VGG 16, mask R-CNN, pupil coordinates, angle deviation, horizontal and vertical deviation

Procedia PDF Downloads 96
310 Application of Ground-Penetrating Radar in Environmental Hazards

Authors: Kambiz Teimour Najad

Abstract:

The basic methodology of GPR involves the use of a transmitting antenna to send electromagnetic waves into the subsurface, which then bounce back to the surface and are detected by a receiving antenna. The transmitter and receiver antennas are typically placed on the ground surface and moved across the area of interest to create a profile of the subsurface. The GPR system consists of a control unit that powers the antennas and records the data, as well as a display unit that shows the results of the survey. The control unit sends a pulse of electromagnetic energy into the ground, which propagates through the soil or rock until it encounters a change in material or structure. When the electromagnetic wave encounters a buried object or structure, some of the energy is reflected back to the surface and detected by the receiving antenna. The GPR data is then processed using specialized software that analyzes the amplitude and travel time of the reflected waves. By interpreting the data, GPR can provide information on the depth, location, and nature of subsurface features and structures. GPR has several advantages over other geophysical survey methods, including its ability to provide high-resolution images of the subsurface and its non-invasive nature, which minimizes disruption to the site. However, the effectiveness of GPR depends on several factors, including the type of soil or rock, the depth of the features being investigated, and the frequency of the electromagnetic waves used. In environmental hazard assessments, GPR can be used to detect buried structures, such as underground storage tanks, pipelines, or utilities, which may pose a risk of contamination to the surrounding soil or groundwater. GPR can also be used to assess soil stability by identifying areas of subsurface voids or sinkholes, which can lead to the collapse of the surface. Additionally, GPR can be used to map the extent and movement of groundwater contamination, which is critical in designing effective remediation strategies. the methodology of GPR in environmental hazard assessments involves the use of electromagnetic waves to create high of the subsurface, which are then analyzed to provide information on the depth, location, and nature of subsurface features and structures. This information is critical in identifying and mitigating environmental hazards, and the non-invasive nature of GPR makes it a valuable tool in this field.

Keywords: GPR, hazard, landslide, rock fall, contamination

Procedia PDF Downloads 84
309 Impact of Short-Term Drought on Vegetation Health Condition in the Kingdom of Saudi Arabia Using Space Data

Authors: E. Ghoneim, C. Narron, I. Iqbal, I. Hassan, E. Hammam

Abstract:

The scarcity of water is becoming a more prominent threat, especially in areas that are already arid in nature. Although the Kingdom of Saudi Arabia (KSA) is an arid country, its southwestern region offers a high variety of botanical landscapes, many of which are wooded forests, while the eastern and northern regions offer large areas of groundwater irrigated farmlands. At present, some parts of KSA, including forests and farmlands, have witnessed protracted and severe drought due to change in rainfall pattern as a result of global climate change. Such prolonged drought that last for several consecutive years is expected to cause deterioration of forested and pastured lands as well as cause crop failure in the KSA (e.g., wheat yield). An analysis to determine vegetation drought vulnerability and severity during the growing season (September-April) over a fourteen year period (2000-2014) in KSA was conducted using MODIS Terra imagery. The Vegetation Condition Index (VCI), derived from the Normalized Difference Vegetation Index (NDVI), and the Temperature Condition Index (TCI), derived from the Land Surface Temperature (LST) data was extracted from MODIS Terra Images. The VCI and TCI were then combined to compute the Vegetation Health Index (VHI). The VHI revealed the overall vegetation health for the area under investigation. A preliminary outcome of the modeled VHI over KSA, using averaged monthly vegetation data over a 14-year period, revealed that the vegetation health condition is deteriorating over time in both naturally vegetated areas and irrigated farmlands. The derived drought map for KSA indicates that both extreme and severe drought occurrences have considerably increased over the same study period. Moreover, based on the cumulative average of drought frequency in each governorate of KSA it was determined that Makkah and Jizan governorates to the east and southwest, witness the most frequency of extreme drought, whereas Tabuk to the northwest, exhibits the less extreme drought frequency. Areas where drought is extreme or severe would most likely have negative influences on agriculture, ecosystems, tourism, and even human welfare. With the drought risk map the kingdom could make informed land management decisions including were to continue with agricultural endeavors and protect forested areas and even where to develop new settlements.

Keywords: drought, vegetation health condition, TCI, Saudi Arabia

Procedia PDF Downloads 387
308 Mesoporous Titania Thin Films for Gentamicin Delivery and Bone Morphogenetic Protein-2 Immobilization

Authors: Ane Escobar, Paula Angelomé, Mihaela Delcea, Marek Grzelczak, Sergio Enrique Moya

Abstract:

The antibacterial capacity of bone-anchoring implants can be improved by the use of antibiotics that can be delivered to the media after the surgery. Mesoporous films have shown great potential in drug delivery for orthopedic applications, since pore size and thickness can be tuned to produce different surface area and free volume inside the material. This work shows the synthesis of mesoporous titania films (MTF) by sol-gel chemistry and evaporation-induced self-assembly (EISA) on top of glass substrates. Pores with a diameter of 12nm were observed by Transmission Electron Microscopy (TEM). A film thickness of 100 nm was measured by Scanning Electron Microscopy (SEM). Gentamicin was used to study the antibiotic delivery from the film by means of High-performance liquid chromatography (HPLC). The Staphilococcus aureus strand was used to evaluate the effectiveness of the penicillin loaded films toward inhibiting bacterial colonization. MC3T3-E1 pre-osteoblast cell proliferation experiments proved that MTFs have a good biocompatibility and are a suitable surface for MC3T3-E1 cell proliferation. Moreover, images taken by Confocal Fluorescence Microscopy using labeled vinculin, showed good adhesion of the MC3T3-E1 cells to the MTFs, as well as complex actin filaments arrangement. In order to improve cell proliferation Bone Morphogenetic Protein-2 (BMP-2) was adsorbed on top of the mesoporous film. The deposition of the protein was proved by measurements in the contact angle, showing an increment in the hydrophobicity while the protein concentration is higher. By measuring the dehydrogenase activity in MC3T3-E1 cells cultured in dually functionalized mesoporous titatina films with gentamicin and BMP-2 is possible to find an improvement in cell proliferation. For this purpose, the absorption of a yellow-color formazan dye, product of a water-soluble salt (WST-8) reduction by the dehydrogenases, is measured. In summary, this study proves that by means of the surface modification of MTFs with proteins and loading of gentamicin is possible to achieve an antibacterial effect and a cell growth improvement.

Keywords: antibacterial, biocompatibility, bone morphogenetic protein-2, cell proliferation, gentamicin, implants, mesoporous titania films, osteoblasts

Procedia PDF Downloads 166