Search results for: deep soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4986

Search results for: deep soil

2916 A Student Centered Learning Environment in Engineering Education: Design and a Longitudinal Study of Impact

Authors: Tom O'Mahony

Abstract:

This article considers the design of a student-centered learning environment in engineering education. The learning environment integrates a number of components, including project-based learning, collaborative learning, two-stage assignments, active learning lectures, and a flipped-classroom. Together these elements place the individual learner and their learning at the center of the environment by focusing on understanding, enhancing relevance, applying learning, obtaining rich feedback, making choices, and taking responsibility. The evolution of this environment from 2014 to the present day is outlined. The impact of this environment on learners and their learning is evaluated via student questionnaires that consist of both open and closed-ended questions. The closed questions indicate that students found the learning environment to be really interesting and enjoyable (rated as 4.7 on a 5 point scale) and encouraged students to adopt a deep approach towards studying the course materials (rated as 4.0 on a 5 point scale). A content analysis of the open-ended questions provides evidence that the project, active learning lectures, and flipped classroom all contribute to the success of this environment. Furthermore, this analysis indicates that the two-stage assessment process, in which feedback is provided between a draft and final assignment, is the key component and the dominant theme. A limitation of the study is the small class size (less than 20 learners per year), but, to some degree, this is compensated for by the longitudinal nature of the study.

Keywords: deep approaches, formative assessment, project-based learning, student-centered learning

Procedia PDF Downloads 115
2915 Optimizing Irrigation Scheduling for Sustainable Agriculture: A Case Study of a Farm in Onitsha, Anambra State, Nigeria

Authors: Ejoh Nonso Francis

Abstract:

: Irrigation scheduling is a critical aspect of sustainable agriculture as it ensures optimal use of water resources, reduces water waste, and enhances crop yields. This paper presents a case study of a farm in Onitsha, Anambra State, Nigeria, where irrigation scheduling was optimized using a combination of soil moisture sensors and weather data. The study aimed to evaluate the effectiveness of this approach in improving water use efficiency and crop productivity. The results showed that the optimized irrigation scheduling approach led to a 30% reduction in water use while increasing crop yield by 20%. The study demonstrates the potential of technology-based irrigation scheduling to enhance sustainable agriculture in Nigeria and beyond.

Keywords: irrigation scheduling, sustainable agriculture, soil moisture sensors, weather data, water use efficiency, crop productivity, nigeria, onitsha, anambra state, technology-based irrigation scheduling, water resources, environmental degradation, crop water requirements, overwatering, water waste, farming systems, scalability

Procedia PDF Downloads 83
2914 Refined Edge Detection Network

Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni

Abstract:

Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.

Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone

Procedia PDF Downloads 106
2913 Bioprotective Role of Soil Borne Bacillus Strains against Selected Fungal Pathogens of Agriculture Relevance

Authors: Asad Ali, Asif Jamal

Abstract:

The agriculture productivity losses due to microbial pathogens have been a serious issue in Pakistan and rest of the world. Present work was designed to isolate soil borne microorganisms having the antagonistic ability against notorious phytopathogens. From the initial collection of 23 bacterial isolates, two potent strains of Bacillus were screened on the basis of their comparative efficacy against devastating fungal pathogens. The strains AK-1 and AK-5 showed excellent inhibitory indexes against the majority of tested fungal strains. It was noted that both strains of Bacillus showed significant biocontrolling activity against Aspergillus flavus, Fusarium moniliforme, Colletotricum falcatum, Botrytis cinerea, Aspergillus niger, Fusarium oxysporum, Phythopthora capsici and Rhizopus oryzae. The strain AK-1 was efficient to suppress Aspergillus species and Rhizopus oryzae while AK-5 expressed significant antagonistic activity against Fusarium, Botrytis and Colletotricum species. On the basis of in vitro assay, it can be postulated that the Bacillus strains AK-1 and AK-5 can be used as bio-protective agent against various plant diseases. In addition, their applications as natural pesticides could be very helpful to prevent the adverse effects of chemical pesticides.

Keywords: bacillus species, biocontrol agent, biopesticides, phytopathogens

Procedia PDF Downloads 246
2912 Electrokinetic Application for the Improvement of Soft Clays

Authors: Abiola Ayopo Abiodun, Zalihe Nalbantoglu

Abstract:

The electrokinetic application (EKA), a relatively modern chemical treatment has a potential for in-situ ground improvement in an open field or under existing structures. It utilizes a low electrical gradient to transport electrolytic chemical ions between bespoke electrodes inserted in the fine-grained, low permeable soft soils. The paper investigates the efficacy of the EKA as a mitigation technique for the soft clay beds. The laboratory model of the EKA comprises of rectangular plexiglass test tank, electrolytes compartments, geosynthetic electrodes and direct electric current supply. Within this setup, the EK effects resulted from the exchange of ions between anolyte (anodic) and catholyte (cathodic) ends through the tested soil were examined by basic experimental laboratory testing methods. As such, the treated soft soil properties were investigated as a function of the anode-to-cathode distances and curing periods. The test results showed that there have been some changes in the physical and engineering properties of the treated soft soils. The significant changes in the physicochemical and electrical properties suggested that their corresponding changes can be utilized as a monitoring technique to evaluate the improvement in the engineering properties EK treated soft clay soils.

Keywords: electrokinetic, electrolytes, exchange ions, geosynthetic electrodes, soft soils

Procedia PDF Downloads 320
2911 Impacts of Climate Change on Water Resources of Greater Zab and Lesser Zab Basins, Iraq, Using Soil and Water Assessment Tool Model

Authors: Nahlah Abbas, Saleh A. Wasimi, Nadhir Al-Ansari

Abstract:

The Greater Zab and Lesser Zab are the major tributaries of Tigris River contributing the largest flow volumes into the river. The impacts of climate change on water resources in these basins have not been well addressed. To gain a better understanding of the effects of climate change on water resources of the study area in near future (2049-2069) as well as in distant future (2080-2099), Soil and Water Assessment Tool (SWAT) was applied. The model was first calibrated for the period from 1979 to 2004 to test its suitability in describing the hydrological processes in the basins. The SWAT model showed a good performance in simulating streamflow. The calibrated model was then used to evaluate the impacts of climate change on water resources. Six general circulation models (GCMs) from phase five of the Coupled Model Intercomparison Project (CMIP5) under three Representative Concentration Pathways (RCPs) RCP 2.6, RCP 4.5, and RCP 8.5 for periods of 2049-2069 and 2080-2099 were used to project the climate change impacts on these basins. The results demonstrated a significant decline in water resources availability in the future.

Keywords: Tigris River, climate change, water resources, SWAT

Procedia PDF Downloads 207
2910 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 79
2909 Effect of Cantilever Sheet Pile Wall to Adjacent Buildings

Authors: Ahmed A. Mohamed Aly

Abstract:

Ground movements induced from excavations is a major cause of deformation and damage to the adjacent buildings and utilities. With the increasing rate of construction work in urban area, this problem is growing more significant and has become the cause of numerous legal disputes. This problem is investigated numerically in the present study using finite element method. Five-story reinforced concrete building rests on raft foundation is idealized as two dimensional model. The building is considered to be constructed adjacent to excavation affected by an adjacent excavation in medium sand. Excavation is supported using sheet pile wall. Two dimensional plane strain program PLAXIS is used in this study. 15 nodes triangular element is used to idealize soil with Mohr-Coulomb model. Five nodes isoperimetric beam element is used to idealize sheet pile and building. Interface element is used to represent the contact between beam element and soil. Two parameters were studied, the first is the foundation depth and the second is the building distance from the excavation. Nodal displacements and elements straining actions were obtained and studied from the analyzed finite element model results.

Keywords: excavation, relative distance, effective stresses, lateral deformation, relative depth

Procedia PDF Downloads 141
2908 Laboratory Model Tests on Encased Group Columns

Authors: Kausar Ali

Abstract:

There are several ground treatment techniques which may meet the twin objectives of increasing the bearing capacity with simultaneous reduction of settlements, but the use of stone columns is one of the most suited techniques for flexible structures such as embankments, oil storage tanks etc. that can tolerate some settlement and used worldwide. However, when the stone columns in very soft soils are loaded; stone columns undergo excessive settlement due to low lateral confinement provided by the soft soil, leading to the failure of the structure. The poor performance of stone columns under these conditions can be improved by encasing the columns with a suitable geosynthetic. In this study, the effect of reinforcement on bearing capacity of composite soil has been investigated by conducting laboratory model tests on floating and end bearing long stone columns with l/d ratio of 12. The columns were reinforced by providing geosynthetic encasement over varying column length (upper 25%, 50%, 75%, and 100% column length). In this study, a group of columns has been used instead of single column, because in the field, columns used for the purpose always remain in groups. The tests indicate that the encasement over the full column length gives higher failure stress as compared to the encasement over the partial column length for both floating and end bearing long columns. The performance of end-bearing columns was found much better than the floating columns.

Keywords: geosynthetic, ground improvement, soft clay, stone column

Procedia PDF Downloads 438
2907 Surface Water Flow of Urban Areas and Sustainable Urban Planning

Authors: Sheetal Sharma

Abstract:

Urban planning is associated with land transformation from natural areas to modified and developed ones which leads to modification of natural environment. The basic knowledge of relationship between both should be ascertained before proceeding for the development of natural areas. Changes on land surface due to build up pavements, roads and similar land cover, affect surface water flow. There is a gap between urban planning and basic knowledge of hydrological processes which should be known to the planners. The paper aims to identify these variations in surface flow due to urbanization for a temporal scale of 40 years using Storm Water Management Mode (SWMM) and again correlating these findings with the urban planning guidelines in study area along with geological background to find out the suitable combinations of land cover, soil and guidelines. For the purpose of identifying the changes in surface flows, 19 catchments were identified with different geology and growth in 40 years facing different ground water levels fluctuations. The increasing built up, varying surface runoff are studied using Arc GIS and SWMM modeling, regression analysis for runoff. Resulting runoff for various land covers and soil groups with varying built up conditions were observed. The modeling procedures also included observations for varying precipitation and constant built up in all catchments. All these observations were combined for individual catchment and single regression curve was obtained for runoff. Thus, it was observed that alluvial with suitable land cover was better for infiltration and least generation of runoff but excess built up could not be sustained on alluvial soil. Similarly, basalt had least recharge and most runoff demanding maximum vegetation over it. Sandstone resulted in good recharging if planned with more open spaces and natural soils with intermittent vegetation. Hence, these observations made a keystone base for planners while planning various land uses on different soils. This paper contributes and provides a solution to basic knowledge gap, which urban planners face during development of natural surfaces.

Keywords: runoff, built up, roughness, recharge, temporal changes

Procedia PDF Downloads 282
2906 Application of Human Biomonitoring and Physiologically-Based Pharmacokinetic Modelling to Quantify Exposure to Selected Toxic Elements in Soil

Authors: Eric Dede, Marcus Tindall, John W. Cherrie, Steve Hankin, Christopher Collins

Abstract:

Current exposure models used in contaminated land risk assessment are highly conservative. Use of these models may lead to over-estimation of actual exposures, possibly resulting in negative financial implications due to un-necessary remediation. Thus, we are carrying out a study seeking to improve our understanding of human exposure to selected toxic elements in soil: arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), and lead (Pb) resulting from allotment land-use. The study employs biomonitoring and physiologically-based pharmacokinetic (PBPK) modelling to quantify human exposure to these elements. We recruited 37 allotment users (adults > 18 years old) in Scotland, UK, to participate in the study. Concentrations of the elements (and their bioaccessibility) were measured in allotment samples (soil and allotment produce). Amount of produce consumed by the participants and participants’ biological samples (urine and blood) were collected for up to 12 consecutive months. Ethical approval was granted by the University of Reading Research Ethics Committee. PBPK models (coded in MATLAB) were used to estimate the distribution and accumulation of the elements in key body compartments, thus indicating the internal body burden. Simulating low element intake (based on estimated ‘doses’ from produce consumption records), predictive models suggested that detection of these elements in urine and blood was possible within a given period of time following exposure. This information was used in planning biomonitoring, and is currently being used in the interpretation of test results from biological samples. Evaluation of the models is being carried out using biomonitoring data, by comparing model predicted concentrations and measured biomarker concentrations. The PBPK models will be used to generate bioavailability values, which could be incorporated in contaminated land exposure models. Thus, the findings from this study will promote a more sustainable approach to contaminated land management.

Keywords: biomonitoring, exposure, PBPK modelling, toxic elements

Procedia PDF Downloads 323
2905 In situ Immobilization of Mercury in a Contaminated Calcareous Soil Using Water Treatment Residual Nanoparticles

Authors: Elsayed A. Elkhatib, Ahmed M. Mahdy, Mohamed L. Moharem, Mohamed O. Mesalem

Abstract:

Mercury (Hg) is one of the most toxic and bio-accumulative heavy metal in the environment. However, cheap and effective in situ remediation technology is lacking. In this study, the effects of water treatment residuals nanoparticles (nWTR) on mobility, fractionation and speciation of mercury in an arid zone soil from Egypt were evaluated. Water treatment residual nanoparticles with high surface area (129 m 2 g-1) were prepared using Fritsch planetary mono mill. Scanning and transmission electron microscopy revealed that the nanoparticles of WTR nanoparticles are spherical in shape, and single particle sizes are in the range of 45 to 96 nm. The x-ray diffraction (XRD) results ascertained that amorphous iron, aluminum (hydr)oxides and silicon oxide dominating all nWTR, with no apparent crystalline iron–Al (hydr)oxides. Addition of nWTR, greatly increased the Hg sorption capacities of studied soils and greatly reduced the cumulative Hg released from the soils. Application of nWTR at 0.10 and 0.30 % rates reduced the released Hg from the soil by 50 and 85 % respectively. The power function and first order kinetics models well described the desorption process from soils and nWTR amended soils as evidenced by high coefficient of determination (R2) and low SE values. Application of nWTR greatly increased the association of Hg with the residual fraction. Meanwhile, application of nWTR at a rate of 0.3% greatly increased the association of Hg with the residual fraction (>93%) and significantly increased the most stable Hg species (Hg(OH)2 amor) which in turn enhanced Hg immobilization in the studied soils. Fourier transmission infrared spectroscopy analysis indicated the involvement of nWTR in the retention of Hg (II) through OH groups which suggest inner-sphere adsorption of Hg ions to surface functional groups on nWTR. These results demonstrated the feasibility of using a low-cost nWTR as best management practice to immobilize excess Hg in contaminated soils.

Keywords: release kinetics, Fourier transmission infrared spectroscopy, Hg fractionation, Hg species

Procedia PDF Downloads 238
2904 Physical and Mechanical Behavior of Compressed Earth Blocks Stabilized with Ca(OH)2 on Sub-Humid Warm Weather

Authors: D. Castillo T., Luis F. Jimenez

Abstract:

The compressed earth blocks (CEBs) constitute an alternative as a constructive element for building homes in regions with high levels of poverty and marginalization. Such is the case of Southeastern Mexico, where the population, predominantly indigene, build their houses with feeble materials like wood and palm, vulnerable to extreme weather in the area, because they do not have the financial resources to acquire concrete blocks. There are several advantages that can provide BTCs compared to traditional vibro-compressed concrete blocks, such as the availability of materials, low manufacturing cost and reduced CO2 emissions to the atmosphere for not be subjected to a burning process. However, to improve its mechanical properties and resistance to adverse weather conditions in terms of humidity and temperature of the sub-humid climate zones, it requires the use of a chemical stabilizer; in this case we chose Ca(OH)2. The stabilization method Eades-Grim was employed, according to ASTM C977-03. This method measures the optimum amount of lime required to stabilize the soil, increasing the pH to 12.4 or higher. The minimum amount of lime required in this experiment was 1% and the maximum was 10%. The employed material was clay unconsolidated low to medium plasticity (CL type according to the Unified Soil Classification System). Based on these results, the CEBs manufacturing process was determined. The obtained blocks were from 10x15x30 cm using a mixture of soil, water and lime in different proportions. Later these blocks were put to dry outdoors and subjected to several physical and mechanical tests, such as compressive strength, absorption and drying shrinkage. The results were compared with the limits established by the Mexican Standard NMX-C-404-ONNCCE-2005 for the construction of housing walls. In this manner an alternative and sustainable material was obtained for the construction of rural households in the region, with better security conditions, comfort and cost.

Keywords: calcium hydroxide, chemical stabilization, compressed earth blocks, sub-humid warm weather

Procedia PDF Downloads 404
2903 Runoff Estimation Using NRCS-CN Method

Authors: E. K. Naseela, B. M. Dodamani, Chaithra Chandran

Abstract:

The GIS and remote sensing techniques facilitate accurate estimation of surface runoff from watershed. In the present study an attempt has been made to evaluate the applicability of Natural Resources Service Curve Number method using GIS and Remote sensing technique in the upper Krishna basin (69,425 Sq.km). Landsat 7 (with resolution 30 m) satellite data for the year 2012 has been used for the preparation of land use land cover (LU/LC) map. The hydrologic soil group is mapped using GIS platform. The weighted curve numbers (CN) for all the 5 subcatchments calculated on the basis of LU/LC type and hydrologic soil class in the area by considering antecedent moisture condition. Monthly rainfall data was available for 58 raingauge stations. Overlay technique is adopted for generating weighted curve number. Results of the study show that land use changes determined from satellite images are useful in studying the runoff response of the basin. The results showed that there is no significant difference between observed and estimated runoff depths. For each subcatchment, statistically positive correlations were detected between observed and estimated runoff depth (0.6Keywords: curve number, GIS, remote sensing, runoff

Procedia PDF Downloads 542
2902 Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents

Authors: Rajesh Kumar Gautam, Debabrata Seth

Abstract:

Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT.

Keywords: deep eutectic solvent, photophysics, Thioflavin T, the torsional rate constant

Procedia PDF Downloads 166
2901 Effect of Different Methods to Control the Parasitic Weed Phelipanche ramosa (L. Pomel) in Tomato Crop

Authors: Disciglio G., Lops F., Carlucci A., Gatta G., Tarantino A., Frabboni L, Tarantino E.

Abstract:

The Phelipanche ramosa is considered the most damaging obligate flowering parasitic weed on a wide species of cultivated plants. The semiarid regions of the world are considered the main center of this parasitic weed, where heavy infestation are due to the ability to produce high numbers of seeds (up to 200,000), that remain viable for extended period (more than 19 years). In this paper 13 treatments of parasitic weed control, as physical, chemical, biological and agronomic methods, including the use of the resistant plants, have been carried out. In 2014 a trial was performed on processing tomato (cv Docet), grown in pots filled with soil taken from a plot heavily infested by Phelipanche ramosa, at the Department of Agriculture, Food and Environment, University of Foggia (southern Italy). Tomato seedlings were transplanted on August 8, 2014 on a clay soil (USDA) 100 kg ha-1 of N; 60 kg ha-1 of P2O5 and 20 kg ha-1 of S. Afterwards, top dressing was performed with 70 kg ha-1 of N. The randomized block design with 3 replicates was adopted. During the growing cycle of the tomato, at 70-75-81 and 88 days after transplantation the number of parasitic shoots emerged in each pot was detected. Also values of leaf chlorophyll Meter SPAD of tomato plants were measured. All data were subjected to analysis of variance (ANOVA) using the JMP software (SAS Institute Inc., Cary, NC, USA), and for comparison of means was used Tukey's test. The results show lower values of the color index SPAD in tomato plants parasitized compared to those healthy. In addition, each treatment studied did not provide complete control against Phelipanche ramosa. However the virulence of the attacks was mitigated by some treatments: radicon product, compost activated with Fusarium, mineral fertilizer nitrogen, sulfur, enzone and resistant tomato genotype. It is assumed that these effects can be improved by combining some of these treatments each other, especially for a gradual and continuing reduction of the “seed bank” of the parasite in the soil.

Keywords: control methods, Phelipanche ramose, tomato crop

Procedia PDF Downloads 614
2900 Role of Nano-Technology on Remediation of Poly- and Perfluoroalkyl Substances Contaminated Soil and Ground Water

Authors: Leila Alidokht

Abstract:

PFAS (poly- and perfluoroalkyl substances) are a large collection of environmentally persistent organic chemicals of industrial origin that have a negative influence on human health and ecosystems. Many distinct PFAS are being utilized in a wide range of applications (on the order of thousands), and there is no comprehensive source of information on the many different compounds and their roles in diverse applications. Facilities are increasingly looking into ways to reduce waste from cleanup projects. PFAS are widespread in the environment, have been found in a wide range of human biomonitoring investigations, and are a rising source of regulatory concern for federal, state, and local governments. Nanotechnology has the potential to contribute considerably to the creation of a cleaner, greener technologies with considerable environmental and health benefits. Nanotechnology approaches are being studied for their potential to provide pollution management and mitigation options, as well as to increase the effectiveness of standard environmental cleanup procedures. Diversified nanoparticles have shown useful in removing certain pollutants from their original environment, such as sewage spills and landmines. Furthermore, they have a low hazardous effect during production rates and can thus be thoroughly explored in the future to make them more compatible with lower production costs.

Keywords: PFOS, PFOA, PFAS, soil remediation

Procedia PDF Downloads 117
2899 Bioprotective Role of Soil Borne Bacillus Strain against Selected Fungal Pathogens of Agriculture Relevance

Authors: Asif Jamal, Asad Ali, Muhammad Ishtiaq Ali

Abstract:

The agriculture productivity losses due to microbial pathogens have been a serious issue in Pakistan and rest of the world. Present work was designed to isolate soil borne microorganisms having the antagonistic ability against notorious phytopathogens. From the initial collection of 23 bacterial isolates, two potent strains of Bacillus were screened on the basis of their comparative efficacy against devastating fungal pathogens. The strains AK-1 and AK-5 showed excellent inhibitory indexes against the majority of tested fungal strains. It was noted that both strains of Bacillus showed significant biocontrolling activity against Aspergillus flavus, Fusarium moniliforme, Colletotricum falcatum, Botrytis cinerea, Aspergillus niger, Fusarium oxysporum, Phythopthora capsici and Rhizopus oryzae. The strain AK-1 was efficient to suppress Aspergillus species and Rhizopus oryzae while AK-5 expressed significant antagonistic activity against Fusarium, Botrytis, and Colletotricum species. On the basis of in vitro assay, it can be postulated that the Bacillus strains AK-1 and AK-5 can be used as a bio-protective agent against various plant diseases. In addition, their applications as natural pesticides could be very helpful to prevent the adverse effects of chemical pesticides.

Keywords: biological control, Bacillus spp, fungal pathogens, agriculture

Procedia PDF Downloads 276
2898 Enhancer: An Effective Transformer Architecture for Single Image Super Resolution

Authors: Pitigalage Chamath Chandira Peiris

Abstract:

A widely researched domain in the field of image processing in recent times has been single image super-resolution, which tries to restore a high-resolution image from a single low-resolution image. Many more single image super-resolution efforts have been completed utilizing equally traditional and deep learning methodologies, as well as a variety of other methodologies. Deep learning-based super-resolution methods, in particular, have received significant interest. As of now, the most advanced image restoration approaches are based on convolutional neural networks; nevertheless, only a few efforts have been performed using Transformers, which have demonstrated excellent performance on high-level vision tasks. The effectiveness of CNN-based algorithms in image super-resolution has been impressive. However, these methods cannot completely capture the non-local features of the data. Enhancer is a simple yet powerful Transformer-based approach for enhancing the resolution of images. A method for single image super-resolution was developed in this study, which utilized an efficient and effective transformer design. This proposed architecture makes use of a locally enhanced window transformer block to alleviate the enormous computational load associated with non-overlapping window-based self-attention. Additionally, it incorporates depth-wise convolution in the feed-forward network to enhance its ability to capture local context. This study is assessed by comparing the results obtained for popular datasets to those obtained by other techniques in the domain.

Keywords: single image super resolution, computer vision, vision transformers, image restoration

Procedia PDF Downloads 110
2897 Differentiating Morphological Patterns of the Common Benthic Anglerfishes from the Indian Waters

Authors: M. P. Rajeeshkumar, K. V. Aneesh Kumar, J. L. Otero-Ferrer, A. Lombarte, M. Hashim, N. Saravanane, V. N.Sanjeevan, V. M. Tuset

Abstract:

The anglerfishes are widely distributed from shallow to deep-water habitats and are highly diverse in morphology, behaviour, and niche occupancy patterns. To understand this interspecific variability and degree of niche overlap, we performed a functional analysis of five species inhabiting Indian waters where diversity of deep-sea anglerfishes is very high. The sensory capacities (otolith shape and eye size) were also studied to improve the understanding of coexistence of species. The analyses of fish body and otolith shape clustered species in two morphotypes related to phylogenetic lineages: i) Malthopsis lutea, Lophiodes lugubri and Halieutea coccinea were characterized by a dorso-ventrally flattened body with high swimming ability and relative small otoliths, and ii) Chaunax spp. were distinguished by their higher body depth, lower swimming efficiency, and relative big otoliths. The sensory organs did not show a pattern linked to depth distribution of species. However, the larger eye size in M. lutea suggested a nocturnal feeding activity, whereas Chaunax spp. had a large mouth and deeper body in response to different ecological niches. Therefore, the present study supports the hypothesis of spatial and temporal segregation of anglerfishes in the Indian waters, which can be explained from a functional approach and understanding from sensory capabilities.

Keywords: functional traits, otoliths, niche overlap, fishes, Indian waters

Procedia PDF Downloads 141
2896 Study of Halophytic Vegetation of Chott Gamra (Batna, High Plateaus of Eastern Algeria)

Authors: Marref C., Marref S., Melakhssou M. A.

Abstract:

The halophytic vegetation of Chott Gamra (Gadaïne Eco-complex, High Plateaus of Eastern Algeria) is characterized by a very rich cover. It is structured according to the variation in soil salinity and moisture. The objective of this study is to understand the biodiversity, distribution, and classification of halophytic vegetation. This wetland is characterized by a Mediterranean climate in the semi-arid to cool winter stage. The wetland area of the High Plateaus of Eastern Algeria constitutes a biodiversity reservoir. It is considered exceptional, although it remains little explored and documented to date. The study was conducted over consecutive spring seasons (2020/2021). Indeed, the inventory we established includes forty plant species belonging to fourteen different families, the majority of which are resistant to salinity and drought. These halophytic species that thrive there establish themselves in bands according to their tolerance threshold to salinity and their affinity to the hygroscopic level of the soil. Thus, other edaphic factors may come into play in the zonation of halophytes in saline environments. Species belonging to the Juncaceae and Poaceae families dominate by far the non-flooded vegetation cover of this site. These plants are perfectly adapted to saline environments.

Keywords: halophytes, biodiversity, salinity, wetland

Procedia PDF Downloads 54
2895 Analysis of Geotechnical Parameters from Geophysical Information

Authors: Adewoyin O. Olusegun, Akinwumi I. Isaac

Abstract:

In some part of the world where legislations related to site investigations before constructions are not strictly enforced, the expenses and time required for carrying out a comprehensive geotechnical investigation to characterize a site can discourage prospective private residential building developers. Another factor that can discourage a developer is the fact that most of the geotechnical tests procedures utilized during site investigations, to a certain extent, alter the existing environment of the site. This study suggests a quick, non-destructive and non-intrusive method of obtaining key subsoil geotechnical properties necessary for foundation design for proposed engineering facilities. Seismic wave velocities generated from near surface refraction method was used to determine the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity of a competent layer that can bear structural load at the particular study site. Also, regression equations were developed in order to directly obtain the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity from the compressional wave velocities. The results obtained correlated with the results of standard geotechnical investigations carried out.

Keywords: characterize, environment, geophysical, geotechnical, regression

Procedia PDF Downloads 375
2894 GA3C for Anomalous Radiation Source Detection

Authors: Chia-Yi Liu, Bo-Bin Xiao, Wen-Bin Lin, Hsiang-Ning Wu, Liang-Hsun Huang

Abstract:

In order to reduce the risk of radiation damage that personnel may suffer during operations in the radiation environment, the use of automated guided vehicles to assist or replace on-site personnel in the radiation environment has become a key technology and has become an important trend. In this paper, we demonstrate our proof of concept for autonomous self-learning radiation source searcher in an unknown environment without a map. The research uses GPU version of Asynchronous Advantage Actor-Critic network (GA3C) of deep reinforcement learning to search for radiation sources. The searcher network, based on GA3C architecture, has self-directed learned and improved how search the anomalous radiation source by training 1 million episodes under three simulation environments. In each episode of training, the radiation source position, the radiation source intensity, starting position, are all set randomly in one simulation environment. The input for searcher network is the fused data from a 2D laser scanner and a RGB-D camera as well as the value of the radiation detector. The output actions are the linear and angular velocities. The searcher network is trained in a simulation environment to accelerate the learning process. The well-performance searcher network is deployed to the real unmanned vehicle, Dashgo E2, which mounts LIDAR of YDLIDAR G4, RGB-D camera of Intel D455, and radiation detector made by Institute of Nuclear Energy Research. In the field experiment, the unmanned vehicle is enable to search out the radiation source of the 18.5MBq Na-22 by itself and avoid obstacles simultaneously without human interference.

Keywords: deep reinforcement learning, GA3C, source searching, source detection

Procedia PDF Downloads 119
2893 A Critical Review of Assessments of Geological CO2 Storage Resources in Pennsylvania and the Surrounding Region

Authors: Levent Taylan Ozgur Yildirim, Qihao Qian, John Yilin Wang

Abstract:

A critical review of assessments of geological carbon dioxide (CO2) storage resources in Pennsylvania and the surrounding region was completed with a focus on the studies of Midwest Regional Carbon Sequestration Partnership (MRCSP), United States Department of Energy (US-DOE), and United States Geological Survey (USGS). Pennsylvania Geological Survey participated in the MRCSP Phase I research to characterize potential storage formations in Pennsylvania. The MRCSP’s volumetric method estimated ~89 gigatonnes (Gt) of total CO2 storage resources in deep saline formations, depleted oil and gas reservoirs, coals, and shales in Pennsylvania. Meanwhile, the US-DOE calculated storage efficiency factors using log-odds normal distribution and Monte Carlo sampling, revealing contingent storage resources of ~18 Gt to ~20 Gt in deep saline formations, depleted oil and gas reservoirs, and coals in Pennsylvania. Additionally, the USGS employed Beta-PERT distribution and Monte Carlo sampling to determine buoyant and residual storage efficiency factors, resulting in 20 Gt of contingent storage resources across four storage assessment units in Appalachian Basin. However, few studies have explored CO2 storage resources in shales in the region, yielding inconclusive findings. This article provides a critical and most up to date review and analysis of geological CO2 storage resources in Pennsylvania and the region.

Keywords: carbon capture and storage, geological CO2 storage, pennsylvania, appalachian basin

Procedia PDF Downloads 58
2892 Analyzing Natural and Social Resources for the Planning of Complex Development Based on Ecotourism: A Case Study from Hungary and Slovakia

Authors: Barnabás Körmöndi

Abstract:

The recent crises have affected societies worldwide, resulting in the irresponsible exploitation of natural resources and the unattainability of sustainability. Regions that are economically underdeveloped, such as the Bodrogköz in Eastern Hungary and Slovakia, experience these issues more severely. The aim of this study is to analyze the natural and social resources of the Bodrogköz area for the planning of complex development based on ecotourism. The objective is to develop ecotourism opportunities in this least developed area of the borderland of Hungary and Slovakia. The study utilizes desk research, deep interviews, focus group meetings, and remote sensing methods. Desk research is aimed at providing a comprehensive understanding of the area, while deep interviews and focus group meetings were conducted to understand the stakeholders' perspectives on the potential for ecotourism. Remote sensing methods were used to better understand changes in the natural environment. The study identified the potential for ecotourism development in the Bodrogköz area due to its near-natural habitats along its bordering rivers and rich cultural heritage. The analysis revealed that ecotourism could promote the region's sustainable development, which is essential for its economic growth. Additionally, the study identified the possible threats to the natural environment during ecotourism development and suggested strategies to mitigate these threats. This study highlights the significance of ecotourism in promoting sustainable development in underdeveloped areas such as the Bodrogköz. It provides a basis for future research on ecotourism development and sustainable planning in similar regions. The analysis is based on the data collected through desk research, deep interviews, focus group meetings, and remote sensing. The assessment was conducted through content analysis, which allowed for the identification of themes and patterns in the data. The study addressed the question of how to develop ecotourism in the least developed area of the borderland of Hungary and Slovakia and promote sustainable development in the region. In conclusion, the study highlights the potential for ecotourism development in Bodrogköz and identifies the natural and social resources that contribute to its development. The study emphasizes the need for sustainable development to promote economic growth and mitigate any environmental threats. The findings can inform the development of future strategic plans for ecotourism, promoting sustainable development in underdeveloped regions.

Keywords: ecotourism, natural resources, remote sensing, social development

Procedia PDF Downloads 68
2891 Bioremediation of Polychlorinated Biphenyl (PCBS) Contaminated Soils: A Case Study from Rietvlei Farm at Borehole No. 11, Limpopo Province, South Africa

Authors: D. Sengani, N. Potgieter, P. E. L. Mojapelo

Abstract:

Three bacteria species which comprise of Gram negative and Gram positive microorganisms were isolated and identified on the basis of morpho-cultural study, catalase tests, oxidase tests and biochemical characteristics were found belonging to different genera including Burkholderia cepacia, Pasteurella pneumotropica and Enterococcus faecalis. The main objective of this study was to isolate and identify PCB degrading bacteria from PCB contaminated soils and test them for their degradation ability of PCBs in natural habitat conditions. The results indicated an overall decrease of PCB concentration level with the gradient average ranging from 1.5 to 1.8 respectively. Enterococcus faecalis removed as much as 32% of PCBs in the contaminated soil samples. Whereas Pasteurella pneumotropica could remove 24% of PCBs, Burkholderia cepacia 21% of PCBs and the mixed culture removed 23%. Data showed that the three bacterial strains could tolerate high concentration of PCBs. The results provided the evidence that naturally occurring bacteria in soil contaminated with PCBs have the potential to degrade PCBs. Statistical analysis showed that there was a significant positive correlation between bacteria growth and treatment with a coefficient of (r) =0.1459 and p value < 0.001.

Keywords: bacteria, bioaccumulation, biodegradation, bioremediation, polychlorinated biphenyls

Procedia PDF Downloads 245
2890 Carbonate Crusts in Jordan: Records of Groundwater Flow, Carbon Fluxes, Tectonic Movement and Climate Change

Authors: Nizar Abu-Jaber

Abstract:

Late Pleistocene and Holocene carbonate crusts in the south of Jordan were studied using a combination of field documentation, petrography, geochemical and isotopic techniques. These surficial crusts and vein deposits appear to have formed as a result of interaction between near-surface groundwater, surficial soil and sediments and rising carbon dioxide. Rising mantle CO2 dissolves in the water to create carbonic acid, which in turn dissolves the calcite in the soil in the sediments. When the pH rises later due to degassing, the carbonate crusts are left in the places where the water was flowing in veins, channels and interfaces between high and low permeability materials. The crusts have the potential for being important records of natural and human agencies on the landscape of the area. They reflect the isotopic composition of the waters in which they precipitated in, and also contain isotopic information about the aeolian calcium fluxes affecting the area (using strontium isotopes). Moreover, changing stream valley base levels can be identified and measured, which can help quantify the rates of tectonic movement. Finally, human activities such and channel construction and terrace building can be identified and traced temporally and spatially using these deposits.

Keywords: anthropogenic change, carbonate crusts, environmental change, Jordan

Procedia PDF Downloads 282
2889 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation

Procedia PDF Downloads 138
2888 Innovative Preparation Techniques: Boosting Oral Bioavailability of Phenylbutyric Acid Through Choline Salt-Based API-Ionic Liquids and Therapeutic Deep Eutectic Systems

Authors: Lin Po-Hsi, Sheu Ming-Thau

Abstract:

Urea cycle disorders (UCD) are rare genetic metabolic disorders that compromise the body's urea cycle. Sodium phenylbutyrate (SPB) is a medication commonly administered in tablet or powder form to lower ammonia levels. Nonetheless, its high sodium content poses risks to sodium-sensitive UCD patients. This necessitates the creation of an alternative drug formulation to mitigate sodium load and optimize drug delivery for UCD patients. This study focused on crafting a novel oral drug formulation for UCD, leveraging choline bicarbonate and phenylbutyric acid. The active pharmaceutical ingredient-ionic liquids (API-ILs) and therapeutic deep eutectic systems (THEDES) were formed by combining these with choline chloride. These systems display characteristics like maintaining a liquid state at room temperature and exhibiting enhanced solubility. This in turn amplifies drug dissolution rate, permeability, and ultimately oral bioavailability. Incorporating choline-based phenylbutyric acid as a substitute for traditional SPB can effectively curtail the sodium load in UCD patients. Our in vitro dissolution experiments revealed that the ILs and DESs, synthesized using choline bicarbonate and choline chloride with phenylbutyric acid, surpassed commercial tablets in dissolution speed. Pharmacokinetic evaluations in SD rats indicated a notable uptick in the oral bioavailability of phenylbutyric acid, underscoring the efficacy of choline salt ILs in augmenting its bioavailability. Additional in vitro intestinal permeability tests on SD rats authenticated that the ILs, formulated with choline bicarbonate and phenylbutyric acid, demonstrate superior permeability compared to their sodium and acid counterparts. To conclude, choline salt ILs developed from choline bicarbonate and phenylbutyric acid present a promising avenue for UCD treatment, with the added benefit of reduced sodium load. They also hold merit in formulation engineering. The sustained-release capabilities of DESs position them favorably for drug delivery, while the low toxicity and cost-effectiveness of choline chloride signal potential in formulation engineering. Overall, this drug formulation heralds a prospective therapeutic avenue for UCD patients.

Keywords: phenylbutyric acid, sodium phenylbutyrate, choline salt, ionic liquids, deep eutectic systems, oral bioavailability

Procedia PDF Downloads 121
2887 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records

Authors: Sara ElElimy, Samir Moustafa

Abstract:

Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).

Keywords: big data analytics, machine learning, CDRs, 5G

Procedia PDF Downloads 143