Search results for: building energy simulations
10924 Numerical and Experimental Study on Bed-Wall Heat Transfer in Conical Fluidized Bed Combustor
Authors: Ik–Tae Im, H. M. Abdelmotalib, M. A. Youssef, S. B. Young
Abstract:
In this study the flow characteristics and bed-to-wall heat transfer in a gas-solid conical fluidized bed combustor were investigated using both experimental and numerical methods. The computational fluid dynamic (CFD) simulations were carried out using a commercial software, Fluent V6.3. A two-fluid Eulerian-Eulerian model was applied in order to simulate the gas–solid flow and heat transfer in a conical sand-air bed with 30o con angle and 22 cm static bed height. Effect of different fluidizing number varying in the range of 1.5 - 2.3, drag models namely (Syamlal-O’Brien and Gidaspow), and friction viscosity on flow and bed-to-wall heat transfer were analyzed. Both bed pressure drop and heat transfer coefficient increased with increasing inlet gas velocity. The Gidaspow drag model showed a better agreement with experimental results than other drag model. The friction viscosity had no clear effect on both hydrodynamics and heat transfer.Keywords: computational fluid dynamics, heat transfer coefficient, hydrodynamics, renewable energy
Procedia PDF Downloads 41510923 Structure of Turbulence Flow in the Wire-Wrappes Fuel Assemblies of BREST-OD-300
Authors: Dmitry V. Fomichev, Vladimir I. Solonin
Abstract:
In this paper, experimental and numerical study of hydrodynamic characteristics of the air coolant flow in the test wire-wrapped assembly is presented. The test assembly has 37 rods, which are similar to the real fuel pins of the BREST-OD-300 fuel assemblies geometrically. Air open loop test facility installed at the “Nuclear Power Plants and Installations” department of BMSTU was used to obtain the experimental data. The obtaining altitudinal distribution of static pressure in the near-wall test assembly as well as velocity and temperature distribution of coolant flow in the test sections can give us some new knowledge about the mechanism of formation of the turbulence flow structure in the wire wrapped fuel assemblies. Numerical simulations of the turbulence flow has been accomplished using ANSYS Fluent 14.5. Different non-local turbulence models have been considered, such as standard and RNG k-e models and k-w SST model. Results of numerical simulations of the flow based on the considered turbulence models give the best agreement with the experimental data and help us to carry out strong analysis of flow characteristics.Keywords: wire-spaces fuel assembly, turbulent flow structure, computation fluid dynamics
Procedia PDF Downloads 45910922 Numerical Investigation of Cold Formed C-Section-Purlins with Different Opening Shapes
Authors: Mohamed M. El-heweity, Ahmed Shamel Fahmy, Mostafa Shawky, Ahmed Sherif
Abstract:
Cold-formed steel (CFS) lipped channel sections are popular as load-bearing members in building structures. These sections are used in the construction industry because of their high strength-to-weight ratio, lightweight, quick production, and ease of construction, fabrication, transportation, and handling. When those cold formed sections with high slenderness ratios are subjected to compression bending, they do not reach failure when reaching their ultimate bending stress, however, they sustain much higher loads due stress re-distribution. Hence, there is a need to study the sectional nominal capacity of CFS lipped channel beams with different web openings subjected to pure bending and uniformly distributed loads. By using finite element (FE) simulations using ANSYS APDL for numerical analysis. The results were verified and compared to previous experimental results. Then a parametric study was conducted and validated FE model to investigate the effect of different openings shapes on their nominal capacities. The results have revealed that CFS sections with hexagonal openings and intermediate notch can resist higher nominal capacities when compared to other sectional openings.Keywords: cold-formed steel, nominal capacity, finite element, lipped channel beam, numerical study, web opening
Procedia PDF Downloads 9710921 Trial Version of a Systematic Material Selection Tool in Building Element Design
Authors: Mine Koyaz, M. Cem Altun
Abstract:
Selection of the materials satisfying the expected performances is significantly important for any design. Today, with the constantly evolving and developing technologies, the material options are so wide that the necessity of the use of some support tools in the selection process is arising. Therefore, as a sub process of building element design, a systematic material selection tool is developed, that defines four main steps of the material selection; definition, research, comparison and decision. The main purpose of the tool is being an educational instrument that would show a methodic way of material selection in architectural detailing for the use of architecture students. The tool predefines the possible uses of various material databases and other sources of information on material properties. Hence, it is to be used as a guidance for designers, especially with a limited material knowledge and experience. The material selection tool not only embraces technical properties of materials related with building elements’ functional requirements, but also its sensual properties related with the identity of design and its environmental impacts with respect to the sustainability of the design. The method followed in the development of the tool has two main sections; first the examination and application of the existing methods and second the development of trial versions and their applications. Within the scope of the existing methods; design support tools, methodic approaches for the building element design and material selection process, material properties, material databases, methodic approaches for the decision making process are examined. The existing methods are applied by architecture students and newly graduate architects through different design problems. With respect to the results of these applications, strong and weak sides of the existing material selection tools are presented. A main flow chart of the material selection tool has been developed with the objective to apply the strong aspects of the existing methods and develop their weak sides. Through different stages, a different aspect of the material selection process is investigated and the tool took its final form. Systematic material selection tool, within the building element design process, guides the users with a minimum background information, to practically and accurately determine the ideal material that is to be chosen, satisfying the needs of their design. The tool has a flexible structure that answers different needs of different designs and designers. The trial version issued in this paper shows one of the paths that could be followed and illustrates its application over a design problem.Keywords: architectural education, building element design, material selection tool, systematic approach
Procedia PDF Downloads 35210920 Resident-Aware Green Home
Authors: Ahlam Elkilani, Bayan Elsheikh Ali, Rasha Abu Romman, Amjed Al-mousa, Belal Sababha
Abstract:
The amount of energy the world uses doubles every 20 years. Green homes play an important role in reducing the residential energy demand. This paper presents a platform that is intended to learn the behavior of home residents and build a profile about their habits and actions. The proposed resident aware home controller intervenes in the operation of home appliances in order to save energy without compromising the convenience of the residents. The presented platform can be used to simulate the actions and movements happening inside a home. The paper includes several optimization techniques that are meant to save energy in the home. In addition, several test scenarios are presented that show how the controller works. Moreover, this paper shows the computed actual savings when each of the presented techniques is implemented in a typical home. The test scenarios have validated that the techniques developed are capable of effectively saving energy at homes.Keywords: green home, resident aware, resident profile, activity learning, machine learning
Procedia PDF Downloads 38910919 Renewable Energy Trends Analysis: A Patents Study
Authors: Sepulveda Juan
Abstract:
This article explains the elements and considerations taken into account when implementing and applying patent evaluation and scientometric study in the identifications of technology trends, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.Keywords: patents, scientometric, renewable energy, technology maps
Procedia PDF Downloads 30810918 An Exploratory Study to Appraise the Current Challenges and Limitations Faced in Applying and Integrating the Historic Building Information Modelling Concept for the Management of Historic Buildings
Authors: Oluwatosin Adewale
Abstract:
The sustainability of built heritage has become a relevant issue in recent years due to the social and economic values associated with these buildings. Heritage buildings provide a means for human perception of culture and represent a legacy of long-existing history; they define the local character of the social world and provide a vital connection to the past with their associated aesthetical and communal benefits. The identified values of heritage buildings have increased the importance of conservation and the lifecycle management of these buildings. The recent developments of digital design technology in engineering and the built environment have led to the adoption of Building Information Modelling (BIM) by the Architecture, Engineering, Construction, and Operations (AECO) industry. BIM provides a platform for the lifecycle management of a construction project through effective collaboration among stakeholders and the analysis of a digital information model. This growth in digital design technology has also made its way into the field of architectural heritage management in the form of Historic Building Information Modelling (HBIM). A reverse engineering process for digital documentation of heritage assets that draws upon similar information management processes as the BIM process. However, despite the several scientific and technical contributions made to the development of the HBIM process, it doesn't remain easy to integrate at the most practical level of heritage asset management. The main objective identified under the scope of the study is to review the limitations and challenges faced by heritage management professionals in adopting an HBIM-based asset management procedure for historic building projects. This paper uses an exploratory study in the form of semi-structured interviews to investigate the research problem. A purposive sample of heritage industry experts and professionals were selected to take part in a semi-structured interview to appraise some of the limitations and challenges they have faced with the integration of HBIM into their project workflows. The findings from this study will present the challenges and limitations faced in applying and integrating the HBIM concept for the management of historic buildings.Keywords: building information modelling, built heritage, heritage asset management, historic building information modelling, lifecycle management
Procedia PDF Downloads 9810917 Mathematical Modeling Pressure Losses of Trapezoidal Labyrinth Channel and Bi-Objective Optimization of the Design Parameters
Authors: Nina Philipova
Abstract:
The influence of the geometric parameters of trapezoidal labyrinth channel on the pressure losses along the labyrinth length is investigated in this work. The impact of the dentate height is studied at fixed values of the dentate angle and the dentate spacing. The objective of the work presented in this paper is to derive a mathematical model of the pressure losses along the labyrinth length depending on the dentate height. The numerical simulations of the water flow movement are performed by using Commercial codes ANSYS GAMBIT and FLUENT. Dripper inlet pressure is set up to be 1 bar. As a result, the mathematical model of the pressure losses is determined as a second-order polynomial by means Commercial code STATISTIKA. Bi-objective optimization is performed by using the mean algebraic function of utility. The optimum value of the dentate height is defined at fixed values of the dentate angle and the dentate spacing. The derived model of the pressure losses and the optimum value of the dentate height are used as a basis for a more successful emitter design.Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model
Procedia PDF Downloads 15410916 Performance Study of Scraped Surface Heat Exchanger with Helical Ribbons
Abstract:
In this work, numerical simulations were carried out using a specific CFD code in order to study the performance of an innovative Scraped Surface Heat Exchanger (SSHE) with helical ribbons for Bingham fluids (threshold fluids). The resolution of three-dimensional form of the conservation equations (continuity, momentum and energy equations) was carried out basing on the finite volume method (FVM). After studying the effect of dimensionless numbers (axial Reynolds, rotational Reynolds and Oldroyd numbers) on the hydrodynamic and thermal behaviors within SSHE, a parametric study was developed, by varying the width of the helical ribbon, the clearance between the stator wall and the tip of the ribbon and the number of turns of the helical ribbon, in order to improve the heat transfer inside the exchanger. The effect of these geometrical numbers on the hydrodynamic and thermal behaviors was discussed.Keywords: heat transfer, helical ribbons, hydrodynamic behavior, parametric study, SSHE, thermal behavior
Procedia PDF Downloads 21410915 Preparation and Visible Light Photoactivity of N-Doped ZnO/ZnS Photocatalysts
Authors: Nuray Güy, Mahmut Özacar
Abstract:
Semiconductor nanoparticles such as TiO₂ and ZnO as photocatalysts are very efficient catalysts for wastewater treatment by the chemical utilization of light energy, which is capable of converting the toxic and nonbiodegradable organic compounds into carbon dioxide and mineral acids. ZnO semiconductor has a wide bandgap energy of 3.37 eV and a relatively large exciton binding Energy (60 meV), thus can absorb only UV light with the wavelength equal to or less than 385 nm. It exhibits low efficiency under visible light illumination due to its wide band gap energy. In order to improve photocatalytic activity of ZnO under visible light, band gap of ZnO may be narrowed by doping such as N, C, S nonmetal ions and coupled two separate semiconductors possessing different energy levels for their corresponding conduction and valence bands. ZnS has a wider band gap (Eg=3.7 eV) than ZnO and generates electron–hole pairs by photoexcitation rapidly. In the present work, N doped ZnO/ZnS nano photocatalysts with visible-light response were synthesized by microwave-hydrothermal method using thiourea as N source. The prepared photocatalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible (UV–vis). The photocatalytic activities samples and undoped ZnO have been studied for the degradation of dye, and have also been compared with together.Keywords: photocatalyst, synthesis, visible light, ZnO/ZnS
Procedia PDF Downloads 28110914 A Techno-Economic Evaluation of Bio Fuel Production from Waste of Starting Dates in South Algeria
Authors: Insaf Mehani, Bachir Bouchekima
Abstract:
The necessary reduction and progressive consumption of fossil fuels, whose scarcity is inevitable, involves mobilizing a set of alternatives.Renewable energy, including bio energy are an alternative to fossil fuel depletion and a way to fight against the harmful effects of climate change. It is possible to develop common dates of low commercial value, and put on the local and international market a new generation of products with high added values such as bio ethanol. Besides its use in chemical synthesis, bio ethanol can be blended with gasoline to produce a clean fuel while improving the octane.Keywords: bioenergy, dates, bioethanol, renewable energy, south Algeria
Procedia PDF Downloads 48910913 Simulation Analysis and Control of the Temperature Field in an Induction Furnace Based on Various Parameters
Authors: Sohaibullah Zarghoon, Syed Yousaf, Cyril Belavy, Stanislav Duris, Samuel Emebu, Radek Matusu
Abstract:
Induction heating is extensively employed in industrial furnaces due to its swift response and high energy efficiency. Designing and optimising these furnaces necessitates the use of computer-aided simulations. This study aims to develop an accurate temperature field model for a rectangular steel billet in an induction furnace by leveraging various parameters in COMSOL Multiphysics software. The simulation analysis incorporated temperature dynamics, considering skin depth, temperature-dependent, and constant parameters of the steel billet. The resulting data-driven model was transformed into a state-space model using MATLAB's System Identification Toolbox for the purpose of designing a linear quadratic regulator (LQR). This controller was successfully implemented to regulate the core temperature of the billet from 1000°C to 1200°C, utilizing the distributed parameter system circuit.Keywords: induction heating, LQR controller, skin depth, temperature field
Procedia PDF Downloads 4110912 Effects of Convective Momentum Transport on the Cyclones Intensity: A Case Study
Authors: José Davi Oliveira De Moura, Chou Sin Chan
Abstract:
In this study, the effect of convective momentum transport (CMT) on the life of cyclone systems and their organization is analyzed. A case of strong precipitation, in the southeast of Brazil, was simulated using Eta model with two kinds of convective parameterization: Kain-Fritsch without CMT and Kain-fritsch with CMT. Reanalysis data from CFSR were used to compare Eta model simulations. The Wind, mean sea level pressure, rain and temperature are included in analysis. The rain was evaluated by Equitable Threat Score (ETS) and Bias Index; the simulations were compared among themselves to detect the influence of CMT displacement on the systems. The result shows that CMT process decreases the intensity of meso cyclones (higher pressure values on nuclei) and change the positions and production of rain. The decrease of intensity in meso cyclones should be caused by the dissolution of momentum from lower levels from up levels. The rain production and rain distribution were altered because the displacement of the larger systems scales was changed. In addition, the inclusion of CMT process is very important to improve the simulation of life time of meteorological systems.Keywords: convection, Kain-Fritsch, momentum, parameterization
Procedia PDF Downloads 32510911 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand
Authors: Napat Watjanatepin, Wikorn Wong-Satiean
Abstract:
The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.Keywords: PV-Wind hybrid autonomous system, greenhouse plantation, fogging system, central part of Thailand
Procedia PDF Downloads 31410910 Regularized Euler Equations for Incompressible Two-Phase Flow Simulations
Authors: Teng Li, Kamran Mohseni
Abstract:
This paper presents an inviscid regularization technique for the incompressible two-phase flow simulations. This technique is known as observable method due to the understanding of observability that any feature smaller than the actual resolution (physical or numerical), i.e., the size of wire in hotwire anemometry or the grid size in numerical simulations, is not able to be captured or observed. Differ from most regularization techniques that applies on the numerical discretization, the observable method is employed at PDE level during the derivation of equations. Difficulties in the simulation and analysis of realistic fluid flow often result from discontinuities (or near-discontinuities) in the calculated fluid properties or state. Accurately capturing these discontinuities is especially crucial when simulating flows involving shocks, turbulence or sharp interfaces. Over the past several years, the properties of this new regularization technique have been investigated that show the capability of simultaneously regularizing shocks and turbulence. The observable method has been performed on the direct numerical simulations of shocks and turbulence where the discontinuities are successfully regularized and flow features are well captured. In the current paper, the observable method will be extended to two-phase interfacial flows. Multiphase flows share the similar features with shocks and turbulence that is the nonlinear irregularity caused by the nonlinear terms in the governing equations, namely, Euler equations. In the direct numerical simulation of two-phase flows, the interfaces are usually treated as the smooth transition of the properties from one fluid phase to the other. However, in high Reynolds number or low viscosity flows, the nonlinear terms will generate smaller scales which will sharpen the interface, causing discontinuities. Many numerical methods for two-phase flows fail at high Reynolds number case while some others depend on the numerical diffusion from spatial discretization. The observable method regularizes this nonlinear mechanism by filtering the convective terms and this process is inviscid. The filtering effect is controlled by an observable scale which is usually about a grid length. Single rising bubble and Rayleigh-Taylor instability are studied, in particular, to examine the performance of the observable method. A pseudo-spectral method is used for spatial discretization which will not introduce numerical diffusion, and a Total Variation Diminishing (TVD) Runge Kutta method is applied for time integration. The observable incompressible Euler equations are solved for these two problems. In rising bubble problem, the terminal velocity and shape of the bubble are particularly examined and compared with experiments and other numerical results. In the Rayleigh-Taylor instability, the shape of the interface are studied for different observable scale and the spike and bubble velocities, as well as positions (under a proper observable scale), are compared with other simulation results. The results indicate that this regularization technique can potentially regularize the sharp interface in the two-phase flow simulationsKeywords: Euler equations, incompressible flow simulation, inviscid regularization technique, two-phase flow
Procedia PDF Downloads 50210909 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring
Authors: Ebrahim Farahmand, Ali Mahani
Abstract:
Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.Keywords: WSN, healthcare monitoring, weighted based clustering, lifetime
Procedia PDF Downloads 30910908 Trajectory Tracking Control for Quadrotor Helicopter by Controlled Lagrangian Method
Abstract:
A nonlinear trajectory tracking controller for quadrotor helicopter based on controlled Lagrangian (CL) method is proposed in this paper. A Lagrangian system with virtual angles as generated coordinates rather than Euler angles is developed. Based on the model, the matching conditions presented by nonlinear partial differential equations are simplified and explicitly solved. Smooth tracking control laws and the range of control parameters are deduced based on the controlled energy of closed-loop system. Besides, a constraint condition for reference accelerations is deduced to identify the trackable reference trajectories by the proposed controller and to ensure the stability of the closed-loop system. The proposed method in this paper does not rely on the division of the quadrotor system, and the design of the control torques does not depend on the thrust as in backstepping or hierarchical control method. Simulations for a quadrotor model demonstrate the feasibility and efficiency of the theoretical results.Keywords: quadrotor, trajectory tracking control, controlled lagrangians, underactuated system
Procedia PDF Downloads 12010907 The Impacts of Internal Employees on Brand Building: A Case Study of Cell Phone
Authors: Adnan Gohar
Abstract:
This research work aims the importance of internal employees in the making of a brand (cell phone) through customer satisfaction which basically explains the connection of internal employees with external customers. This research is designed to measure the satisfaction level of internal employees which further connects to the product evolution as a brand leaving a brand image in the eye of the external customer. The main focus is that internal employees are as important as external customers for the uplift of the product resulting in the brand. Internal employees are individual organization employees, vendors, departments, and distributors.Keywords: brand building, customer satisfaction, internal employees, mobile franchise
Procedia PDF Downloads 25710906 Numerical Modeling of Wave Run-Up in Shallow Water Flows Using Moving Wet/Dry Interfaces
Authors: Alia Alghosoun, Michael Herty, Mohammed Seaid
Abstract:
We present a new class of numerical techniques to solve shallow water flows over dry areas including run-up. Many recent investigations on wave run-up in coastal areas are based on the well-known shallow water equations. Numerical simulations have also performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of coastal areas. In all these simulations the shallow water equations are solved in entire domain including dry areas and special treatments are used for numerical solution of singularities at these dry regions. In the present study we propose a new method to deal with these difficulties by reformulating the shallow water equations into a new system to be solved only in the wetted domain. The system is obtained by a change in the coordinates leading to a set of equations in a moving domain for which the wet/dry interface is the reconstructed using the wave speed. To solve the new system we present a finite volume method of Lax-Friedrich type along with a modified method of characteristics. The method is well-balanced and accurately resolves dam-break problems over dry areas.Keywords: dam-break problems, finite volume method, run-up waves, shallow water flows, wet/dry interfaces
Procedia PDF Downloads 14510905 Maintenance Management Practice for Building
Authors: Harold Jideofor Nnachetam
Abstract:
Maintenance management in Nigeria Polytechnic faced many issues due to poor service delivery, inadequate finance, and poor maintenance plan and maintenance backlogs. The purpose of this study is to improve the conventional method practices which tend to be ineffective in Nigeria Polytechnic. The case study was conducted with eight Polytechnics in Nigeria. The selected Polytechnic is based on conventional method practices and its major problems, attempt to implement computerized technology and the willingness of staff to share their experiences. All feedbacks from respondents through semi-structured interview were recorded using video camera and transcribed verbatim. The overall findings of this research indicated; poor service delivery, inadequate financial, poor maintenance planning and maintenance backlogs. There is also need to overcome less man power competencies of maintenance management practices which existed with all eight Polytechnics. In addition, the study also found that the Polytechnics still use conventional maintenance management processes in managing building facility condition. As a result, the maintenance management staff was not able to improve the maintenance management performance at the Polytechnics. The findings are intended to be used for maintenance management practices at Nigeria Polytechnics in order to provide high-quality of building facility with safe and healthy environments.Keywords: maintenance management, conventional method, maintenance management system, Nigeria polytechnic
Procedia PDF Downloads 32210904 Geothermal Resources to Ensure Energy Security During Climate Change
Authors: Debasmita Misra, Arthur Nash
Abstract:
Energy security and sufficiency enables the economic development and welfare of a nation or a society. Currently, the global energy system is dominated by fossil fuels, which is a non-renewable energy resource, which renders vulnerability to energy security. Hence, many nations have begun augmenting their energy system with renewable energy resources, such as solar, wind, biomass and hydro. However, with climate change, how sustainable are some of the renewable energy resources in the future is a matter of concern. Geothermal energy resources have been underexplored or underexploited in global renewable energy production and security, although it is gaining attractiveness as a renewable energy resource. The question is, whether geothermal energy resources are more sustainable than other renewable energy resources. High-temperature reservoirs (> 220 °F) can produce electricity from flash/dry steam plants as well as binary cycle production facilities. Most of the world’s high enthalpy geothermal resources are within the seismo-tectonic belt. However, exploration for geothermal energy is of great importance in conventional geothermal systems in order to improve its economic viability. In recent years, there has been an increase in the use and development of several exploration methods for geo-thermal resources, such as seismic or electromagnetic methods. The thermal infrared band of the Landsat can reflect land surface temperature difference, so the ETM+ data with specific grey stretch enhancement has been used to explore underground heat water. Another way of exploring for potential power is utilizing fairway play analysis for sites without surface expression and in rift zones. Utilizing this type of analysis can improve the success rate of project development by reducing exploration costs. Identifying the basin distribution of geologic factors that control the geothermal environment would help in identifying the control of resource concentration aside from the heat flow, thus improving the probability of success. The first step is compiling existing geophysical data. This leads to constructing conceptual models of potential geothermal concentrations which can then be utilized in creating a geodatabase to analyze risk maps. Geospatial analysis and other GIS tools can be used in such efforts to produce spatial distribution maps. The goal of this paper is to discuss how climate change may impact renewable energy resources and how could a synthesized analysis be developed for geothermal resources to ensure sustainable and cost effective exploitation of the resource.Keywords: exploration, geothermal, renewable energy, sustainable
Procedia PDF Downloads 15410903 Economic Analysis of Domestic Combined Heat and Power System in the UK
Authors: Thamo Sutharssan, Diogo Montalvao, Wen-Chung Wang, Yong Chen, Claudia Pisac
Abstract:
A combined heat and power (CHP) system is an efficient and clean way to generate power (electricity). Heat produced by the CHP system can be used for water and space heating. The CHP system which uses hydrogen as fuel produces zero carbon emission. Its’ efficiency can reach more than 80% whereas that of a traditional power station can only reach up to 50% because much of the thermal energy is wasted. The other advantages of CHP systems include that they can decentralize energy generation, improve energy security and sustainability, and significantly reduce the energy cost to the users. This paper presents the economic benefits of using a CHP system in the domestic environment. For this analysis, natural gas is considered as potential fuel as the hydrogen fuel cell based CHP systems are rarely used. UK government incentives for CHP systems are also considered as the added benefit. Results show that CHP requires a significant initial investment in return it can reduce the annual energy bill significantly. Results show that an investment may be paid back in 7 years. After the back period, CHP can run for about 3 years as most of the CHP manufacturers provide 10-year warranty.Keywords: combined heat and power, clean energy, hydrogen fuel cell, economic analysis of CHP, zero emission
Procedia PDF Downloads 38510902 Exact Energy Spectrum and Expectation Values of the Inverse Square Root Potential Model
Authors: Benedict Ita, Peter Okoi
Abstract:
In this work, the concept of the extended Nikiforov-Uvarov technique is discussed and employed to obtain the exact bound state energy eigenvalues and the corresponding normalized eigenfunctions of the inverse square root potential. With expressions for the exact energy eigenvalues and corresponding eigenfunctions, the expressions for the expectation values of the inverse separation-squared, kinetic energy, and the momentum-squared of the potential are presented using the Hellmann Feynman theorem. For visualization, algorithms written and implemented in Python language are used to generate tables and plots for l-states of the energy eigenvalues and some expectation values. The results obtained here may find suitable applications in areas like atomic and molecular physics, chemical physics, nuclear physics, and solid-state physics.Keywords: Schrodinger equation, Nikoforov-Uvarov method, inverse square root potential, diatomic molecules, Python programming, Hellmann-Feynman theorem, second order differential equation, matrix algebra
Procedia PDF Downloads 1910901 Life Cycle Assessment of an Onshore Wind Turbine in Kuwait
Authors: Badriya Almutairi, Ashraf El-Hamalawi
Abstract:
Wind energy technologies are considered to be among the most promising types of renewable energy sources due to the growing concerns over climate change and energy security. Kuwait is amongst the countries that began realising the consequences of climate change and the long-term economic and energy security situation, considering options when oil runs out. Added to this are the fluctuating oil prices, rapid increase in population, high electricity consumption and protection of the environment It began to make efforts in the direction of greener solutions for energy needs by looking for alternative forms of energy and assessing potential renewable energy resources, including wind and solar. The aim of this paper is to examine wind energy as an alternative renewable energy source in Kuwait, due to its availability and low cost, reducing the dependency on fossil fuels compared to other forms of renewable energy. This paper will present a life cycle assessment of onshore wind turbine systems in Kuwait, comprising 4 stages; goal and scope of the analysis, inventory analysis, impact assessment and interpretation of the results. It will also provide an assessment of potential renewable energy resources and technologies applied for power generation and the environmental benefits for Kuwait. An optimum location for a site (Shagaya) will be recommended for reasons such as high wind speeds, land availability and distance to the next grid connection, and be the focus of this study. The potential environmental impacts and resources used throughout the wind turbine system’s life-cycle are then analysed using a Life Cycle Assessment (LCA). The results show the total carbon dioxide (CO₂) emission for a turbine with steel pile foundations is greater than emissions from a turbine with concrete foundations by 18 %. The analysis also shows the average CO₂ emissions from electricity generated using crude oil is 645gCO₂/kWh and the carbon footprint per functional unit for a wind turbine ranges between 6.6 g/kWh to 10 g/kWh, an increase of 98%, thus providing cost and environmental benefits by creating a wind farm in Kuwait. Using a cost-benefit analysis, it was also found that the electricity produced from wind energy in Kuwait would cost 17.6fils/kWh (0.05834 $/kWh), which is less than the cost of electricity currently being produced using conventional methods at 22 fils/kW (0.07$/kWh), i.e., a reduction of 20%.Keywords: CO₂ emissions, Kuwait, life cycle assessment, renewable energy, wind energy
Procedia PDF Downloads 30510900 Preliminary Study of the Cost-Effectiveness of Green Walls: Analyzing Cases from the Perspective of Life Cycle
Authors: Jyun-Huei Huang, Ting-I Lee
Abstract:
Urban heat island effect is derived from the reduction of vegetative cover by urban development. Because plants can improve air quality and microclimate, green walls have been applied as a sustainable design approach to cool building temperature. By using plants to green vertical surfaces, they decrease room temperature and, as a result, decrease the energy use for air conditioning. Based on their structures, green walls can be divided into two categories, green façades and living walls. A green façade uses the climbing ability of a plant itself, while a living wall assembles planter modules. The latter one is widely adopted in public space, as it is time-effective and less limited. Although a living wall saves energy spent on cooling, it is not necessarily cost-effective from the perspective of a lifecycle analysis. The Italian study shows that the overall benefit of a living wall is only greater than its costs after 47 years of its establishment. In Taiwan, urban greening policies encourage establishment of green walls by referring to their benefits of energy saving while neglecting their low performance on cost-effectiveness. Thus, this research aims at understanding the perception of appliers and consumers on the cost-effectiveness of their living wall products from the lifecycle viewpoint. It adopts semi-structured interviews and field observations on the maintenance of the products. By comparing the two results, it generates insights for sustainable urban greening policies. The preliminary finding shows that stakeholders do not have a holistic sense of lifecycle or cost-effectiveness. Most importantly, a living wall well maintained is often with high input due to the availability of its maintenance budget, and thus less sustainable. In conclusion, without a comprehensive sense of cost-effectiveness throughout a product’s lifecycle, it is very difficult for suppliers and consumers to maintain a living wall system while achieve sustainability.Keywords: case study, maintenance, post-occupancy evaluation, vertical greening
Procedia PDF Downloads 26510899 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 3110898 Visualization of Energy Waves via Airy Functions in Time-Domain
Authors: E. Sener, O. Isik, E. Eroglu, U. Sahin
Abstract:
The main idea is to solve the system of Maxwell’s equations in accordance with the causality principle to get the energy quantities via Airy functions in a hollow rectangular waveguide. We used the evolutionary approach to electromagnetics that is an analytical time-domain method. The boundary-value problem for the system of Maxwell’s equations is reformulated in transverse and longitudinal coordinates. A self-adjoint operator is obtained and the complete set of Eigen vectors of the operator initiates an orthonormal basis of the solution space. Hence, the sought electromagnetic field can be presented in terms of this basis. Within the presentation, the scalar coefficients are governed by Klein-Gordon equation. Ultimately, in this study, time-domain waveguide problem is solved analytically in accordance with the causality principle. Moreover, the graphical results are visualized for the case when the energy and surplus of the energy for the time-domain waveguide modes are represented via airy functions.Keywords: airy functions, Klein-Gordon Equation, Maxwell’s equations, Surplus of energy, wave boundary operators
Procedia PDF Downloads 37110897 High Electrochemical Performance of Electrode Material Based On Mesoporous RGO@(Co,Mn)3O4 Nanocomposites
Authors: Charmaine Lamiel, Van Hoa Nguyen, Deivasigamani Ranjith Kumar, Jae-Jin Shim
Abstract:
The quest for alternative sources of energy storage had led to the exploration on supercapacitors. Hybrid supercapacitors, a combination of carbon-based material and transition metals, had yielded long and improved cycle life as well as high energy and power densities. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an active electrode material. The advantages of this method include the non-use of reducing agents and acidic medium, and no further post-heat treatment. Additionally, it offers shorter reaction time at low temperature and low power requirement, which allows low fabrication and energy cost. The as-prepared electrode material demonstrated a high capacitance of 953 F•g−1 at 1 A•g−1 in a 6 M KOH electrolyte. Furthermore, the electrode exhibited a high energy density of 76.2 Wh•kg−1 (power density of 720 W•kg−1) and a high power density of 7200 W•kg−1 (energy density of 38 Wh•kg−1). The successful synthesis was considered to be efficient and cost-effective, with very promising electrochemical performance that can be used as an active material in supercapacitors.Keywords: cobalt manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor
Procedia PDF Downloads 35810896 Numerical Simulation of the Production of Ceramic Pigments Using Microwave Radiation: An Energy Efficiency Study Towards the Decarbonization of the Pigment Sector
Authors: Pedro A. V. Ramos, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
Global warming mitigation is one of the main challenges of this century, having the net balance of greenhouse gas (GHG) emissions to be null or negative in 2050. Industry electrification is one of the main paths to achieving carbon neutrality within the goals of the Paris Agreement. Microwave heating is becoming a popular industrial heating mechanism due to the absence of direct GHG emissions, but also the rapid, volumetric, and efficient heating. In the present study, a mathematical model is used to simulate the production using microwave heating of two ceramic pigments, at high temperatures (above 1200 Celsius degrees). The two pigments studied were the yellow (Pr, Zr)SiO₂ and the brown (Ti, Sb, Cr)O₂. The chemical conversion of reactants into products was included in the model by using the kinetic triplet obtained with the model-fitting method and experimental data present in the Literature. The coupling between the electromagnetic, thermal, and chemical interfaces was also included. The simulations were computed in COMSOL Multiphysics. The geometry includes a moving plunger to allow for the cavity impedance matching and thus maximize the electromagnetic efficiency. To accomplish this goal, a MATLAB controller was developed to automatically search the position of the moving plunger that guarantees the maximum efficiency. The power is automatically and permanently adjusted during the transient simulation to impose stationary regime and total conversion, the two requisites of every converged solution. Both 2D and 3D geometries were used and a parametric study regarding the axial bed velocity and the heat transfer coefficient at the boundaries was performed. Moreover, a Verification and Validation study was carried out by comparing the conversion profiles obtained numerically with the experimental data available in the Literature; the numerical uncertainty was also estimated to attest to the result's reliability. The results show that the model-fitting method employed in this work is a suitable tool to predict the chemical conversion of reactants into the pigment, showing excellent agreement between the numerical results and the experimental data. Moreover, it was demonstrated that higher velocities lead to higher thermal efficiencies and thus lower energy consumption during the process. This work concludes that the electromagnetic heating of materials having high loss tangent and low thermal conductivity, like ceramic materials, maybe a challenge due to the presence of hot spots, which may jeopardize the product quality or even the experimental apparatus. The MATLAB controller increased the electromagnetic efficiency by 25% and global efficiency of 54% was obtained for the titanate brown pigment. This work shows that electromagnetic heating will be a key technology in the decarbonization of the ceramic sector as reductions up to 98% in the specific GHG emissions were obtained when compared to the conventional process. Furthermore, numerical simulations appear as a suitable technique to be used in the design and optimization of microwave applicators, showing high agreement with experimental data.Keywords: automatic impedance matching, ceramic pigments, efficiency maximization, high-temperature microwave heating, input power control, numerical simulation
Procedia PDF Downloads 13810895 Scope of Implmenting Building Information Modeling in (Aec) Industry Firms in India
Authors: Padmini Raman
Abstract:
The architecture, engineering, and construction (AEC) industry is facing enormous technological and institutional changes and challenges including the information technology and appropriate application of sustainable practices. The engineer and architect must be able to handle with a rapid pace of technological change. BIM is a unique process of producing and managing a building by exploring a digital module before the actual project is constructed and later during its construction, facility operation and maintenance. BIM has been Adopted by construction contractors and architects in the western country mostly in US and UK to improve the planning and management of construction projects. In India, BIM is a basic stage of adoption only, several issues about data acquisition and management comes during the design formation and planning of a construction project due to the complexity, ambiguity, and fragmented nature of the Indian construction industry. This paper tells about the view a strategy for India’s AEC firms to successfully implement BIM in their current working processes. By surveying and collecting data about problems faced by these architectural firms, it will be analysed how to avoid those situations from rising and, thus, introducing BIM Capabilities in such firms in the most effective way. while this application is widely accepted throughout the industry in many countries for managing project information for cost control and facilities management.Keywords: AEC industry, building information module, Indian industry, new technology, BIM implementation in India
Procedia PDF Downloads 445