Search results for: water consumption prediction
13194 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.Keywords: liquefaction, plaxis, pore-water pressure, UBC3D-PLM
Procedia PDF Downloads 31013193 Fast Prediction Unit Partition Decision and Accelerating the Algorithm Using Cudafor Intra and Inter Prediction of HEVC
Authors: Qiang Zhang, Chun Yuan
Abstract:
Since the PU (Prediction Unit) decision process is the most time consuming part of the emerging HEVC (High Efficient Video Coding) standardin intra and inter frame coding, this paper proposes the fast PU decision algorithm and speed up the algorithm using CUDA (Compute Unified Device Architecture). In intra frame coding, the fast PU decision algorithm uses the texture features to skip intra-frame prediction or terminal the intra-frame prediction for smaller PU size. In inter frame coding of HEVC, the fast PU decision algorithm takes use of the similarity of its own two Nx2N size PU's motion vectors and the hierarchical structure of CU (Coding Unit) partition to skip some modes of PU partition, so as to reduce the motion estimation times. The accelerate algorithm using CUDA is based on the fast PU decision algorithm which uses the GPU to make the motion search and the gradient computation could be parallel computed. The proposed algorithm achieves up to 57% time saving compared to the HM 10.0 with little rate-distortion losses (0.043dB drop and 1.82% bitrate increase on average).Keywords: HEVC, PU decision, inter prediction, intra prediction, CUDA, parallel
Procedia PDF Downloads 39913192 Application of Artificial Neural Network to Prediction of Feature Academic Performance of Students
Authors: J. K. Alhassan, C. S. Actsu
Abstract:
This study is on the prediction of feature performance of undergraduate students with Artificial Neural Networks (ANN). With the growing decline in the quality academic performance of undergraduate students, it has become essential to predict the students’ feature academic performance early in their courses of first and second years and to take the necessary precautions using such prediction-based information. The feed forward multilayer neural network model was used to train and develop a network and the test carried out with some of the input variables. A result of 80% accuracy was obtained from the test which was carried out, with an average error of 0.009781.Keywords: academic performance, artificial neural network, prediction, students
Procedia PDF Downloads 46713191 Strengthening National Salt Industry through Cultivation Upgrading and Product Diversification
Authors: Etty Soesilowati
Abstract:
This research was intended to: (1) designing production systems that produce high quality salt and (2) diversification of salt products. This research used qualitative and quantitative approaches which Garam Mas Ltd. as the research site. The data were analyzed interactively and subjected to laboratory tests. The analyses showed that salt production system using HDPE geomembranes produced whiter and cleaner salts than those produced by conventional methods without HDPE geomembranes. High quality consumption salt contained 97% NaCl and a maximum of 0.05% water, in the form of white minute crystals and usually used for table salt of food and snack seasoning, souses and cheese and vegetable oil industries. Medium grade salt contained 94.7%-97% NaCl and 3%-7% water and usually used for kitchen salt, soy sauce, tofu industries and cattle feeding. Low quality salt contained 90%-94.7% NaCl and 5%-10% water, with dull white color and usually used for fish preservation and agriculture. The quality and quantity of salts production were influenced by temperatures, weather, water concentrations used during production processes and the discipline of salt farmers itself. The use of water temperature less than 23 °Be during the production processes produced low quality salts. Optimizing cultivation of the production process from raw material to end product (consumption salt) should be attempted to produce quality salt that fulfills the Indonesian National Standard. Therefore, the integrated policies among stakeholders are really needed to build strong institutional base at salt farmer level. This might be achieved through the establishment of specific region for salt production.Keywords: cultivation system, diversification, salt products, high quality salt
Procedia PDF Downloads 40113190 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality
Authors: Sirilak Areerachakul
Abstract:
Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.Keywords: artificial neural network, geographic information system, water quality, computer science
Procedia PDF Downloads 34313189 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets
Authors: Mohammad Ghavami, Reza S. Dilmaghani
Abstract:
This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.Keywords: adaptive methods, LSE, MSE, prediction of financial Markets
Procedia PDF Downloads 33613188 A Study on the Influence of Aswan High Dam Reservoir Loading on Earthquake Activity
Authors: Sayed Abdallah Mohamed Dahy
Abstract:
Aswan High Dam Reservoir extends for 500 km along the Nile River; it is a vast reservoir in southern Egypt and northern Sudan. It was created as a result of the construction of the Aswan High Dam between 1958 and 1970; about 95% of the main water resources for Egypt are from it. The purpose of this study is to discuss and understand the effect of the fluctuation of the water level in the reservoir on natural and human-induced environmental like earthquakes in the Aswan area, Egypt. In summary, the correlation between the temporal variations of earthquake activity and water level changes in the Aswan reservoir from 1982 to 2014 are investigated and analyzed. This analysis confirms a weak relation between the fluctuation of the water level and earthquake activity in the area around Aswan reservoir. The result suggests that the seismicity in the area becomes active during a period when the water level is decreasing from the maximum to the minimum. Behavior of the water level in this reservoir characterized by a special manner that is the unloading season extends to July or August, and the loading season starts to reach its maximum in October or November every year. Finally, daily rate of change in the water level did not show any direct relation with the size of the earthquakes, hence, it is not possible to be used as a single tool for prediction.Keywords: Aswan high dam reservoir, earthquake activity, environmental, Egypt
Procedia PDF Downloads 37913187 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 36313186 A Conceptual Design of Freeze Desalination Using Low Cost Refrigeration
Authors: Parul Sahu
Abstract:
In recent years, seawater desalination has been emerged as a potential resource to circumvent water scarcity, especially in coastal regions. Among the various methods, thermal evaporation or distillation and membrane operations like Reverse Osmosis (RO) has been exploited at commercial scale. However, the energy cost and maintenance expenses associated with these processes remain high. In this context Freeze Desalination (FD), subjected to the availability of low cost refrigeration, offers an exciting alternative. Liquefied Natural Gas (LNG) regasification terminals provide an opportunity to utilize the refrigeration available with regasification of LNG. This work presents the conceptualization and development of a process scheme integrating the ice and hydrate based FD to the LNG regasification process. This integration overcomes the high energy demand associated with FD processes by utilizing the refrigeration associated with LNG regasification. An optimal process scheme was obtained by performing process simulation using ASPEN PLUS simulator. The results indicated the new proposed process requires only 1 kWh/m³ of energy with the utilization of maximum refrigeration. In addition, a sensitivity analysis was also performed to study the effect of various process parameters on water recovery and energy consumption for the proposed process. The results show that the energy consumption decreases by 30% with an increase in water recovery from 30% to 60%. However, due to operational limitations associated with ice and hydrate handling in seawater, the water recovery cannot be maximized but optimized. The proposed process can be potentially used to desalinate seawater in integration with LNG regasification terminal.Keywords: freeze desalination, liquefied natural gas regasification, process simulation, refrigeration
Procedia PDF Downloads 13113185 Application of Random Forest Model in The Prediction of River Water Quality
Authors: Turuganti Venkateswarlu, Jagadeesh Anmala
Abstract:
Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC.Keywords: water quality, land use factors, random forest, fecal coliform
Procedia PDF Downloads 19713184 Economic and Environmental Assessment of Heat Recovery in Beer and Spirit Production
Authors: Isabel Schestak, Jan Spriet, David Styles, Prysor Williams
Abstract:
Breweries and distilleries are well-known for their high water usage. The water consumption in a UK brewery to produce one litre of beer reportedly ranges from 3-9 L and in a distillery from 7-45 L to produce a litre of spirit. This includes product water such as mashing water, but also water for wort and distillate cooling and for cleaning of tanks, casks, and kegs. When cooling towers are used, cooling water can be the dominating water consumption in a brewery or distillery. Interlinked to the high water use is a substantial heating requirement for mashing, wort boiling, or distillation, typically met by fossil fuel combustion such as gasoil. Many water and waste water streams are leaving the processes hot, such as the returning cooling water or the pot ales. Therefore, several options exist to optimise water and energy efficiency of spirit production through heat recovery. Although these options are known in the sector, they are often not applied in practice due to planning efforts or financial obstacles. In this study, different possibilities and design options for heat recovery systems are explored in four breweries/distilleries in the UK and assessed from an economic but also environmental point of view. The eco-efficiency methodology, according to ISO 14045, is applied to combine both assessment criteria to determine the optimum solution for heat recovery application in practice. The economic evaluation is based on the total value added (TVA) while the Life Cycle Assessment (LCA) methodology is applied to account for the environmental impacts through the installations required for heat recovery. The four case study businesses differ in a) production scale with mashing volumes ranging from 2500 to 40,000 L, in b) terms of heating and cooling technology used, and in c) the extent to which heat recovery is/is not applied. This enables the evaluation of different cases for heat recovery based on empirical data. The analysis provides guidelines for practitioners in the brewing and distilling sector in and outside the UK for the realisation of heat recovery measures. Financial and environmental payback times are showcased for heat recovery systems in the four distilleries which are operating at different production scales. The results are expected to encourage the application of heat recovery where environmentally and economically beneficial and ultimately contribute to a reduction of the water and energy footprint in brewing and distilling businesses.Keywords: brewery, distillery, eco-efficiency, heat recovery from process and waste water, life cycle assessment
Procedia PDF Downloads 11813183 Short Term Tests on Performance Evaluation of Water-Washed and Dry-Washed Biodiesel from Used Cooking Oil
Authors: Shumani Ramuhaheli, Christopher C. Enweremadu, Hilary L. Rutto
Abstract:
In this study, biodiesel from used cooking oil was produced as purified by washing with water (water wash) and amberlite (dry wash). The work presents the results of short term tests on performance characteristics of diesel engine using both biodiesel-fuel samples. In this investigation, the water wash biodiesel and dry wash biodiesel and diesel were compared for performance using a four-cylinder diesel engine. The torque, brake power, specific fuel consumption and brake thermal efficiency were analyzed. The tests showed that in all cases, dry wash biodiesel performed marginally poorer compared to water wash biodiesel. Except for brake thermal efficiency, diesel fuel had better engine performance characteristics compared to the biodiesel-fuel samples. According to these results, dry washing of biodiesel has a marginal effect on engine performance.Keywords: biodiesel, engine performance, used cooking oil, water wash, dry wash
Procedia PDF Downloads 36313182 Physical Inactivity and Junk Food Consumption Consequent Obesity among University Girls: A Cross Sectional Study Unveils the Mayhem
Authors: Shahid Mahmood, Ghulam Mueen-Ud-Din, Farah Naz Akbar, Yousaf Quddoos, Syeda Mahvish Zahra, Wajiha Saeed, Tayyaba Sami Ullah
Abstract:
Obesity is an epidemic across the globe that affects all the segments of the population. Physical inactivity, passionate consumption of junk food, inadequate water intake and an unhealthy lifestyle are evident among university girls that are ruining their health gravely especially fat accumulation. The study was carried out to investigate the potential etiological factors of obesity development in university girls. The cross sectional study was carried out after approval of the Departmental Review Committee for Ethics (DRCE) as the par Declaration of Helsinki at Institute of Food Science and Nutrition (IFSN), University of Sargodha, Sargodha-Pakistan and Department of Food Science and Home Economics, G. C. Women University, Faisalabad-Pakistan. 400 girls were selected randomly from different departments of both universities. Nutritional status of the volunteers was assessed through approved protocols for demographics, anthropometrics, body composition, energetics, vital signs, clinical signs and symptoms, medical/family history, and dietary intake assessment (FFQ), water intake and physical activity level. The obesity was determined on body fat (%). Alarming and unheeded etiological factors for the development of obesity in girls were explored by the study. About 93 % girls had a sedentary level of physical activity, zealous consumption of junk food (5.31±1.23 servings), drank little water (1.09±0.26 L/day) that consequent high heaps of fat (35.06±3.02 %), measly body water (52.38±3.4 %), poor bone mass (05.14±0.31 Kg), and high BMI (26.68±1.14 Kg/m²) in 34% girls. The malnutrition also depicted by poor vital signs i.e. low body temperature (97.11±0.93 °F), slightly higher blood pressure (124.19±4.08 / 85.25±2.97 mmHg), rapid pulse rate (99.2 ± 6.85 beats/min), reduced blood O₂ saturation (96.53±0.96 %), scanty peak expiratory flow rate (297 ± 15.7 L /min). The outcomes of the research articulated that physical inactivity; extreme intakes of junk food, insufficient water consumption are etiological factors for obesity development among girls which are usually overlooked in Pakistan.Keywords: informed consent, junk food, obesity, physical inactivity
Procedia PDF Downloads 18913181 An Experimental Study on Heat and Flow Characteristics of Water Flow in Microtube
Authors: Zeynep Küçükakça, Nezaket Parlak, Mesut Gür, Tahsin Engin, Hasan Küçük
Abstract:
In the current research, the single phase fluid flow and heat transfer characteristics are experimentally investigated. The experiments are conducted to cover transition zone for the Reynolds numbers ranging from 100 to 4800 by fused silica and stainless steel microtubes having diameters of 103-180 µm. The applicability of the Logarithmic Mean Temperature Difference (LMTD) method is revealed and an experimental method is developed to calculate the heat transfer coefficient. Heat transfer is supplied by a water jacket surrounding the microtubes and heat transfer coefficients are obtained by LMTD method. The results are compared with data obtained by the correlations available in the literature in the study. The experimental results indicate that the Nusselt numbers of microtube flows do not accord with the conventional results when the Reynolds number is lower than 1000. After that, the Nusselt number approaches the conventional theory prediction. Moreover, the scaling effects in micro scale such as axial conduction, viscous heating and entrance effects are discussed. On the aspect of fluid characteristics, the friction factor is well predicted with conventional theory and the conventional friction prediction is valid for water flow through microtube with a relative surface roughness less than about 4 %.Keywords: microtube, laminar flow, friction factor, heat transfer, LMTD method
Procedia PDF Downloads 46013180 Modeling and Shape Prediction for Elastic Kinematic Chains
Authors: Jiun Jeon, Byung-Ju Yi
Abstract:
This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system.Keywords: elastic kinematic chain, shape prediction, colonoscopy, modeling
Procedia PDF Downloads 60513179 Biomimetic Building Envelopes to Reduce Energy Consumption in Hot and Dry Climates
Authors: Aswitha Bachala
Abstract:
Energy shortage became a worldwide major problem since the 1970s, due to high energy consumption. Buildings are the primary energy users which consume 40% of global energy consumption, in which, 40%-50% of building’s energy usage is consumed due to its envelope. In hot and dry climates, 40% of energy is consumed only for cooling purpose, which implies major portion of energy savings can be worked through the envelopes. Biomimicry can be one solution for extracting efficient thermoregulation strategies found in nature. This paper aims to identify different biomimetic building envelopes which shall offer a higher potential to reduce energy consumption in hot and dry climates. It focuses on investigating the scope for reducing energy consumption through biomimetic approach in terms of envelopes. An in-depth research on different biomimetic building envelopes will be presented and analyzed in terms of heat absorption, in addition to, the impact it had on reducing the buildings energy consumption. This helps to understand feasible biomimetic building envelopes to mitigate heat absorption in hot and dry climates.Keywords: biomimicry, building envelopes, energy consumption, hot and dry climate
Procedia PDF Downloads 21413178 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.Keywords: deep learning, convolutional neural network, LSTM, housing prediction
Procedia PDF Downloads 30613177 The Use of Non-Parametric Bootstrap in Computing of Microbial Risk Assessment from Lettuce Consumption Irrigated with Contaminated Water by Sanitary Sewage in Infulene Valley
Authors: Mario Tauzene Afonso Matangue, Ivan Andres Sanchez Ortiz
Abstract:
The Metropolitan area of Maputo (Mozambique Capital City) is located in semi-arid zone (800 mm annual rainfall) with 1101170 million inhabitants. On the west side, there are the flatlands of Infulene where the Mulauze River flows towards to the Indian Ocean, receiving at this site, the storm water contaminated with sanitary sewage from Maputo, transported through a concrete open channel. In Infulene, local communities grow salads crops such as tomato, onion, garlic, lettuce, and cabbage, which are then commercialized and consumed in several markets in Maputo City. Lettuce is the most daily consumed salad crop in different meals, generally in fast-foods, breakfasts, lunches, and dinners. However, the risk of infection by several pathogens due to the consumption of lettuce, using the Quantitative Microbial Risk Assessment (QMRA) tools, is still unknown since there are few studies or publications concerning to this matter in Mozambique. This work is aimed at determining the annual risk arising from the consumption of lettuce grown in Infulene valley, in Maputo, using QMRA tools. The exposure model was constructed upon the volume of contaminated water remaining in the lettuce leaves, the empirical relations between the number of pathogens and the indicator of microorganisms (E. coli), the consumption of lettuce (g) and reduction of pathogens (days). The reference pathogens were Vibrio cholerae, Cryptosporidium, norovirus, and Ascaris. The water quality samples (E. coli) were collected in the storm water channel from January 2016 to December 2018, comprising 65 samples, and the urban lettuce consumption data were collected through inquiry in Maputo Metropolis covering 350 persons. A non-parametric bootstrap was performed involving 10,000 iterations over the collected dataset, namely, water quality (E. coli) and lettuce consumption. The dose-response models were: Exponential for Cryptosporidium, Kummer Confluent hypergeomtric function (1F1) for Vibrio and Ascaris Gaussian hypergeometric function (2F1-(a,b;c;z) for norovirus. The annual infection risk estimates were performed using R 3.6.0 (CoreTeam) software by Monte Carlo (Latin hypercubes), a sampling technique involving 10,000 iterations. The annual infection risks values expressed by Median and the 95th percentile, per person per year (pppy) arising from the consumption of lettuce are as follows: Vibrio cholerae (1.00, 1.00), Cryptosporidium (3.91x10⁻³, 9.72x 10⁻³), nororvirus (5.22x10⁻¹, 9.99x10⁻¹) and Ascaris (2.59x10⁻¹, 9.65x10⁻¹). Thus, the consumption of the lettuce would result in greater risks than the tolerable levels ( < 10⁻³ pppy or 10⁻⁶ DALY) for all pathogens, and the Vibrio cholerae is the most virulent pathogens, according to the hit-single models followed by the Ascaris lumbricoides and norovirus. The sensitivity analysis carried out in this work pointed out that in the whole QMRA, the most important input variable was the reduction of pathogens (Spearman rank value was 0.69) between harvest and consumption followed by water quality (Spearman rank value was 0.69). The decision-makers (Mozambique Government) must strengthen the prevention measures related to pathogens reduction in lettuce (i.e., washing) and engage in wastewater treatment engineering.Keywords: annual infections risk, lettuce, non-parametric bootstrapping, quantitative microbial risk assessment tools
Procedia PDF Downloads 12013176 Assessment of the Effects of Water Harvesting Technology on Downstream Water Availability Using SWAT Model
Authors: Ayalkibet Mekonnen, Adane Abebe
Abstract:
In hydrological cycle there are many water-related human interventions that modify the natural systems. Rainwater harvesting is one such intervention that involves harnessing of water in the upstream. Water harvesting used in upstream prevents water runoff on downstream mainly disturbance on biodiversity and ecosystems. The main objectives of the study are to assess the effects of water harvesting technologies on downstream water availability in the Woreda. To address the above problem, SWAT model, cost-benefit ratio and optimal control approach was used to analyse the hydrological and socioeconomic impact and tradeoffs on water availability of the community, respectively. The downstream impacts of increasing water consumption in the upstream rain-fed areas of the Bilate and Shala Catchment are simulated using the semi-distributed SWAT model. The two land use scenarios tested at sub basin levels (1) conventional land use represents the current land use practice (Agri-CON) and (2) in-field rainwater harvesting (IRWH), improving soil water availability through rainwater harvesting land use scenario. The simulated water balance results showed that the highest peak mean monthly direct flow obtained from Agri-CON land use (127.1 m3/ha), followed by Agri-IRWH land use (11.5 mm) and LULC 2005 (90.1 m3/ha). The Agri-IRWH scenario reduced direct flow by 10% compared to Agri-CON and more groundwater flow contributed by Agri-IRWH (190 m3/ha) than Agri-CON (125 m3/ha). The overall result suggests that the water yield of the Woreda may not be negatively affected by the Agri-IRWH land use scenario. The technology in the Woreda benefited positively having an average benefit cost ratio of 4.2. Water harvesting for domestic use was not optimal that the value of the water per demand harvested was less than the amount of water needed. Storage tanks, series of check dams, gravel filled dams are an alternative solutions for water harvesting.Keywords: water harvesting, SWAT model, land use scenario, Agri-CON, Agri-IRWH, trade off, benefit cost ratio
Procedia PDF Downloads 33313175 A Phenomenological Exploration of Alcohol Consumption Patterns and Problems Among Male Students at the University of Kwazulu-Natal
Authors: Isaiah Phillip Smith
Abstract:
It is reported that alcohol consumption accounts for 3 million annual deaths globally, thus, it is a significant public health challenge internationally. The excessive consumption of alcohol is argued in literature to be related to problematic behaviors like crime, accident, fighting, violence, and unprotected sex, among others. Alcohol consumption among university students in South Africa particularly is considered endemic – with a prevalence rate of 25.27%, 32.34%, and 23.34% across universities, colleges, and high schools. Adopting the tenets of social learning and ecological theories, the culture of drinking amongst male university students is critically explored. This study found that age, gender, early exposure to alcohol, and peer pressure are significant factors contributing to alcohol consumption amongst university students. While participants acknowledged that moderate and responsible consumption of alcohol is necessary, they agree that it does not translate to responsible drinking behaviours.Keywords: alcohol, drinking, university, students
Procedia PDF Downloads 14013174 A Review on Nuclear Desalination Technology
Authors: Aiswarya C. L, Swatantra Pratap Singh
Abstract:
In recent years, most desalination plants have been powered by fossil fuels, and to a lesser extent, by green energy. Greenhouse gases emitted by fossil-fuelled plants significantly impact the global climate. So scientists are forced to develop a powerful energy source to protect the environment with greater sustainability due to climate change issues. Nuclear energy can supply much more fresh water than what is currently available. Furthermore, it is more affordable and does not emit any greenhouse gases. This review compares conventional desalination plants with nuclear-powered desalination plants in terms of cost, energy consumption, water recovery, and environmental issues. On the basis of the review conducted, nuclear desalination has been demonstrated to be technically feasible and economically competitive with a variety of fossil fuels, renewable energy sources, and waste heat sources. Nuclear sources have been criticized due to their lack of safety. But studies show, if we were able to handle the issue with care, the problems could be eliminated. Here we're looking at the Seawater Reverse Osmosis Plant (SWROP) at Kudankulam Nuclear Power Plant in Tamil Nadu, India and review the further possibility of implementing nuclear desalination technology in other states of India.Keywords: energy consumption, environmental impacts, nuclear desalination, water recovery
Procedia PDF Downloads 21113173 Experimental Investigation of Gas Bubble Behaviours in a Domestic Heat Pump Water Heating System
Authors: J. B. Qin, X. H. Jiang, Y. T. Ge
Abstract:
The growing awareness of global warming potential has internationally aroused interest and demand in reducing greenhouse gas emissions produced by human activity. Much national energy in the UK had been consumed in the residential sector mainly for space heating and domestic hot water production. Currently, gas boilers are mostly applied in the domestic water heating which contribute significantly to excessive CO2 emissions and consumption of primary energy resources. The issues can be solved by popularizing heat pump systems that are attributable to higher performance efficiency than those of traditional gas boilers. Even so, the heat pump system performance can be further enhanced if the dissolved gases in its hot water circuit can be efficiently discharged. To achieve this target, the bubble behaviors in the heat pump water heating system need to be extensively investigated. In this paper, by varying different experimental conditions, the effects of various heat pump hot water side parameters on gas microbubble diameters were measured and analyzed. Correspondingly, the effect of each parameter has been investigated. These include varied system pressures, water flow rates, saturation ratios and heat outputs. The results measurement showed that the water flow rate is the most significant parameter to influence on gas microbubble productions. The research outcomes can significantly contribute to the understanding of gas bubble behaviors at domestic heat pump water heating systems and thus the efficient way for the discharging of the associated dissolved gases.Keywords: heat pump water heating system, microbubble formation, dissolved gases in water, effectiveness
Procedia PDF Downloads 26613172 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran
Authors: Reza Zakerinejad
Abstract:
Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.Keywords: TreeNet model, terrain analysis, Golestan Province, Iran
Procedia PDF Downloads 53513171 Impact of Disposed Drinking Water Sachets in Damaturu Town, Yobe State, Nigeria
Authors: Meeta Ratawa Tiwary
Abstract:
Damaturu is the capital of Yobe State in northeastern Nigeria where civic amenities and facilities are not adequate even after 24 years of its existence. The volatile security and political situations are most significant causes for the same. The basic facility for the citizens in terms of drinking water and electricity are not available. For the drinking water, they have to rely on personal bore holes or the filtered borehole waters available in packaged sachets in the market. The present study is concerned with the environmental impact of indiscriminate disposal of drinking synthetic polythene water sachets in Damaturu. The sachet water is popularly called as ‘pure water’, but its purity is questionable. Increased production and consumption of sachet water has led to indiscriminate dumping and disposal of empty sachets leading to a serious environmental threat. The evidence of this is seen in the amount of disposed sachets littering the streets and also the drainages blocked by ‘blocks’ of water sachet waste. Sachet water gained much popularity in Nigeria because the product is convenient for use, affordable and economically viable. The present study aims to find out the solution to this environmental problem. The field-based study has found some significant factors that cause environmental and socio-economic effect due to this. Some recommendations have been made based on research findings regarding sustainable waste management, recycling and re-use of the non-biodegradable products in society.Keywords: civic amenities, non-biodegradable, pure water, sustainable environment, waste disposal
Procedia PDF Downloads 42113170 The Energy Efficient Water Reuse by Combination of Nano-Filtration and Capacitive Deionization Processes
Authors: Youngmin Kim, Jae-Hwan Ahn, Seog-Ku Kim, Hye-Cheol Oh, Bokjin Lee, Hee-Jun Kang
Abstract:
The high energy consuming processes such as advanced oxidation and reverse osmosis are used as a reuse process. This study aims at developing an energy efficient reuse process by combination of nanofiltration (NF) and capacitive deionization processes (CDI) processes. Lab scale experiments were conducted by using effluents from a wastewater treatment plant located at Koyang city in Korea. Commercial NF membrane (NE4040-70, Toray Ltd.) and CDI module (E40, Siontech INC.) were tested in series. The pollutant removal efficiencies were evaluated on the basis of Korean water quality criteria for water reuse. In addition, the energy consumptions were also calculated. As a result, the hybrid process showed lower energy consumption than conventional reverse osmosis process even though its effluent did meet the Korean standard. Consequently, this study suggests that the hybrid process is feasible for the energy efficient water reuse.Keywords: capacitive deionization, energy efficient process, nanofiltration, water reuse
Procedia PDF Downloads 18213169 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling
Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas
Abstract:
Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.Keywords: flood forecasting, machine learning, multilayer perceptron network, regression
Procedia PDF Downloads 17213168 Evaluation of Health Risk Degree Arising from Heavy Metals Present in Drinking Water
Authors: Alma Shehu, Majlinda Vasjari, Sonila Duka, Loreta Vallja, Nevila Broli
Abstract:
Humans consume drinking water from several sources, including tap water, bottled water, natural springs, filtered tap water, etc. The quality of drinking water is crucial for human survival given the fact that the consumption of contaminated drinking water is related to many diseases and deaths all over the world. This study represents the investigation of the quality and health risks of different types of drinking waters being consumed by the population in Albania, arising from heavy metals content. Investigated water included industrialized water, tap water, and spring water. In total, 20 samples were analyzed for the content of Pb, Cd, Cr, Ni, Cu, Fe, Zn, Al, and Mn. Determination of each metal concentration in selected samples was conducted by atomic absorption spectroscopy method with electrothermal atomization, GFAAS. Water quality was evaluated by comparing the obtained metals concentrations with the recommended maximum limits, according to the European Directive (98/83/EC) and Guidelines for Drinking Water Quality (WHO, 2017). Metal Index (MI) was used to assess the overall water quality due to heavy metals content. Health risk assessment was conducted based on the recommendations of the USEPA (1996), human health risk assessment, via ingestion. Results of this investigation showed that Al, Ni, Fe, and Cu were the metals found in higher concentrations while Cd exhibited the lowest concentration. Among the analyzed metals, Al (one sample) and Ni (in five samples) exceeded the maximum allowed limit. Based on the pollution metal index, it was concluded that the overall quality of Glina bottled water can be considered as toxic to humans, while the quality of bottled water (Trebeshina) was classified as moderately toxic. Values of health risk quotient (HQ) varied between 1x10⁻⁶-1.3x10⁻¹, following the order Ni > Cd > Pb > Cu > Al > Fe > Zn > Mn. All the values were lower than 1, which suggests that the analyzed samples exhibit no health risk for humans.Keywords: drinking water, health risk assessment, heavy metals, pollution index
Procedia PDF Downloads 13013167 Dimension of Water Accessibility in the Southern Part of Niger State, Nigeria
Authors: Kudu Dangana, Pai H. Halilu, Osesienemo R. Asiribo-Sallau, Garba Inuwa Kuta
Abstract:
The study examined the determinants of household water accessibility in Southern part of Niger State, Nigeria. Data for the study was obtained from primary and secondary sources using questionnaire, interview, personal observation and documents. 1,192 questionnaires were administered; sampling techniques adopted are combination of purposive, stratified and simple random. Purposive sampling technique was used to determine sample frame; sample unit was determined using stratified sampling method and simple random technique was used in administering questionnaires. The result was analyzed within the scope of “WHO” water accessibility indicators using descriptive statistics. Major sources of water in the area are well; hand and electric pump borehole and streams. These sources account for over 90% of household’s water. Average per capita water consumption in the area is 22 liters per day, while location efficiency of facilities revealed an average of 80 people per borehole. Household water accessibility is affected mainly by the factors of distances, time spent to obtain water, low income status of the majority of respondents to access modern water infrastructure, and to a lesser extent household size. Recommendations includes, all tiers of government to intensify efforts in providing water infrastructures and existing ones through budgetary provisions, and communities should organize fund raising bazaar, so as to raise fund to improve water infrastructures in the area.Keywords: accessibility, determined, stratified, scope
Procedia PDF Downloads 39213166 Urban Growth Prediction Using Artificial Neural Networks in Athens, Greece
Authors: Dimitrios Triantakonstantis, Demetris Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modeling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modeling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.Keywords: artificial neural networks, CORINE, urban atlas, urban growth prediction
Procedia PDF Downloads 52813165 Constructed Wetlands: A Sustainable Approach for Waste Water Treatment
Authors: S. Sehar, S. Khan, N. Ali, S. Ahmed
Abstract:
In the last decade, the hunt for cost-effective, eco-friendly and energy sustainable technologies for waste water treatment are gaining much attention due to emerging water crisis and rapidly depleting existing water reservoirs all over the world. In this scenario, constructed wetland being a “green technology” could be a reliable mean for waste water treatment especially in small communities due to cost-effectiveness, ease in management, less energy consumption and sludge production. Therefore, a low cost, lab-scale sub-surface flow hybrid constructed wetland (SS-HCW) was established for domestic waste water treatment.It was observed that not only the presence but also choice of suitable vegetation along with hydraulic retention time (HRT) are key intervening ingredients which directly influence pollutant removals in constructed wetlands. Another important aspect of vegetation is that it may facilitate microbial attachment in rhizosphere, thus promote biofilm formation via microbial interactions. The major factors that influence initial aggregation and subsequent biofilm formation i.e. divalent cations (Ca2+) and extra cellular DNA (eDNA) were also studied in detail. The presence of Ca2+ in constructed wetland demonstrate superior performances in terms of effluent quality, i.e BOD5, COD, TDS, TSS, and PO4- than in absence of Ca2+. Finally, light and scanning electron microscopies coupled with EDS were carried out to get more insights into the mechanics of biofilm formation with or without Ca addition. Therefore, the same strategy can be implemented in other waste water treatment technologies.Keywords: hybrid constructed wetland, biofilm formation, waste water treatment, waste water
Procedia PDF Downloads 402