Search results for: wind power penetration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7310

Search results for: wind power penetration

7130 The Acoustic Performance of Double-skin Wind Energy Facade

Authors: Sara Mota Carmo

Abstract:

Wind energy applied in architecture has been largely abandoned due to the uncomfortable noise it causes. This study aims to investigate the acoustical performance in the urban environment and indoor environment of a double-skin wind energy facade. Measurements for sound transmission were recorded by using a hand-held sound meter device on a reduced-scale prototype of a wind energy façade. The applied wind intensities ranged between 2m/s and 8m/s, and the increase sound produced were proportional to the wind intensity.The study validates the acoustic performance of wind energy façade using a double skin façade system, showing that noise reduction indoor by approximately 30 to 35 dB. However, the results found that above 6m/s win intensity, in urban environment, the wind energy system applied to the façade exceeds the maximum 50dB recommended by world health organization and needs some adjustments.

Keywords: double-skin wind energy facade, acoustic energy facade, wind energy in architecture, wind energy prototype

Procedia PDF Downloads 73
7129 Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador

Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito

Abstract:

For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.

Keywords: hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador

Procedia PDF Downloads 219
7128 Achieving High Renewable Energy Penetration in Western Australia Using Data Digitisation and Machine Learning

Authors: A. D. Tayal

Abstract:

The energy industry is undergoing significant disruption. This research outlines that, whilst challenging; this disruption is also an emerging opportunity for electricity utilities. One such opportunity is leveraging the developments in data analytics and machine learning. As the uptake of renewable energy technologies and complimentary control systems increases, electricity grids will likely transform towards dense microgrids with high penetration of renewable generation sources, rich in network and customer data, and linked through intelligent, wireless communications. Data digitisation and analytics have already impacted numerous industries, and its influence on the energy sector is growing, as computational capabilities increase to manage big data, and as machines develop algorithms to solve the energy challenges of the future. The objective of this paper is to address how far the uptake of renewable technologies can go given the constraints of existing grid infrastructure and provides a qualitative assessment of how higher levels of renewable energy penetration can be facilitated by incorporating even broader technological advances in the fields of data analytics and machine learning. Western Australia is used as a contextualised case study, given its abundance and diverse renewable resources (solar, wind, biomass, and wave) and isolated networks, making a high penetration of renewables a feasible target for policy makers over coming decades.

Keywords: data, innovation, renewable, solar

Procedia PDF Downloads 343
7127 Application of PV/Wind-Based Green Energy to Power Cellular Base Station

Authors: Francis Okodede, Edafe Lucky Okotie

Abstract:

Conventional energy sources based on oil, coal, and natural gas has posed a trait to environment and to human health. Green energy stands as an alternative because it has proved to be eco-friendly. The prospective of renewable energy sources are quite vast as they can, in principle, meet many times the world’s energy demand. Renewable energy sources, such as wind and solar, can provide sustainable energy services based on the use of routinely available indigenous resources. New renewable energy sources (solar energy, wind energy, and modern bio-energy) are currently contributing immensely to global energy demand. A number of studies have shown the potential and contribution of renewable energy to global energy supplies, indicating that in the second half of the 21st century, it is going to be a major source and driver in the telecommunication sector. Green energy contribution might reach as much as 50 percent of global energy demands if the right policies are in place. This work suggests viable non-conventional means of energy supply to power a cellular base station.

Keywords: base station, energy storage, green energy, rotor efficiency, solar energy, wind energy

Procedia PDF Downloads 73
7126 Penetration Depth Study of Linear Siloxanes through Human Skin

Authors: K. Szymkowska, K. Mojsiewicz- Pieńkowska

Abstract:

Siloxanes are a common ingredients in medicinal products used on the skin, as well as cosmetics. It is widely believed that the silicones are not capable of overcoming the skin barrier. The aim of the study was to verify the possibility of penetration and permeation of linear siloxanes through human skin and determine depth penetration limit of these compounds. Based on the results it was found that human skin is not a barrier for linear siloxanes. PDMS 50 cSt was not identified in the dermis suggests that this molecular size of silicones (3780Da) is safe when it is used in the skin formulations.

Keywords: linear siloxanes, methyl siloxanes, skin penetration, skin permeation

Procedia PDF Downloads 382
7125 Influence of Inertial Forces of Large Bearings Utilized in Wind Energy Assemblies

Authors: S. Barabas, F. Sarbu, B. Barabas, A. Fota

Abstract:

Main objective of this paper is to establish a link between inertial forces of the bearings used in construction of wind power plant and its behavior. Using bearings with lower inertial forces has the immediate effect of decreasing inertia rotor system, with significant results in increased energy efficiency, due to decreased friction forces between rollers and raceways. The FEM analysis shows the appearance of uniform contact stress at the ends of the rollers, demonstrated the necessity of production of low mass bearings. Favorable results are expected in the economic field, by reducing material consumption and by increasing the durability of bearings. Using low mass bearings with hollow rollers instead of solid rollers has an impact on working temperature, on vibrations and noise which decrease. Implementation of types of hollow rollers of cylindrical tubular type, instead of expensive rollers with logarithmic profile, will bring significant inertial forces decrease with large benefits in behavior of wind power plant.

Keywords: inertial forces, Von Mises stress, hollow rollers, wind turbine

Procedia PDF Downloads 340
7124 Power Control of DFIG in WECS Using Backstipping and Sliding Mode Controller

Authors: Abdellah Boualouch, Ahmed Essadki, Tamou Nasser, Ali Boukhriss, Abdellatif Frigui

Abstract:

This paper presents a power control for a Doubly Fed Induction Generator (DFIG) using in Wind Energy Conversion System (WECS) connected to the grid. The proposed control strategy employs two nonlinear controllers, Backstipping (BSC) and sliding-mode controller (SMC) scheme to directly calculate the required rotor control voltage so as to eliminate the instantaneous errors of active and reactive powers. In this paper the advantages of BSC and SMC are presented, the performance and robustness of this two controller’s strategy are compared between them. First, we present a model of wind turbine and DFIG machine, then a synthesis of the controllers and their application in the DFIG power control. Simulation results on a 1.5MW grid-connected DFIG system are provided by MATLAB/Simulink.

Keywords: backstipping, DFIG, power control, sliding-mode, WESC

Procedia PDF Downloads 574
7123 Resilience Assessment for Power Distribution Systems

Authors: Berna Eren Tokgoz, Mahdi Safa, Seokyon Hwang

Abstract:

Power distribution systems are essential and crucial infrastructures for the development and maintenance of a sustainable society. These systems are extremely vulnerable to various types of natural and man-made disasters. The assessment of resilience focuses on preparedness and mitigation actions under pre-disaster conditions. It also concentrates on response and recovery actions under post-disaster situations. The aim of this study is to present a methodology to assess the resilience of electric power distribution poles against wind-related events. The proposed methodology can improve the accuracy and rapidity of the evaluation of the conditions and the assessment of the resilience of poles. The methodology provides a metric for the evaluation of the resilience of poles under pre-disaster and post-disaster conditions. The metric was developed using mathematical expressions for physical forces that involve various variables, such as physical dimensions of the pole, the inclination of the pole, and wind speed. A three-dimensional imaging technology (photogrammetry) was used to determine the inclination of poles. Based on expert opinion, the proposed metric was used to define zones to visualize resilience. Visual representation of resilience is helpful for decision makers to prioritize their resources before and after experiencing a wind-related disaster. Multiple electric poles in the City of Beaumont, TX were used in a case study to evaluate the proposed methodology.  

Keywords: photogrammetry, power distribution systems, resilience metric, system resilience, wind-related disasters

Procedia PDF Downloads 203
7122 Directional Dust Deposition Measurements: The Influence of Seasonal Changes and the Meteorological Conditions Influencing in Witbank Area and Carletonville Area

Authors: Maphuti Georgina Kwata

Abstract:

Coal mining in Mpumalanga Province is known of contributing to the atmospheric pollution from various activities. Gold mining in North-West Province is known of also contributing to the atmospheric pollution especially with the production of radon gas. In this research directional dust deposition gauge was used to measure source of direction and meteorological data was used to determine the wind rose blowing and the influence of the seasonal changes. Fourteen months of dust collection was undertaken in Witbank Area and Carletonville Area. The results shows that the sources of direction for Ericson Dam its East in February 2010 and Tip Area shows that the source of direction its West in October 2010. In the East direction there were mining operations, power stations which contributed to the East to be the sources of direction. In the West direction there were smelters, power stations and agricultural activities which contributed for the source of direction to be the West direction for Driefontein Mine: East Recreational Village Club. The East of Leslie Williams hospital is the source of direction which also indicated that there dust generating activities such as mining operation, agricultural activities. The meteorological results for Emalahleni Area in summer and winter the wind rose blow with wind speed of 5-10 ms-1 from the East sector. Annual average for the wind rose blow its East South eastern sector with 20 ms-1 and day time the wind rose from northwestern sector with excess of 20 ms-1. The night time wind direction East-eastern direction with a maximum wind speed of 20 ms-1. The meteorogical results for Driefontein Mine show that North-western sector and north-eastern sector wind rose is blowing with 5-10 ms-1 win speed. Day time wind blows from the West sector and night time wind blows from the north sector. In summer the wind blows North-east sector with 5-10 ms-1 and winter wind blows from North-west and it’s also predominant. In spring wind blows from north-east. The conclusion is that not only mining operation where the directional dust deposit gauge were installed contributed to the source of direction also the power stations, smelters, and other activities nearby the mining operation contributed. The recommendations are the dust suppressant for unpaved roads should be used on a regular basis and there should be monitoring of the weather conditions (the wind speed and direction prior to blasting to ensure minimal emissions).

Keywords: directional dust deposition gauge, BS part 5 1747 dust deposit gauge, wind rose, wind blowing

Procedia PDF Downloads 491
7121 Optimal Design of Wind Turbine Blades Equipped with Flaps

Authors: I. Kade Wiratama

Abstract:

As a result of the significant growth of wind turbines in size, blade load control has become the main challenge for large wind turbines. Many advanced techniques have been investigated aiming at developing control devices to ease blade loading. Amongst them, trailing edge flaps have been proven as effective devices for load alleviation. The present study aims at investigating the potential benefits of flaps in enhancing the energy capture capabilities rather than blade load alleviation. A software tool is especially developed for the aerodynamic simulation of wind turbines utilising blades equipped with flaps. As part of the aerodynamic simulation of these wind turbines, the control system must be also simulated. The simulation of the control system is carried out via solving an optimisation problem which gives the best value for the controlling parameter at each wind turbine run condition. Developing a genetic algorithm optimisation tool which is especially designed for wind turbine blades and integrating it with the aerodynamic performance evaluator, a design optimisation tool for blades equipped with flaps is constructed. The design optimisation tool is employed to carry out design case studies. The results of design case studies on wind turbine AWT 27 reveal that, as expected, the location of flap is a key parameter influencing the amount of improvement in the power extraction. The best location for placing a flap is at about 70% of the blade span from the root of the blade. The size of the flap has also significant effect on the amount of enhancement in the average power. This effect, however, reduces dramatically as the size increases. For constant speed rotors, adding flaps without re-designing the topology of the blade can improve the power extraction capability as high as of about 5%. However, with re-designing the blade pretwist the overall improvement can be reached as high as 12%.

Keywords: flaps, design blade, optimisation, simulation, genetic algorithm, WTAero

Procedia PDF Downloads 318
7120 Proposed Location of Grid Connected Wind-Pv Hybrid System Based on Load Flow and Voltage Stability Indices Study

Authors: Bazilah Ismail, Muhammad Mat Naain, Ibrahim Alhamrouni, Lilik Jamilatul Awalin, Fadi Albatsh, Mohd Fairuz Abdul Hamid

Abstract:

Rapid depletion and prices of the conventional energy sources have stimulated the development of the renewable energy source (RES). Due to the unpredicted and intermittent nature of RES, the hybrid renewable energy system (HRES) is the best solution to complement the nature of the respective sources, and the combination of the wind and solar energy is rapidly gaining popularity. The significant challenges on the operation and planning of the grid system with a high HRES penetration has become an important subject since the location of HRES plant give impact towards the existing system. This paper aims to propose the location of the grid connected Wind-PV hybrid plant (WPHP) based on load flow and voltage stability indices study. Several case studies are carried out using IEEE 14 bus system, and the system is modeled and tested in DigSILENT PowerFactory.

Keywords: hybrid renewable energy system, wind farm, photovoltaic system, voltage stability and load flow

Procedia PDF Downloads 298
7119 Investigating Flutter Energy Harvesting through Piezoelectric Materials in Both Experimental and Theoretical Modes

Authors: Hassan Mohammad Karimi, Ali Salehzade Nobari, Hosein Shahverdi

Abstract:

With the advancement of technology and the decreasing weight of aerial structures, there is a growing demand for alternative energy sources. Structural vibrations can now be utilized to power low-power sensors for monitoring structural health and charging small batteries in drones. Research on extracting energy from flutter using piezoelectric has been extensive in recent years. This article specifically examines the use of a single-jointed beam with a free surface attached to its free end and a bimorph piezoelectric patch connected to the joint, providing two degrees of torsional and bending freedom. The study investigates the voltage harvested at various wind speeds and bending and twisting stiffness in a wind tunnel. The results indicate that as flutter speed increases, the output voltage also increases to some extent. However, at high wind speeds, the limited cycle created becomes unstable, negatively impacting the harvester's performance. These findings align with other research published in reputable scientific journals.

Keywords: energy harvesting, piezoelectric, flutter, wind tunnel

Procedia PDF Downloads 45
7118 Efficient Wind Fragility Analysis of Concrete Chimney under Stochastic Extreme Wind Incorporating Temperature Effects

Authors: Soumya Bhattacharjya, Avinandan Sahoo, Gaurav Datta

Abstract:

Wind fragility analysis of chimney is often carried out disregarding temperature effect. However, the combined effect of wind and temperature is the most critical limit state for chimney design. Hence, in the present paper, an efficient fragility analysis for concrete chimney is explored under combined wind and temperature effect. Wind time histories are generated by Davenports Power Spectral Density Function and using Weighed Amplitude Wave Superposition Technique. Fragility analysis is often carried out in full Monte Carlo Simulation framework, which requires extensive computational time. Thus, in the present paper, an efficient adaptive metamodelling technique is adopted to judiciously approximate limit state function, which will be subsequently used in the simulation framework. This will save substantial computational time and make the approach computationally efficient. Uncertainty in wind speed, wind load related parameters, and resistance-related parameters is considered. The results by the full simulation approach, conventional metamodelling approach and proposed adaptive metamodelling approach will be compared. Effect of disregarding temperature in wind fragility analysis will be highlighted.

Keywords: adaptive metamodelling technique, concrete chimney, fragility analysis, stochastic extreme wind load, temperature effect

Procedia PDF Downloads 198
7117 Low Voltage Ride through Capability Techniques for DFIG-Based Wind Turbines

Authors: Sherif O. Zain Elabideen, Ahmed A. Helal, Ibrahim F. El-Arabawy

Abstract:

Due to the drastic increase of the wind turbines installed capacity; the grid codes are increasing the restrictions aiming to treat the wind turbines like other conventional sources sooner. In this paper, an intensive review has been presented for different techniques used to add low voltage ride through capability to Doubly Fed Induction Generator (DFIG) wind turbine. A system model with 1.5 MW DFIG wind turbine is constructed and simulated using MATLAB/SIMULINK to explore the effectiveness of the reviewed techniques.

Keywords: DFIG, grid side converters, low voltage ride through, wind turbine

Procedia PDF Downloads 403
7116 Evaluation of PV Orientation Effect on Mismatch between Consumption Load and PV Power Profiles

Authors: Iyad M. Muslih, Yehya Abdellatif, Sara Qutishat

Abstract:

Renewable energy and in particular solar photovoltaic energy is emerging as a reasonable power generation source. The intermittent and unpredictable nature of solar energy can represent a serious challenge to the utility grids, specifically at relatively high penetration. To minimize the impact of PV power systems on the grid, self-consumption is encouraged. Self-consumption can be improved by matching the PV power generation with the electrical load consumption profile. This study will focus in studying different load profiles and comparing them to typical solar PV power generation at the selected sites with the purpose of analyzing the mismatch in consumption load profile for different users; residential, commercial, and industrial versus the solar photovoltaic output generation. The PV array orientation can be adjusted to reduce the mismatch effects. The orientation shift produces a corresponding shift in the energy production curve. This shift has a little effect on the mismatch for residential loads due to the fact the peak load occurs at night due to lighting loads. This minor gain does not justify the power production loss associated with the orientation shift. The orientation shift for both commercial and industrial cases lead to valuable decrease in the mismatch effects. Such a design is worth considering for reducing grid penetration. Furthermore, the proposed orientation shift yielded better results during the summer time due to the extended daylight hours.

Keywords: grid impact, HOMER, power mismatch, solar PV energy

Procedia PDF Downloads 584
7115 Performance Estimation of Small Scale Wind Turbine Rotor for Very Low Wind Regime Condition

Authors: Vilas Warudkar, Dinkar Janghel, Siraj Ahmed

Abstract:

Rapid development experienced by India requires huge amount of energy. Actual supply capacity additions have been consistently lower than the targets set by the government. According to World Bank 40% of residences are without electricity. In 12th five year plan 30 GW grid interactive renewable capacity is planned in which 17 GW is Wind, 10 GW is from solar and 2.1 GW from small hydro project, and rest is compensated by bio gas. Renewable energy (RE) and energy efficiency (EE) meet not only the environmental and energy security objectives, but also can play a crucial role in reducing chronic power shortages. In remote areas or areas with a weak grid, wind energy can be used for charging batteries or can be combined with a diesel engine to save fuel whenever wind is available. India according to IEC 61400-1 belongs to class IV Wind Condition; it is not possible to set up wind turbine in large scale at every place. So, the best choice is to go for small scale wind turbine at lower height which will have good annual energy production (AEP). Based on the wind characteristic available at MANIT Bhopal, rotor for small scale wind turbine is designed. Various Aero foil data is reviewed for selection of airfoil in the Blade Profile. Airfoil suited of Low wind conditions i.e. at low Reynold’s number is selected based on Coefficient of Lift, Drag and angle of attack. For designing of the rotor blade, standard Blade Element Momentum (BEM) Theory is implanted. Performance of the Blade is estimated using BEM theory in which axial induction factor and angular induction factor is optimized using iterative technique. Rotor performance is estimated for particular designed blade specifically for low wind Conditions. Power production of rotor is determined at different wind speeds for particular pitch angle of the blade. At pitch 15o and velocity 5 m/sec gives good cut in speed of 2 m/sec and power produced is around 350 Watts. Tip speed of the Blade is considered as 6.5 for which Coefficient of Performance of the rotor is calculated 0.35, which is good acceptable value for Small scale Wind turbine. Simple Load Model (SLM, IEC 61400-2) is also discussed to improve the structural strength of the rotor. In SLM, Edge wise Moment and Flap Wise moment is considered which cause bending stress at the root of the blade. Various Load case mentioned in the IEC 61400-2 is calculated and checked for the partial safety factor of the wind turbine blade.

Keywords: annual energy production, Blade Element Momentum Theory, low wind Conditions, selection of airfoil

Procedia PDF Downloads 319
7114 Lubricating Grease from Waste Cooking Oil and Waste Motor Sludge

Authors: Aseem Rajvanshi, Pankaj Kumar Pandey

Abstract:

Increase in population has increased the demand of energy to fulfill all its needs. This will result in burden on fossil fuels especially crude oil. Waste oil due to its disposal problem creates environmental degradation. In this context, this paper studies utilization of waste cooking oil and waste motor sludge for making lubricating grease. Experimental studies have been performed by variation in time and concentration of mixture of waste cooking oil and waste motor sludge. The samples were analyzed using penetration test (ASTM D-217), dropping point (ASTM D-566), work penetration (ASTM D-217) and copper strip test (ASTM D-408). Among 6 samples, sample 6 gives the best results with a good drop point and a fine penetration value. The dropping point and penetration test values were found to be 205 °C and 315, respectively. The penetration value falls under the category of NLGI (National Lubricating Grease Institute) consistency number 1.

Keywords: crude oil, copper strip corrosion test, dropping point, penetration test

Procedia PDF Downloads 270
7113 Modeling and Simulation Analysis and Design of Components of the Microgrid Prototype System

Authors: Draou Azeddine, Mazin Alahmadi, Abdulrahmane Alkassem, Alamri Abdullah

Abstract:

The demand for electric power in Saudi Arabia is steadily increasing with economic growth. More power plants should be installed to increase generation capacity and meet demand. Electricity in Saudi Arabia is mainly dependent on fossil fuels, which are a major problem as they deplete natural resources and increase CO₂ emissions. In this research work, performance and techno-economic analyzes are conducted to evaluate a microgrid system based on hybrid PV/wind diesel power sources as a stand-alone system for rural electrification in Saudi Arabia. The total power flow, maximum power point tracking (MPPT) efficiency, effectiveness of the proposed control strategy, and total harmonic distortion (THD) are analyzed in MATLAB/Simulink environment. Various simulation studies have been carried out under different irradiation conditions. The sizing, optimization, and economic feasibility analysis were performed using Homer energy software.

Keywords: WIND, solar, microgrid, energy

Procedia PDF Downloads 85
7112 Hybrid Wind Solar Gas Reliability Optimization Using Harmony Search under Performance and Budget Constraints

Authors: Meziane Rachid, Boufala Seddik, Hamzi Amar, Amara Mohamed

Abstract:

Today’s energy industry seeks maximum benefit with maximum reliability. In order to achieve this goal, design engineers depend on reliability optimization techniques. This work uses a harmony search algorithm (HS) meta-heuristic optimization method to solve the problem of wind-Solar-Gas power systems design optimization. We consider the case where redundant electrical components are chosen to achieve a desirable level of reliability. The electrical power components of the system are characterized by their cost, capacity and reliability. The reliability is considered in this work as the ability to satisfy the consumer demand which is represented as a piecewise cumulative load curve. This definition of the reliability index is widely used for power systems. The proposed meta-heuristic seeks for the optimal design of series-parallel power systems in which a multiple choice of wind generators, transformers and lines are allowed from a list of product available in the market. Our approach has the advantage to allow electrical power components with different parameters to be allocated in electrical power systems. To allow fast reliability estimation, a universal moment generating function (UMGF) method is applied. A computer program has been developed to implement the UMGF and the HS algorithm. An illustrative example is presented.

Keywords: reliability optimization, harmony search optimization (HSA), universal generating function (UMGF)

Procedia PDF Downloads 559
7111 A Review on Control of a Grid Connected Permanent Magnet Synchronous Generator Based Variable Speed Wind Turbine

Authors: Eman M. Eissa, Hany M. Hasanin, Mahmoud Abd-Elhamid, S. M. Muyeen, T. Fernando, H. H. C. Iu

Abstract:

Among all available wind energy conversion systems (WECS), the direct driven permanent magnet synchronous generator integrated with power electronic interfaces is becoming popular due to its capability of extracting optimal energy capture, reduced mechanical stresses, no need to external excitation current, meaning less losses, and more compact size. Simple structure, low maintenance cost; and its decoupling control performance is much less sensitive to the parameter variations of the generator. This paper attempts to present a review of the control and optimization strategies of WECS based on permanent magnet synchronous generator (PMSG) and overview the most recent research trends in this field. The main aims of this review include; the generalized overall WECS starting from turbines, generators, and control strategies including converters, maximum power point tracking (MPPT), ending with DC-link control. The optimization methods of the controller parameters necessary to guarantee the operation of the system efficiently and safely, especially when connected to the power grid are also presented.

Keywords: control and optimization techniques, permanent magnet synchronous generator, variable speed wind turbines, wind energy conversion system

Procedia PDF Downloads 200
7110 The Evaluation of Soil Liquefaction Potential Using Shear Wave Velocity

Authors: M. Nghizaderokni, A. Janalizadechobbasty, M. Azizi, M. Naghizaderokni

Abstract:

The liquefaction resistance of soils can be evaluated using laboratory tests such as cyclic simple shear, cyclic triaxial, cyclic tensional shear, and field methods such as Standard Penetration Test (SPT), Cone Penetration Test (CPT), and Shear Wave Velocity (Vs). This paper outlines a great correlation between shear wave velocity and standard penetration resistance of granular soils was obtained. Using Seeds standard penetration test (SPT) based soil liquefaction charts, new charts of soil liquefaction evaluation based on shear wave velocity data were developed for various magnitude earthquakes.

Keywords: soil, liquefaction, shear wave velocity, standard penetration resistance

Procedia PDF Downloads 375
7109 Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 533
7108 Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator with Active Disturbance Rejection Control

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 479
7107 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: data fusion, Gaussian process regression, signal denoise, temporal extrapolation

Procedia PDF Downloads 119
7106 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 508
7105 Starting Torque Study of Darrieus Wind Turbine

Authors: M. Douak, Z. Aouachria

Abstract:

The aim of our study is to project an optimized wind turbine of Darrieus type. This type of wind turbine is characterized by a low starting torque in comparison with the Savonius rotor allowing them to operate for a period greater than wind speed. This led us to reconsider the Darrieus rotor to optimize a design which will increase its starting torque. The study of a system of monitoring and control of the angle of attack of blade profile, which allows an auto start to wind speeds as low as possible is presented for the straight blade of Darrieus turbine. The study continues to extend to other configurations namely those of parabolic type.

Keywords: Darrieus turbine, pitch angle, self stating, wind energy

Procedia PDF Downloads 328
7104 Smart Grids in Morocco: An Outline of the Recent Developments, Key Drivers, and Recommendations for Better Implementation

Authors: Mohamed Laamim, Abdelilah Rochd, Aboubakr Benazzouz, Abderrahim El Fadili

Abstract:

Smart grids have recently sparked a lot of interest in the energy sector as they allow for the modernization and digitization of the existing power infrastructure. Smart grids have several advantages in terms of reducing the environmental impact of generating power from fossil fuels due to their capacity to integrate large amounts of distributed energy resources. On the other hand, smart grid technologies necessitate many field investigations and requirements. This paper focuses on the major difficulties that governments face around the world and compares them to the situation in Morocco. Also presented in this study are the current works and projects being developed to improve the penetration of smart grid technologies into the electrical system. Furthermore, the findings of this study will be useful to promote the smart grid revolution in Morocco, as well as to construct a strong foundation and develop future needs for better penetration of technologies that aid in the integration of smart grid features.

Keywords: smart grids, microgrids, virtual power plants, digital twin, distributed energy resources, vehicle-to-grid, advanced metering infrastructure.

Procedia PDF Downloads 108
7103 The Old Traditional Structures in Iran: A Suitable Model for Today's Greenhouse

Authors: Behbood Maashkar

Abstract:

One of the principles for societies’ development is the requirement to consider past experiences. Man should always take advantage of the predecessor’s experiences and analyze their works and methods. The predecessors have had a more friendly relationship with nature and their lives less damaged the nature, and it is one of the elements of green building. One of the things the ancients have observed in regard to green building in their houses, stores, sacred places, etc. was using wind-catchers as an air conditioning and cooling system which can be considered as the first foundations of green building. In designing houses Iranian architects have paid a great attention to the factor of making use of more shaded area in hot season and insulation of wall and ceiling against influence of hot weather and also air circulation inside the building. In order to circulate the air inside closed spaces and decrease the temperature, they have considered different winds which blow in Iran and its effective power, and in order to make use of it they invented wind catcher. Direction of wind blow and its height from the earth as well as the time and duration of wind blow and other factors have been effective in making different types of wind catchers. Using wind catchers has been and is prevalent mainly in central and south regions of Iran, coastal areas of Persian Gulf, and Khorasan, especially in cities like Yazd, Kashan, Bam, Abarghoo, Jahrom, and Tabas.

Keywords: environment pollution, green building, Iran, wind catchers

Procedia PDF Downloads 234
7102 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2

Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle

Abstract:

With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.

Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis

Procedia PDF Downloads 56
7101 Optimizing Wind Turbine Blade Geometry for Enhanced Performance and Durability: A Computational Approach

Authors: Nwachukwu Ifeanyi

Abstract:

Wind energy is a vital component of the global renewable energy portfolio, with wind turbines serving as the primary means of harnessing this abundant resource. However, the efficiency and stability of wind turbines remain critical challenges in maximizing energy output and ensuring long-term operational viability. This study proposes a comprehensive approach utilizing computational aerodynamics and aeromechanics to optimize wind turbine performance across multiple objectives. The proposed research aims to integrate advanced computational fluid dynamics (CFD) simulations with structural analysis techniques to enhance the aerodynamic efficiency and mechanical stability of wind turbine blades. By leveraging multi-objective optimization algorithms, the study seeks to simultaneously optimize aerodynamic performance metrics such as lift-to-drag ratio and power coefficient while ensuring structural integrity and minimizing fatigue loads on the turbine components. Furthermore, the investigation will explore the influence of various design parameters, including blade geometry, airfoil profiles, and turbine operating conditions, on the overall performance and stability of wind turbines. Through detailed parametric studies and sensitivity analyses, valuable insights into the complex interplay between aerodynamics and structural dynamics will be gained, facilitating the development of next-generation wind turbine designs. Ultimately, this research endeavours to contribute to the advancement of sustainable energy technologies by providing innovative solutions to enhance the efficiency, reliability, and economic viability of wind power generation systems. The findings have the potential to inform the design and optimization of wind turbines, leading to increased energy output, reduced maintenance costs, and greater environmental benefits in the transition towards a cleaner and more sustainable energy future.

Keywords: computation, robotics, mathematics, simulation

Procedia PDF Downloads 26