Search results for: windowed graph Fourier frames
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1792

Search results for: windowed graph Fourier frames

1612 Relocation of Plastic Hinge of Interior Beam Column Connections with Intermediate Bars in Reinforced Concrete and T-Section Steel Inserts in Precast Concrete Frames

Authors: P. Wongmatar, C. Hansapinyo, C. Buachart

Abstract:

Failure of typical seismic frames has been found by plastic hinge occurring on beams section near column faces. Past researches shown that the seismic capacity of the frames can be enhanced if the plastic hinges of the beams are shifted away from the column faces. This paper presents detailing of reinforcements in the interior beam–column connections aiming to relocate the plastic hinge of reinforced concrete and precast concrete frames. Four specimens were tested under quasi-static cyclic load including two monolithic specimens and two precast specimens. For one monolithic specimen, typical seismic reinforcement was provided and considered as a reference specimen named M1. The other reinforced concrete frame M2 contained additional intermediate steel in the connection area compared with the specimen M1. For the precast specimens, embedded T-section steels in joint were provided, with and without diagonal bars in the connection area for specimen P1 and P2, respectively. The test results indicated the ductile failure with beam flexural failure in monolithic specimen M1 and the intermediate steel increased strength and improved joint performance of specimen M2. For the precast specimens, cracks generated at the end of the steel inserts. However, slipping of reinforcing steel lapped in top of the beams was seen before yielding of the main bars leading to the brittle failure. The diagonal bars in precast specimens P2 improved the connection stiffness and the energy dissipation capacity.

Keywords: relocation, plastic hinge, intermediate bar, T-section steel, precast concrete frame

Procedia PDF Downloads 273
1611 Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Authors: Alexandra Leukauf, Alexander Schirrer, Emir Talic

Abstract:

Numerical computation of wave propagation in a large domain usually requires significant computational effort. Hence, the considered domain must be truncated to a smaller domain of interest. In addition, special boundary conditions, which absorb the outward travelling waves, need to be implemented in order to describe the system domains correctly. In this work, the linear one dimensional wave equation is approximated by utilizing the Fourier Galerkin approach. Furthermore, the artificial boundaries are realized with absorbing boundary conditions. Within this work, a systematic work flow for setting up the wave problem, including the absorbing boundary conditions, is proposed. As a result, a convenient modal system description with an effective absorbing boundary formulation is established. Moreover, the truncated model shows high accuracy compared to the global domain.

Keywords: absorbing boundary conditions, boundary control, Fourier Galerkin approach, modal approach, wave equation

Procedia PDF Downloads 396
1610 A Framework for Chinese Domain-Specific Distant Supervised Named Entity Recognition

Authors: Qin Long, Li Xiaoge

Abstract:

The Knowledge Graphs have now become a new form of knowledge representation. However, there is no consensus in regard to a plausible and definition of entities and relationships in the domain-specific knowledge graph. Further, in conjunction with several limitations and deficiencies, various domain-specific entities and relationships recognition approaches are far from perfect. Specifically, named entity recognition in Chinese domain is a critical task for the natural language process applications. However, a bottleneck problem with Chinese named entity recognition in new domains is the lack of annotated data. To address this challenge, a domain distant supervised named entity recognition framework is proposed. The framework is divided into two stages: first, the distant supervised corpus is generated based on the entity linking model of graph attention neural network; secondly, the generated corpus is trained as the input of the distant supervised named entity recognition model to train to obtain named entities. The link model is verified in the ccks2019 entity link corpus, and the F1 value is 2% higher than that of the benchmark method. The re-pre-trained BERT language model is added to the benchmark method, and the results show that it is more suitable for distant supervised named entity recognition tasks. Finally, it is applied in the computer field, and the results show that this framework can obtain domain named entities.

Keywords: distant named entity recognition, entity linking, knowledge graph, graph attention neural network

Procedia PDF Downloads 93
1609 Modeling of Diurnal Pattern of Air Temperature in a Tropical Environment: Ile-Ife and Ibadan, Nigeria

Authors: Rufus Temidayo Akinnubi, M. O. Adeniyi

Abstract:

Existing diurnal air temperature models simulate night time air temperature over Nigeria with high biases. An improved parameterization is presented for modeling the diurnal pattern of air temperature (Ta) which is applicable in the calculation of turbulent heat fluxes in Global climate models, based on Nigeria Micrometeorological Experimental site (NIMEX) surface layer observations. Five diurnal Ta models for estimating hourly Ta from daily maximum, daily minimum, and daily mean air temperature were validated using root-mean-square error (RMSE), Mean Error Bias (MBE) and scatter graphs. The original Fourier series model showed better performance for unstable air temperature parameterizations while the stable Ta was strongly overestimated with a large error. The model was improved with the inclusion of the atmospheric cooling rate that accounts for the temperature inversion that occurs during the nocturnal boundary layer condition. The MBE and RMSE estimated by the modified Fourier series model reduced by 4.45 oC and 3.12 oC during the transitional period from dry to wet stable atmospheric conditions. The modified Fourier series model gave good estimation of the diurnal weather patterns of Ta when compared with other existing models for a tropical environment.

Keywords: air temperature, mean bias error, Fourier series analysis, surface energy balance,

Procedia PDF Downloads 230
1608 Multiple Version of Roman Domination in Graphs

Authors: J. C. Valenzuela-Tripodoro, P. Álvarez-Ruíz, M. A. Mateos-Camacho, M. Cera

Abstract:

In 2004, it was introduced the concept of Roman domination in graphs. This concept was initially inspired and related to the defensive strategy of the Roman Empire. An undefended place is a city so that no legions are established on it, whereas a strong place is a city in which two legions are deployed. This situation may be modeled by labeling the vertices of a finite simple graph with labels {0, 1, 2}, satisfying the condition that any 0-vertex must be adjacent to, at least, a 2-vertex. Roman domination in graphs is a variant of classic domination. Clearly, the main aim is to obtain such labeling of the vertices of the graph with minimum cost, that is to say, having minimum weight (sum of all vertex labels). Formally, a function f: V (G) → {0, 1, 2} is a Roman dominating function (RDF) in the graph G = (V, E) if f(u) = 0 implies that f(v) = 2 for, at least, a vertex v which is adjacent to u. The weight of an RDF is the positive integer w(f)= ∑_(v∈V)▒〖f(v)〗. The Roman domination number, γ_R (G), is the minimum weight among all the Roman dominating functions? Obviously, the set of vertices with a positive label under an RDF f is a dominating set in the graph, and hence γ(G)≤γ_R (G). In this work, we start the study of a generalization of RDF in which we consider that any undefended place should be defended from a sudden attack by, at least, k legions. These legions can be deployed in the city or in any of its neighbours. A function f: V → {0, 1, . . . , k + 1} such that f(N[u]) ≥ k + |AN(u)| for all vertex u with f(u) < k, where AN(u) represents the set of active neighbours (i.e., with a positive label) of vertex u, is called a [k]-multiple Roman dominating functions and it is denoted by [k]-MRDF. The minimum weight of a [k]-MRDF in the graph G is the [k]-multiple Roman domination number ([k]-MRDN) of G, denoted by γ_[kR] (G). First, we prove that the [k]-multiple Roman domination decision problem is NP-complete even when restricted to bipartite and chordal graphs. A problem that had been resolved for other variants and wanted to be generalized. We know the difficulty of calculating the exact value of the [k]-MRD number, even for families of particular graphs. Here, we present several upper and lower bounds for the [k]-MRD number that permits us to estimate it with as much precision as possible. Finally, some graphs with the exact value of this parameter are characterized.

Keywords: multiple roman domination function, decision problem np-complete, bounds, exact values

Procedia PDF Downloads 108
1607 Model Development for Real-Time Human Sitting Posture Detection Using a Camera

Authors: Jheanel E. Estrada, Larry A. Vea

Abstract:

This study developed model to detect proper/improper sitting posture using the built in web camera which detects the upper body points’ location and distances (chin, manubrium and acromion process). It also established relationships of human body frames and proper sitting posture. The models were developed by training some well-known classifiers such as KNN, SVM, MLP, and Decision Tree using the data collected from 60 students of different body frames. Decision Tree classifier demonstrated the most promising model performance with an accuracy of 95.35% and a kappa of 0.907 for head and shoulder posture. Results also showed that there were relationships between body frame and posture through Body Mass Index.

Keywords: posture, spinal points, gyroscope, image processing, ergonomics

Procedia PDF Downloads 329
1606 Knowledge Reactor: A Contextual Computing Work in Progress for Eldercare

Authors: Scott N. Gerard, Aliza Heching, Susann M. Keohane, Samuel S. Adams

Abstract:

The world-wide population of people over 60 years of age is growing rapidly. The explosion is placing increasingly onerous demands on individual families, multiple industries and entire countries. Current, human-intensive approaches to eldercare are not sustainable, but IoT and AI technologies can help. The Knowledge Reactor (KR) is a contextual, data fusion engine built to address this and other similar problems. It fuses and centralizes IoT and System of Record/Engagement data into a reactive knowledge graph. Cognitive applications and services are constructed with its multiagent architecture. The KR can scale-up and scaledown, because it exploits container-based, horizontally scalable services for graph store (JanusGraph) and pub-sub (Kafka) technologies. While the KR can be applied to many domains that require IoT and AI technologies, this paper describes how the KR specifically supports the challenging domain of cognitive eldercare. Rule- and machine learning-based analytics infer activities of daily living from IoT sensor readings. KR scalability, adaptability, flexibility and usability are demonstrated.

Keywords: ambient sensing, AI, artificial intelligence, eldercare, IoT, internet of things, knowledge graph

Procedia PDF Downloads 175
1605 Enhance Engineering Pedagogy in Programming Course via Knowledge Graph-Based Recommender System

Authors: Yan Li

Abstract:

Purpose: There is a lack of suitable recommendation systems to assist engineering teaching. The existing traditional engineering pedagogies lack learning interests for postgraduate students. The knowledge graph-based recommender system aims to enhance postgraduate students’ programming skills, with a focus on programming courses. Design/methodology/approach: The case study will be used as a major research method, and the two case studies will be taken in both two teaching styles of the universities (Zhejiang University and the University of Nottingham Ningbo China), followed by the interviews. Quantitative and qualitative research methods will be combined in this study. Research limitations/implications: The case studies were only focused on two teaching styles universities, which is not comprehensive enough. The subject was limited to postgraduate students. Originality/value: The study collected and analyzed the data from two teaching styles of universities’ perspectives. It explored the challenges of Engineering education and tried to seek potential enhancement.

Keywords: knowledge graph and recommender system, engineering pedagogy, programming skills, postgraduate students

Procedia PDF Downloads 72
1604 Excitation Modeling for Hidden Markov Model-Based Speech Synthesis Based on Wavelet Analysis

Authors: M. Kiran Reddy, K. Sreenivasa Rao

Abstract:

The conventional Hidden Markov Model (HMM)-based speech synthesis system (HTS) uses only a pulse excitation model, which significantly differs from natural excitation signal. Hence, buzziness can be perceived in the speech generated using HTS. This paper proposes an efficient excitation modeling method that can significantly reduce the buzziness, and improve the quality of HMM-based speech synthesis. The proposed approach models the pitch-synchronous residual frames extracted from the residual excitation signal. Each pitch synchronous residual frame is parameterized using 30 wavelet coefficients. These 30 wavelet coefficients are found to accurately capture the perceptually important information present in the residual waveform. In synthesis phase, the residual frames are reconstructed from the generated wavelet coefficients and are pitch-synchronously overlap-added to generate the excitation signal. The proposed excitation modeling method is integrated into HMM-based speech synthesis system. Evaluation results indicate that the speech synthesized by the proposed excitation model is significantly better than the speech generated using state-of-the-art excitation modeling methods.

Keywords: excitation modeling, hidden Markov models, pitch-synchronous frames, speech synthesis, wavelet coefficients

Procedia PDF Downloads 248
1603 URM Infill in-Plane and out-of-Plane Interaction in Damage Evaluation of RC Frames

Authors: F. Longo, G. Granello, G. Tecchio, F. Da Porto

Abstract:

Unreinforced masonry (URM) infill walls are widely used throughout the world, also in seismic prone regions, as partitions in reinforced concrete building frames. Even if they do not represent structural elements, they can dramatically affect both strength and stiffness of RC structures by acting as a diagonal strut, modifying shear and displacements distribution along the building height, with uncertain consequences on structural safety. In the last decades, many refined models have been developed to describe infill walls effect on frame structural behaviour, but generally restricted to in-plane actions. Only very recently some new approaches were implemented to consider in-plane/out-of-plane interaction of URM infill walls in progressive collapse simulations. In the present work, a particularly promising macro-model was adopted for the progressive collapse analysis of infilled RC frames. The model allows to consider the bi-directional interaction in terms of displacement and strength capacity for URM infills, and to remove the infill contribution when the URM wall is supposed to fail during the analysis process. The model was calibrated on experimental data regarding two different URM panels thickness, modelling with particular care the post-critic softening branch. A frame specimen set representing the most common Italian structures was built considering two main normative approaches: a traditional design philosophy, corresponding to structures erected between 50’s-80’s basically designed to support vertical loads, and a seismic design philosophy, corresponding to current criteria that take into account horizontal actions. Non-Linear Static analyses were carried out on the specimen set and some preliminary evaluations were drawn in terms of different performance exhibited by the RC frame when the contemporary effect of the out-of-plane damage is considered for the URM infill.

Keywords: infill Panels macromodels, in plane-out of plane interaction, RC frames, URM infills

Procedia PDF Downloads 516
1602 Introduction of the Fluid-Structure Coupling into the Force Analysis Technique

Authors: Océane Grosset, Charles Pézerat, Jean-Hugh Thomas, Frédéric Ablitzer

Abstract:

This paper presents a method to take into account the fluid-structure coupling into an inverse method, the Force Analysis Technique (FAT). The FAT method, also called RIFF method (Filtered Windowed Inverse Resolution), allows to identify the force distribution from local vibration field. In order to only identify the external force applied on a structure, it is necessary to quantify the fluid-structure coupling, especially in naval application, where the fluid is heavy. This method can be decomposed in two parts, the first one consists in identifying the fluid-structure coupling and the second one to introduced it in the FAT method to reconstruct the external force. Results of simulations on a plate coupled with a cavity filled with water are presented.

Keywords: aeroacoustics, fluid-structure coupling, inverse methods, naval, turbulent flow

Procedia PDF Downloads 518
1601 Topological Analyses of Unstructured Peer to Peer Systems: A Survey

Authors: Hend Alrasheed

Abstract:

Due to their different properties that have led to avoid several limitations of classic client/server systems, there has been a great interest in the development and the improvement of different peer to peer systems. Understanding the properties of complex peer to peer networks is essential for their future improvements. It was shown that the performances of peer to peer protocols are directly related to their underlying topologies. Therefore, multiple efforts have analyzed the topologies of different peer to peer systems. This study presents an overview of major findings of close experimental analyses to different topologies of three unstructured peer to peer systems: BitTorrent, Gnutella, and FreeNet.

Keywords: peer to peer networks, network topology, graph diameter, clustering coefficient, small-world property, random graph, degree distribution

Procedia PDF Downloads 381
1600 Progressive Multimedia Collection Structuring via Scene Linking

Authors: Aman Berhe, Camille Guinaudeau, Claude Barras

Abstract:

In order to facilitate information seeking in large collections of multimedia documents with long and progressive content (such as broadcast news or TV series), one can extract the semantic links that exist between semantically coherent parts of documents, i.e., scenes. The links can then create a coherent collection of scenes from which it is easier to perform content analysis, topic extraction, or information retrieval. In this paper, we focus on TV series structuring and propose two approaches for scene linking at different levels of granularity (episode and season): a fuzzy online clustering technique and a graph-based community detection algorithm. When evaluated on the two first seasons of the TV series Game of Thrones, we found that the fuzzy online clustering approach performed better compared to graph-based community detection at the episode level, while graph-based approaches show better performance at the season level.

Keywords: multimedia collection structuring, progressive content, scene linking, fuzzy clustering, community detection

Procedia PDF Downloads 99
1599 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method

Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary

Abstract:

Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.

Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method

Procedia PDF Downloads 430
1598 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset

Authors: Gabriele Borg, Alexei Debono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.

Keywords: graph neural networks, traffic management, big data, mobile data patterns

Procedia PDF Downloads 130
1597 Buckling Analysis of 2D Frames Using the Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

The main purpose of this paper is to present the Modified Newmark Method of buckling analysis frame considering the effect of the axial load. The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. In this method, stiffness matrix of the structure is considered to be constant. The most important advantage of such a method is that it obtains both upper and lower critical loads. The advanced of the present method is fast convergence, ability to use computer simulations, and ability to model structures with semi-rigid support conditions using linear and rotational spring.

Keywords: buckling, stability, frame, modified newmark method

Procedia PDF Downloads 417
1596 Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks

Authors: Theodore Halnon, Martin Bojowald

Abstract:

In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply.

Keywords: cosmology, deparameterization, general relativity, quantum mechanics

Procedia PDF Downloads 308
1595 Conceptualising Queercide: A Quantitative Desktop Exploration of the Technical Frames Used in Online Repors of Lesbian Killings in South Africa

Authors: Marchant Van Der Schyff

Abstract:

South Africa remains one of the most dangerous places for women – lesbians in particular – to live freely and safely, where a culture of patriarchy and a lack of socio-economic opportunity are ubiquitous throughout its communities. While the Internet has given a wider platform to provide insights to issues plaguing lesbians, very little information exists regarding the elements used in the construction of these online reports. This is not only due to the lack of language required to contextualise lesbian issues, but also persistent institutional and societal homophobia. This article describes the technical frames used in the online news reporting of four case studies of ‘queercide’. Through using a thematic coding sheet, data was collected from 70 online articles purposively selected based on priori population characteristics. The study found technical elements, such as the length of online reports, credible sources used, ‘code driven’-, and ‘user driven’ elements which were identified in the coded online articles. From the conclusions some clear trends emerged enabling the construction of a Venn-type diagram which present insights to how the murder of lesbians (referred to as ‘queercide’ in the article) is being reported on by online news media compared to the contemporary theoretical discussions on how these cases should be reported on.

Keywords: journalism, lesbian murder, queercide, technical frames, reporting, online

Procedia PDF Downloads 72
1594 Fast Fourier Transform-Based Steganalysis of Covert Communications over Streaming Media

Authors: Jinghui Peng, Shanyu Tang, Jia Li

Abstract:

Steganalysis seeks to detect the presence of secret data embedded in cover objects, and there is an imminent demand to detect hidden messages in streaming media. This paper shows how a steganalysis algorithm based on Fast Fourier Transform (FFT) can be used to detect the existence of secret data embedded in streaming media. The proposed algorithm uses machine parameter characteristics and a network sniffer to determine whether the Internet traffic contains streaming channels. The detected streaming data is then transferred from the time domain to the frequency domain through FFT. The distributions of power spectra in the frequency domain between original VoIP streams and stego VoIP streams are compared in turn using t-test, achieving the p-value of 7.5686E-176 which is below the threshold. The results indicate that the proposed FFT-based steganalysis algorithm is effective in detecting the secret data embedded in VoIP streaming media.

Keywords: steganalysis, security, Fast Fourier Transform, streaming media

Procedia PDF Downloads 147
1593 Graph-Oriented Summary for Optimized Resource Description Framework Graphs Streams Processing

Authors: Amadou Fall Dia, Maurras Ulbricht Togbe, Aliou Boly, Zakia Kazi Aoul, Elisabeth Metais

Abstract:

Existing RDF (Resource Description Framework) Stream Processing (RSP) systems allow continuous processing of RDF data issued from different application domains such as weather station measuring phenomena, geolocation, IoT applications, drinking water distribution management, and so on. However, processing window phase often expires before finishing the entire session and RSP systems immediately delete data streams after each processed window. Such mechanism does not allow optimized exploitation of the RDF data streams as the most relevant and pertinent information of the data is often not used in a due time and almost impossible to be exploited for further analyzes. It should be better to keep the most informative part of data within streams while minimizing the memory storage space. In this work, we propose an RDF graph summarization system based on an explicit and implicit expressed needs through three main approaches: (1) an approach for user queries (SPARQL) in order to extract their needs and group them into a more global query, (2) an extension of the closeness centrality measure issued from Social Network Analysis (SNA) to determine the most informative parts of the graph and (3) an RDF graph summarization technique combining extracted user query needs and the extended centrality measure. Experiments and evaluations show efficient results in terms of memory space storage and the most expected approximate query results on summarized graphs compared to the source ones.

Keywords: centrality measures, RDF graphs summary, RDF graphs stream, SPARQL query

Procedia PDF Downloads 203
1592 Seismic Evaluation with Shear Walls and Braces for Buildings

Authors: R. S. Malik, S. K. Madan, V. K. Sehgal

Abstract:

Reinforced concrete (RCC) buildings with dual system consisting of shear walls and moment resisting frames or braces and moment resisting frames have been widely used to resist lateral forces during earthquakes. The two dual systems are designed to resist the total design lateral force in proportion to their lateral stiffness. The response of the combination of braces and shear walls has not yet been studied therefore has practically no work to refer to. The combination may prove to be more effective in lateral load resistance by employing the peculiar advantages of shear walls and braces simultaneously and may also improve the architectural appearance of structures. This concept has been applied to regular RCC buildings provided with shear walls, braces, and their combinations.

Keywords: dynamic analysis, displacement, pushover analysis, dual structures, storey drift

Procedia PDF Downloads 406
1591 A Modular and Reusable Bond Graph Model of Epithelial Transport in the Proximal Convoluted Tubule

Authors: Leyla Noroozbabaee, David Nickerson

Abstract:

We introduce a modular, consistent, reusable bond graph model of the renal nephron’s proximal convoluted tubule (PCT), which can reproduce biological behaviour. In this work, we focus on ion and volume transport in the proximal convoluted tubule of the renal nephron. Modelling complex systems requires complex modelling problems to be broken down into manageable pieces. This can be enabled by developing models of subsystems that are subsequently coupled hierarchically. Because they are based on a graph structure. In the current work, we define two modular subsystems: the resistive module representing the membrane and the capacitive module representing solution compartments. Each module is analyzed based on thermodynamic processes, and all the subsystems are reintegrated into circuit theory in network thermodynamics. The epithelial transport system we introduce in the current study consists of five transport membranes and four solution compartments. Coupled dissipations in the system occur in the membrane subsystems and coupled free-energy increasing, or decreasing processes appear in solution compartment subsystems. These structural subsystems also consist of elementary thermodynamic processes: dissipations, free-energy change, and power conversions. We provide free and open access to the Python implementation to ensure our model is accessible, enabling the reader to explore the model through setting their simulations and reproducibility tests.

Keywords: Bond Graph, Epithelial Transport, Water Transport, Mathematical Modeling

Procedia PDF Downloads 87
1590 Development of Deep Neural Network-Based Strain Values Prediction Models for Full-Scale Reinforced Concrete Frames Using Highly Flexible Sensing Sheets

Authors: Hui Zhang, Sherif Beskhyroun

Abstract:

Structural Health monitoring systems (SHM) are commonly used to identify and assess structural damage. In terms of damage detection, SHM needs to periodically collect data from sensors placed in the structure as damage-sensitive features. This includes abnormal changes caused by the strain field and abnormal symptoms of the structure, such as damage and deterioration. Currently, deploying sensors on a large scale in a building structure is a challenge. In this study, a highly stretchable strain sensors are used in this study to collect data sets of strain generated on the surface of full-size reinforced concrete (RC) frames under extreme cyclic load application. This sensing sheet can be switched freely between the test bending strain and the axial strain to achieve two different configurations. On this basis, the deep neural network prediction model of the frame beam and frame column is established. The training results show that the method can accurately predict the strain value and has good generalization ability. The two deep neural network prediction models will also be deployed in the SHM system in the future as part of the intelligent strain sensor system.

Keywords: strain sensing sheets, deep neural networks, strain measurement, SHM system, RC frames

Procedia PDF Downloads 99
1589 Robust Electrical Segmentation for Zone Coherency Delimitation Base on Multiplex Graph Community Detection

Authors: Noureddine Henka, Sami Tazi, Mohamad Assaad

Abstract:

The electrical grid is a highly intricate system designed to transfer electricity from production areas to consumption areas. The Transmission System Operator (TSO) is responsible for ensuring the efficient distribution of electricity and maintaining the grid's safety and quality. However, due to the increasing integration of intermittent renewable energy sources, there is a growing level of uncertainty, which requires a faster responsive approach. A potential solution involves the use of electrical segmentation, which involves creating coherence zones where electrical disturbances mainly remain within the zone. Indeed, by means of coherent electrical zones, it becomes possible to focus solely on the sub-zone, reducing the range of possibilities and aiding in managing uncertainty. It allows faster execution of operational processes and easier learning for supervised machine learning algorithms. Electrical segmentation can be applied to various applications, such as electrical control, minimizing electrical loss, and ensuring voltage stability. Since the electrical grid can be modeled as a graph, where the vertices represent electrical buses and the edges represent electrical lines, identifying coherent electrical zones can be seen as a clustering task on graphs, generally called community detection. Nevertheless, a critical criterion for the zones is their ability to remain resilient to the electrical evolution of the grid over time. This evolution is due to the constant changes in electricity generation and consumption, which are reflected in graph structure variations as well as line flow changes. One approach to creating a resilient segmentation is to design robust zones under various circumstances. This issue can be represented through a multiplex graph, where each layer represents a specific situation that may arise on the grid. Consequently, resilient segmentation can be achieved by conducting community detection on this multiplex graph. The multiplex graph is composed of multiple graphs, and all the layers share the same set of vertices. Our proposal involves a model that utilizes a unified representation to compute a flattening of all layers. This unified situation can be penalized to obtain (K) connected components representing the robust electrical segmentation clusters. We compare our robust segmentation to the segmentation based on a single reference situation. The robust segmentation proves its relevance by producing clusters with high intra-electrical perturbation and low variance of electrical perturbation. We saw through the experiences when robust electrical segmentation has a benefit and in which context.

Keywords: community detection, electrical segmentation, multiplex graph, power grid

Procedia PDF Downloads 79
1588 Code Embedding for Software Vulnerability Discovery Based on Semantic Information

Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson

Abstract:

Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.

Keywords: code representation, deep learning, source code semantics, vulnerability discovery

Procedia PDF Downloads 158
1587 A Graph SEIR Cellular Automata Based Model to Study the Spreading of a Transmittable Disease

Authors: Natasha Sharma, Kulbhushan Agnihotri

Abstract:

Cellular Automata are discrete dynamical systems which are based on local character and spatial disparateness of the spreading process. These factors are generally neglected by traditional models based on differential equations for epidemic spread. The aim of this work is to introduce an SEIR model based on cellular automata on graphs to imitate epidemic spreading. Distinctively, it is an SEIR-type model where the population is divided into susceptible, exposed, infected and recovered individuals. The results obtained from simulations are in accordance with the spreading behavior of a real time epidemics.

Keywords: cellular automata, epidemic spread, graph, susceptible

Procedia PDF Downloads 459
1586 Application of Transform Fourier for Dynamic Control of Structures with Global Positioning System

Authors: J. M. de Luis Ruiz, P. M. Sierra García, R. P. García, R. P. Álvarez, F. P. García, E. C. López

Abstract:

Given the evolution of viaducts, structural health monitoring requires more complex techniques to define their state. two alternatives can be distinguished: experimental and operational modal analysis. Although accelerometers or Global Positioning System (GPS) have been applied for the monitoring of structures under exploitation, the dynamic monitoring during the stage of construction is not common. This research analyzes whether GPS data can be applied to certain dynamic geometric controls of evolving structures. The fundamentals of this work were applied to the New Bridge of Cádiz (Spain), a worldwide milestone in bridge building. GPS data were recorded with an interval of 1 second during the erection of segments and turned to the frequency domain with Fourier transform. The vibration period and amplitude were contrasted with those provided by the finite element model, with differences of less than 10%, which is admissible. This process provides a vibration record of the structure with GPS, avoiding specific equipment.

Keywords: Fourier transform, global position system, operational modal analysis, structural health monitoring

Procedia PDF Downloads 246
1585 An Approach to Maximize the Influence Spread in the Social Networks

Authors: Gaye Ibrahima, Mendy Gervais, Seck Diaraf, Ouya Samuel

Abstract:

In this paper, we consider the influence maximization in social networks. Here we give importance to initial diffuser called the seeds. The goal is to find efficiently a subset of k elements in the social network that will begin and maximize the information diffusion process. A new approach which treats the social network before to determine the seeds, is proposed. This treatment eliminates the information feedback toward a considered element as seed by extracting an acyclic spanning social network. At first, we propose two algorithm versions called SCG − algoritm (v1 and v2) (Spanning Connected Graphalgorithm). This algorithm takes as input data a connected social network directed or no. And finally, a generalization of the SCG − algoritm is proposed. It is called SG − algoritm (Spanning Graph-algorithm) and takes as input data any graph. These two algorithms are effective and have each one a polynomial complexity. To show the pertinence of our approach, two seeds set are determined and those given by our approach give a better results. The performances of this approach are very perceptible through the simulation carried out by the R software and the igraph package.

Keywords: acyclic spanning graph, centrality measures, information feedback, influence maximization, social network

Procedia PDF Downloads 248
1584 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series

Authors: Tamas Madl

Abstract:

Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.

Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification

Procedia PDF Downloads 234
1583 Validation and Interpretation about Precedence Diagram for Start to Finish Relationship by Graph Theory

Authors: Naoki Ohshima, Ken Kaminishi

Abstract:

Four types of dependencies, which are 'Finish-to-start', 'Finish-to-finish', 'Start-to-start' and 'Start-to-finish (S-F)' as logical relationship are modeled based on the definition by 'the predecessor activity is defined as an activity to come before a dependent activity in a schedule' in PMBOK. However, it is found a self-contradiction in the precedence diagram for S-F relationship by PMBOK. In this paper, author would like to validate logical relationship of S-F by Graph Theory and propose a new interpretation of the precedence diagram for S-F relationship.

Keywords: project time management, sequence activity, start-to-finish relationship, precedence diagram, PMBOK

Procedia PDF Downloads 270